PHYSICAL REVIEW B

VOLUME 43, NUMBER 16
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Anharmonic interionic potentials are examined in an Einstein model to study the unusual
isotope-effect exponents for the high-7, oxides. The mass dependences of the electron-phonon cou-
pling constant A and the average phonon frequency V' {w?) are computed from weighted sums over
the oscillator levels. The isotope-effect exponent is depressed below % by either a double-well poten-
tial or a potential with positive quadratic and quartic parts. Numerical solutions of Schrédinger’s
equation for double-well potentials produce A’s in the range 1.5-4 for a material with a vanishing
isotope-effect parameter a. However, low phonon frequencies limit 7., to roughly 15 K. A negative
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quartic perturbation to a harmonic well can increase a above 1

limit, a is %, regardless of anharmonicity.

I. INTRODUCTION

The small, but nonvanishing isotope effect' in Y-Ba-
Cu-0O, Bi-Sr-Ca-Cu-O and other high-temperature super-
conductors (HTS) suggests an important and unusual role
for phonons in the pairing mechanism. Frozen-phonon
calculations yield strong anharmonicity, in the form of a
double-well potential, for O(1) motions in Y-Ba-Cu-O.?
Recent theoretical work® suggests that such a double-well
ionic potential could produce extremely large values of
the electron-phonon coupling parameter A. We wish to
study the influence of anharmonicity on both the transi-
tion temperature and the isotope effect to determine if
such a mechanism is consistent with the properties of the
high-T, oxides. We have used three approaches in our
study of anharmonic superconductors. Double-well po-
tentials are studied via numerical solution of
Schrddinger’s equation. Strongly quartic potentials are
considered using a simple scaling argument. Small
anharmonicities are studied with perturbation theory.
The weakly anharmonic well is also examined numerical-
ly to confirm and extend the analytic results.

In all cases we assume the validity of the standard for-
mulas for the transition temperature 7, in terms of A, the
Coulomb repulsion u*, and the average phonon frequen-
cy ({w?))!/2. Although the Eliashberg equations are as-
sumed to be applicable,* there is no rigorous justification
for extending the scope of the harmonic T, equations.

Anharmonicity affects superconductivity in three ways:
a shift in the phonon frequencies, the introduction of
Debye-Waller factors in the ionic potential, and multi-
phonon processes. These processes are all second order
in the ratio of ionic displacement to lattice constant.* We
concentrate on the modified phonon frequencies, ignoring
the Debye-Waller factors and multiphonon processes. In
the double-well problem, the modification of phonon fre-
quencies is quite dramatic, suggesting that the other pro-
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5- In the extreme-strong-coupling

cesses can be ignored in a first approximation.

With these caveats in mind, we explore the qualitative
effects of anharmonicity. Section II describes the effect of
a general anharmonicity. Section III presents the numer-
ical calculations for the double-well potential. Section IV
describes the pertubative results.

II. EFFECT OF AN ARBITRARY ANHARMONICITY
ON THE ISOTOPE PARAMETER

The isotope parameter a is determined by calculating
the mass dependence of A and {(w?). We begin with the
formula for A introduced by Hui and Allen,’

FS) l(n 'Mkk"O)P

(
A=N(0)
k,zk’ nél En_EO

, 1)

which allows coupling between the lattice ground state
|0) and excited states |n) with energy E, in a one-
dimensional Einstein oscillator at zero temperature.
N(0) is the electronic density of states at the Fermi ener-
gy and the sum over electronic states is limited to states
on the Fermi surface. The electron-phonon matrix ele-
ment M. is given by

My =(k'|[V(r—Ry—8R)—V(r—RyIlk), ()

where V is the ionic potential, |k ) and |k’) are electron-
ic states, and SR is the ionic displacement from the equi-
librium position R,. For harmonic superconductivity
calculations, the assumption of an Einstein spectrum
should not introduce qualitative errors, since an Einstein
model produces values of T, reasonably close to those
given by more realistic phonon spectra.® Dispersion of
the anharmonic mode could qualitatively change the re-
sults. Unfortunately, the calculation of the dispersion re-
lation for a strongly anharmonic phonon is problematic.
In addition, the strong coupling between bare double-well
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phonons of different q presents a difficult exercise in fre-
quency renormalization. For the present discussion we
limit ourselves to the Einstein model. Following McMil-
lan,” we factorize (1) to obtain a computationally con-
venient form,
- 2y - |{n|8R|0)]?
A=NOXI*) 3 E,—E,

n=1

(3)

where the prefactor (I?) contains the electronic contri-
butions and the summation involves matrix elements be-
tween phonon states. The electron-ion interaction has
been approximated by the linear term in the Taylor
series. This approximation is of questionable validity for
the large ionic excursions in the double-well system. In-
clusion of higher-order terms necessitates the calculation
of the electronic prefactors so that the higher-order terms
are included with the proper relative weight. By concen-
trating on the linear term, we avoid this problem, at the
risk of a loss in accuracy.

Assuming that (I?) is independent of the ionic mass,
the mass dependence of A can be calculated from the
mass dependence of the dipole matrix elements and the
oscillator levels, as obtained from a numerical solution of
Schrodinger’s equation.

