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A microscopic theory of the collective excitations (CE) in the A phase of He is constructed with
the use of a path-integration method. The whole CE spectrum, taking damping into account, is cal-
culated. The cause of additional Goldstone modes in the weak-coupling approximation and their
analogy to 8' bosons in the weak-interaction theory are discussed. The whole set of equations,
which describe the CE in arbitrary magnetic fields, is obtained. They are solved for small magnetic
fields and the linear Zeeman effect for clapping and pair-breaking modes is obtained.

The 2 phase is perhaps the most interesting object in
superAuid He. It gives us an example of an anisotropic,
superAuid quantum liquid. The main features of the 3
phase of He are connected to the existence on the Fermi
surface of two nodes in the gap of a single-particle spec-
trum. This leads to chiral fermions, gauge fields, 8'and
Z bosons, zero-charge phenomenon, the damping of col-
lective excitations (CE) at zero momentum, and to many
other consequences for the system.

In this paper we construct a microscopic theory of CE
in the 3 phase of He and investigate the inhuence of a
magnetic field on CE, using the path-integration (PI)
method.

The most popular method which is used to investigate
the collective excitations in superfI. uid He is the kinetic-
equation (KE) method. The main advantages of the
path-integral method over the kinetic equation is the in-
creased accuracy in calculating the collective mode fre-
quencies. For example, in the B phase of He, the first
collective-mode (CM) dispersion laws for the whole spec-
trum have been calculated by Brusov and Popov. ' The
investigation of the stability of the Czoldstone modes,
which requires a calculation of the corrections of order
k in the general case, have also been made. The whole
CM spectrum has been calculated by taking CM damping
into account in the A phase of He and recent experi-
ments show excellent agreement with these results in op-
position to those obtained by KE.

The main advantages of the KE method are connected
with the calculation of the coupling strength between
zero sound and the CM. A fine example of this is the cal-
culation by Koch and Wolfe of the coupling strength
between the real squashing mode and zero sound, which
exists only via very small particle-hole asymmetry.

The cause of such a situation is as follows. The appli-
cation of the path integral method to superAuid He was
developed by Brusov and Popov especially to investigate
the Bose spectrum. In this way they integrated over all
Fermi degrees of freedom and derived the Bose fields,

I

describing the Cooper pairs near the Fermi surface only.
This made the formalism simpler and raised the possibili-
ty of moving closer to the solution of the problem of the
CM eigenfrequencies. But such simplification does not
allow one to investigate the interaction between Fermi
and Bose degrees of freedom. Our next work will modify
our procedure to include some Fermi fields. We show the
possibility of including the coupling between zero sound
and the CM. Inclusion of the Fermi-liquid correction
leads to complications in our scheme. However, until
now, the KE method which considered both the Fermi
and Bose fields was more complicated and has not been
very successful in calculating the CM spectrum. In our
opinion, both of these methods, KE and PI, are
equivalent. A good example of this is due to Com-
bescot, who subsequent to Brusov and Popov' obtained
the same set of equations for the Bose spectrum of He -8
by using the KE method instead of the path-integral
method.

MODEL OF He

S = f dr fdying, (x, r)c),y, (x, r) —f II'(r)«
0

(2)

is the action corresponding to the Hamiltonian

The model of He that we describe below was first sug-
gested by Alonso and Popov and developed by Brusov
and Popov. We describe the He system by the anticom-
muting functions y, (x, r) and g, (x, r) with the Fourier
expansion

g, (x,r)=,
&2 $ a, (k, co)e xp[i(car —k x)] . (I)

1

(PIr)1 j2

Here s =+ is the spin index, x& V=L3, r~[o,p],
p= T ' (in units A'=k~ = I), k, =2rrn; IL, co= (2n
+ l)rrlp; n and n, are integers. Let us c. onsider the sta-
tistical sum for this system 1 expSdgdy, where the
functional

18'(r)= fding Vg, (x, r)Vg, (x, r) —(spy+A, )g, (x, r)g, (x, r)
S

+ ,' f dx dyu —(x—y) gg, (x, rg), (y, r)g, (y, r)y, (x,r),
S, S
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f expS dX]dX] =expS[Xo Xo) . (4)

The functional S is the action of the "slow" fields yo and

go, for which lk —kFl &ko and lcol &coo. The general
form of the functional S is a sum of functionals of the

in which I, is the chemical potential, po is the magnetic
moment of the Fermi particle, and H is the magnetic
field.

Using the idea that only fermions in the vicinity of the
Fermi surface are important for the superAuidity, we
separate the Fermi fields (1) into two parts: "fast" fields
and "slow" fields. "Fast" fields y, and g& are determined
by the part of expansion (1) with

l
k —k~ l

)ko or
leo~ ) coo, and the "slow" ones yo and go are equal

Xo X X]~ XQ X Xi.
The auxiliary parameters ko and coo are defined only to

an order of magnitude, and the physical results should
not depend on their concrete choice.

We integrate first over the "fast" Fermi fields and then
over the "slow*' ones, using di6'erent perturbation-theory
schemes in each of these two stages. The integral over
the fast fields y& and y& will be written in the form

even powers in the fields yo and yo:

S= g S2„.
n=0

Neglecting the higher-order functionals S6, S8, . . . , and
omitting the constant So, which is no longer significant,
we examine the forms of S2 and S4. The form of S2 cor-
responds to noninteracting quasiparticles near the Fermi
surface, and is given by

g s, (k, co)a, (k, co)a, (k, co),
ki 0)~ S

lk —k~l &ko, lcol &]oo, (6)

with

e, (k, co)=Z '[ia] cF(k——kF)+sp, H] .

c,, is given in powers of co, k —kF, and H, but only the
linear terms retained. The coefficient cF is the velocity at
the Fermi surface, p is the magnetic moment of the
quasiparticle, and Z is a normalization constant.

The form of S4 describes the interaction of the quasi-
particles and is given by

to(pi p2 p3 p4)a+(p])a (p2)a (p4)a+(p3)+

71+72 =73+74

1
t](pl p2 p3 p4)l. 2a + (pl )a —(p2 )a —(p4 )a+ (p3 )

F1+12=73+74

+ + (p]) + (p2) +(p4)a+(p3)+ —(pl ) —(p2)a —(p4) —(p3 ))

Here p =(k, co) is the four-momentum; to(p, ) and t, (p, )

are, respectively, the symmetrical and antisymmetrical
scattering amplitudes under the permutations p&~+p2 and
p3~~p„. In the vicinity of the Fermi sphere we can put
co;=0, k,. =kn; (i=1,2,3,4), where n, are unit vectors
such that n&+n2=n3+n4. The amplitudes to and t&

should depend only on two invariants, for example, on
(n„n2) and (n, —n3, n3 —n4) with to even and t, odd in
the second invariant. We therefore have the expressions

to=f{(n„n2); (n, —n2, n3 —n4)),

(n] n2, n3 n4)g ((n], n2), (n] n2, I13 n4) )

Here to and t, are expressed in terms of the functions f
and g, which are even in the second argument.

The functional S2+S4, defined by formulas (6)—(9) is

the most general expression describing Fermi quasiparti-
cles and their pair interaction near the Fermi sphere.
The method of obtaining this functional in the path-
integral formalism, and its investigation that follows
below, constitute an alternative approach to that
developed in the Landau theory of the Fermi liquid.

The functions f and g can easily be calculated for the
gas model. For high-density systems they must be deter-
mined from experiment.

We consider hereafter a model with

f =0, g =const &0 (10)

«l T [x(x,r)x(x, r);x(y, r])x(y r] ) ll0 &,

(
Oa Oa» 8*,~& x(*,~);x(x, ~i& x(x,~i»)2

' ' ' 2

Singularities, which appear in such complex functions
and are absent in single-particle ones are called CE. The

as the simplified model of He with pairing in the p state.
Using the Fermi-fields (1) for the description of He is

the most logical, however significant difficulties appear
when we use them to describe low-energy (infrared) phe-
nomena in superQuid He . This is due to the absence of
singularities in the single-particle Green function
(0lT[g(x, r)g(y, r]))l0) below E =b, , where b, is a gap
in a single-particle spectrum E (k) = [g (k)+ 5 ]'
g(k)=cF(k —kF). Thus the description of infrared phe-
nomena (with E «b, ) such as zero sound, spin waves,
and so on, is complicated in terms of Fermi-fields. One
needs to sum an infinite set of Feynman diagrams to gain
a simple understanding of these phenomena. But there
are Green's functions which describe such excitations
directly; they are
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Sb =c Ac +ln det[M(c, c )/M(0, 0)], (12)

in which the lndet has been regularized by dividing
M(c, c ) by the operator M(0, 0) =M(c, c )

~

most logical method for their description is the passage
from Fermi to Bose fields which describe the Cooper
pairs of quasifermions.

To make this we introduce under the integral over the
Fermi field a Gaussian integral of exp(c Ac) with respect
to the Bose field c, where c Ac is a quadratic form with a
certain operator A. We then shift the Bose field by a
quadratic form of the Fermi fields, so as to annihilate the
form S4 of the fourth degree in the Fermi fields. The in-
tegral over the Fermi fields is then transformed into a
Gaussian integral and is equal to the determinant of the
operator M(c, c) that depends on the Bose fields c and c.
We arrive at the functional

dc,,dc,,exp —g c,, (p)c,, (p)
1

g p i, a
(13)

where g is the constant (10). It is easily verified that the
shift

The functional S& is called the "hydrodynamic action
functional. " It defines the point of the phase transition of
the initial Fermi system as a Bose condensation of the
fields c and c, and determines the density of the conden-
sate at T & T, and the spectrum of the collective excita-
tions.