An expression similar to (3) can be written for the aver-
age squared phonon frequency

<w2>:%‘”<12> S KnlsRI0YAE, —E,). @
n=1

The summation has the form of a sum rule with value
#2/2M, where M is the ionic mass. Using this informa-
tion,

N(0)Y2(I?)
2

1
MA -

(0?)= (5)

The anharmonic A and {w?) are related in the same
manner as in the harmonic case. We define separate iso-

topic exponents for A and ({®?))!/? in the form
M dA
}\‘ =, 6
Mo\ aM ©
M (N o
Mo 2 A
with the relationship
Ay +1
=— . 8
for a pure harmonic potential, w,, = —1, so that A,,=0,

as expected.

Having elucidated the mass dependence of A and (w?),
we determine a from the Kresin-Barbee-Cohen T, equa-
tion,%?

(<w2))1/2

TC:O'26 (eZ/A_l)l/2 ’

9
where we have assumed that the Coulomb repulsion pa-
rameter u*=0. The double-well calculations will pro-
duce A in the range from 1.5 to 4, so that the Kresin-
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Barbee-Cohen equation should be applicable. For these
strong coupling A’s the u* =0 approximation should be
reasonable. A simple calculation yields

eZ/A

@A —Dn T (19

=1 __
a=1—Ay

The term multiplying A, is positive for all values of A, so
that the direction of deviation of a from I will be deter-
mined by the sign of A,,. In the strong-coupling limit, we
obtain

Am

a=1 T (11)

The extreme-strong-coupling limit of a is one-half, re-
gardless of anharmonicity. To study the effect of finite
u*, we have solved the Eliashberg equations. As u*
ranges from 0.05 to 0.25, the strong-coupling limit of a
varies from 0.5 to 0.4. We introduce a finite Coulomb

repulsion in the weak-coupling case to obtain

2

_1 p*
a—z 1— A —pe (1+A,)
Ay A* 2
T A —p (12)

For positive A,,, the introduction of u* will decrease a,
as in the harmonic case. However, for negative A,,, the
effect of u* depends on the value of A,,. For sufficiently
large negative A,,, a positive u* can actually increase a.
Calculations using the Eliashberg equations extend this
result to the strong-coupling regime.

The case of a pure quartic potential provides a simple
application of Eq. (10). For such a well, a simple scaling
arguement can be applied to the Schrodinger equation to
obtain information about ({ w?))!”2. To wit, a shift in the
mass can be counteracted by changes in length scale and
energy scale. The energy rescaling implies that

(<w2>)l/20:M*2/3, (13)
so that
Ay=1. (14)

Since Ay, >0, a is depressed below 0.5. Such an argu-
ment can be applied to any potential with only one length
scale (e.g., pure sixth-order, etc), but only the quartic case
is of physical interest.

In the extreme anharmonic limit of a square-well po-
tential, elementary quantum mechanics yields

(N2 M, (15)
so that
Ay =1 (16)

The stronger anharmonicity produces a greater deviation
from the harmonic case.
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III. DOUBLE-WELL POTENTIAL

For the double well, we calculate A,, and w,, from nu-
merical solutions of Schrodinger’s equation for a variety
of anharmonic potentials of the form

V(x)= Ax*+Bx* (17)

with well widths of 0.25, 0.35, and 0.5 A and depths of
60, 150, and 300 K. The well width is defined as the dis-
tance from the origin to the zero of the potential. The
potential calculated by Cohen et al.? corresponds most
closely to a depth of 150 K and a width of 0.35 A. The
summations in (3) and (4) were carried over six levels,
with the dominant contribution in all cases coming from
the first term.

In addition to A, and w,,, the numerical calculations
provide (w?) and the ionic part of A (without the elec-
tronic prefactor). In accordance with the results of Har-
dy and Flocken,® the ionic part of A increases 100-fold
from the shallow, narrow wells to the deep, wide poten-
tials. However, possible variations in the electronic pre-
factor for different potentials rule out a direct compar-
ison between the A calculations for different potentials.
We circumvent this difficulty by exploiting the relation-
ship between A and a given by Eq. (10). Setting a equal
to 0.02, the accepted value for Y-Ba-Cu-O, we obtain an
estimate for A. The transition temperature T, is calculat-
ed from (9). Obviously, this technique will not produce a
quantitative prediction for T,, but the general trend may
be relevant.

Imposing the @=0.02 condition produces moderately
strong coupling A’s. The largest A’s occur for wide, deep
wells in which A is most sensitive to M. This trend is elu-
cidated by Eq. (11), which shows A to be proportional to
Ay in the strong-coupling limit, under the condition
a=0. As noted above, the wide, deep wells also have the
largest ionic contributions to the electron-phonon cou-
pling, as computed directly from the numerical solutions
of Schrédinger’s equation, without imposing the a=0.02
condition.

In the limit of an infinitely deep double well, the
ground state and first excited state are degenerate, corre-
sponding to linear combinations of the ground states of
two uncoupled oscillators. For finite double wells the de-
generacy is broken, but the energy difference remains
small. This near degeneracy produces a very small aver-
age phonon frequency, which counteracts the large A,
limiting the critical temperature to roughly 15 K. For
some potentials, the transition temperature is only 2 or 3
K. If A is increased by hand to produce T, on the order
of 90 K, then a will approach the strong-coupling limit of
one-half, at variance with experimental results. Note
that a closely related calculation by Dreschler and Plaki-
da'® produces similar results for the variation of a with A.

In a two-dimensional double well, the angular-
momentum term will break the near degeneracy of the
lowest levels, increasing the average frequency. Such a
situation could possibly increase T, into the range of the
HTS oxides. Since the O(1) atoms lie in chains, one could
consider a two-dimensional anharmonic buckling motion
out of the chain. The standard description of phonons
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would necessitate a separation of the two-dimensional
mode into two coupled one-dimensional modes. The Ein-
stein scheme avoids the problem of analyzing such
strongly coupled modes. A preliminary analysis yields
roughly a factor of 3 increase in the phonon frequency
(and transition temperature) for a two-dimensional poten-
tial. A neutron powder diffraction study has measured
large thermal ellipsoids for the O(1) atoms. The ellip-
soids are pancake-shaped and oriented perpendicular to
the Cu—O bond,!! providing some support for the hy-
pothesis of a two-dimensional anharmonicity. However,
other diffraction studies have yielded a cigar-shaped
thermal ellipsoid,'>!® a result inconsistent with a soft
two-dimensional double well. The average phonon fre-
quency could also conceivably be increased by coupling
of the double well to higher-frequency modes. A detailed
discussion of the relevance of such coupling is beyond the
scope of this paper. Finally, finite-temperature effects
should increase the contributions of the higher-energy
levels to the average phonon frequency. Of course, a
nonzero temperature should also influence w,, and A,,.

The value of A, is positive for all double-well poten-
tials, implying that a is always less than one-half. The
date of Crawford et al.'* with a for La,_, Sr, CuO, sub-
stantially above 1 for certain strontium concentrations
cannot be accounted for by a double-well potential, at
least within our approximations. However, a negative
quartic perturbation on a harmonic well may be able to
explain the results, as will be discussed in Sec. IV.

IV. SMALL ANHARMONIC PERTURBATIONS

Here we present the results of an analytic calculation
to determine the effect of small quartic anharmonicities
on the isotope effect. The potential is of the form

V(x)= Ax*+Bx*. (18)

The perturbation will shift the average phonon frequency
to first order in the relevant expansion parameter, name-
ly, the ratio of the energies contained in the quartic and
quadratic parts of the oscillation,

B

A3/2M1/2 (19)

(* )=V (24)/M l1+1<

The order-unity prefactor K is initially left indeterminate.
Equation (5) then determines the mass dependence of A,

B

4372pg172"
The prefactor K can be approximated by a perturbation
calculation using using the first term in the sum for (w?),
which yields K=1.06. Numerical solutions of
Schrodinger’s equation for weakly anharmonic wells pro-
duce K=1.05%0.01, confirming the perturbative ap-
proach. These numerical studies also allow a rough eval-
uation of the coefficient of the next term in the perturba-
tion expansion, producing

Ay=K (20)
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B B?

Ay =1.05 432012 —> 1M

(21)

We obtain a shift in a as expressed by Eq. (10). A posi-
tive quartic part will decrease the isotope effect, with the
reduction most pronounced for light ions.

A negative quartic part, on the other hand, will pro-
duce Ay, <0 and thereby increase a above 1. In addition,
a negative value of A,, can result in u* increasing the iso-
tope parameter, as discussed in reference to Eq. (12).
Crawford et al.'* discuss an incipient phase transition
from orthorhombic to tetragonal in La,_,Sr,CuO,,
which appears to be correlated with values of a above 1.
This phase transition is associated with an optical tilt
mode of the Cu-O octahedra. The form of the interionic
potential for this mode in orthorhombic La,_,Sr, CuO,
is not known.

A phonon mode which gains a strong negative quartic
part as a function of Sr doping could explain a> . In
addition, preliminary calculations indicate that certain
forms of triple-well potentials could increase a. A de-
tailed discussion of these possibilities will appear in a fu-
ture publication wherein we will consider the effects of a
phonon spectrum with more than one Einstein mode.
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V. CONCLUSION

A simplified model of anharmonicity will usually pro-
duce isotope effect exponents from one-half to less than
zero. The analysis yields a relationship between a and A.
Using this relationship, we obtain A in the range from 1.5
to 4 for various double-well potentials. The specific dou-
ble well suggested by frozen-phonon calculations on Y-
Ba-Cu-O yields A=2.2. However, such wells produce
phonon frequencies much too low to explain the high
transition temperatures. Perhaps a two-dimensional pho-
non mode could increase the frequencies sufficiently. In
addition, the anharmonic mode could be coupled strongly
to higher-frequency modes. Isotope effects greater than
one-half appear possible for both negative quartic pertur-
bations and certain triple-well potentials.
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