In case of p pairing one needs to introduce under the
integral over the Fermi fields a Gaussian integral over the
complex functions c;,(x, r) and c;,(x, r) with the vector
index i and the isotopic index a (i, a = 1,2,3). The Gauss-
ian integral is of the form

c;1(p)~c;1(p)+ 1/2 g (n1,. —n2; )[a+ (p2)a+ (p1)—a (p2)a (p1)],2(PV)'

ci2(P)~c(2(P)+ 1/2 g (n 1;
—n2; )[a+ (P2)a+ (P1 )+a (P2)a (P, )]

gl
2(PV)'

(14)

;3(p)~c;3(p)+,/2 g (n „n2, )a (p—2 )a+ (p, ),(PV)'"
~ +. =.

does indeed eliminate the form S4.
To calculate the Gaussian integral over the Fermi fields, we introduce a column vector 1', (p) with elements

1ti1(p) =a+(p), $2(p) = —a (p), P, (p) =a (p), P,(p) =a+ (p),
and write down a quadratic form in the Fermi fields

4 (p 1 )Ma, b (p 1 &tp 2 )Pb (p 2 )

p), p~, a, b

The fourth-order matrix M(p1,p2) with elements M,b(p „p2) is given by

(16)

Z '[ice g+p(H —o )]5

1

(P V) 1/2 ( n 1i n 2i )Cia (P 1 +P 2 )~ a

1

(p V)1/2, / (n„n2; )c;,(p, —+p2)o,

Z '[i co+g+ p(H o)]5' (17)

where o, (a = 1,2,3) are 2 X 2 Pauli matrices.
Integrating over the Fermi fields

Je dgpdyp=(detM)'

we arrive at the hydrodynamic action" functional

(18)

THE CE SPECTRUM IN THE ABSENCE
OF MAGNETIC FIELDS

The collective modes (CM) in He -A describe the oscil-
lations 5/I; of the OP (complex 3X3 matrix) around its
equilibrium state

Sb =—g c,, (p)c;, (p)+ —lndet
1 t 1 M(cc)
g p, , 2 M(0, 0)

(19)
' =&p(e'1 +ie 2 )d (20)

This functional contains all the information on the
physical properties of the system. In particular it deter-
mines the transition temperature into the superAuid state,
the order parameters (OP) of the superfiuid states, the
gap equation, the CE spectrum, and many others. We
will use this to investigate the CE spectrum.

The unit vectors e& and e2 describe the orbital part of the
order parameter; their vector product determines the or-
bital anisotropy vector 1=[e, , e2]; and the unit vector d
specifies the spin axis, i.e., the axis of the magnetic anisot-
ropy.
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The number of CM in He -A as well as in any other
phase is equal to 18 (3X3X2). In principle all of these
modes could be observed either in NMR or in zero-sound
experiments.

The classification of the CM in the A phase of He has
been done by Volovik and Khazan in terms of the irre-
ducible representations of the symmetry group H of the
equilibrium state Eq. (20). In contrast to the modes in
the 8 phase of He which are characterized by one quan-
tum number J and a single parity (with respect to com-
plex conjugation), the modes in He -A are characterized
by two quantum numbers: Q and S„and two parities P'
and P . The charges Q and S, assume the values 0, +1,
+2, and 0, +1, respectively. Owing to the parities P' and
P those modes, which differ in the sign of either S, or Q,
turn out to be degenerate. Consequently, if the wave vec-
tor k is parallel to the orbital anisotropy axis the spec-
trum of modes will consist of two fourfold degenerate
branches, four twofold-degenerate branches, and two
nondegenerate branches (see Table I).

An additional degeneracy of the spectrum of modes is
exhibited in the weak-coupling limit, on account of an en-
largement of the group H owing to hidden symmetry.
This leads in particular to the appearance of four addi-

tional Goldstone modes, which were first obtained by
Brusov and Popov.

The calculation of the CE spectrum has been made in
numerous papers (see, for example, Ref. 10), where the
energies of clapping E,&=1.226o, Aapping E„=1.5660,
and pair-breaking E„h =260 modes were obtained (here
b,o is the maximum value of gap A=6.o(sin8). These en-
ergy values were obtained without taking any CE damp-
ing into account. But it is clear that the vanishing of the
gap along the orbital anisotropy axis I leads to CE damp-
ing due to decay into two fermions, because CE with
nonzero energy and small momentum can always decay
kinematically into two fermions whose momenta are al-
most opposite and close to I. The whole CE spectrum
taking into account this damping was obtained first by
Brusov and Popov.

Following their paper we describe below the whole CE
spectrum in He -A without magnetic fields. For calcula-
tion of the CE spectrum in the region T, —T- T„we ex-
pand the functional —,'ln det[M(c, c)/M(0, 0)] in Eq. (19)
in powers of the deviation c;,(p) from the condensate
value c;, (p), which is different for different phases. We(0)

apply the shift c;,(p)~c, '(p)+c;, (p) and separate from
Sh the quadratic form

TABLE I. Various modes and their respective quantum numbers.

Quantum numbers

Modes Variables Q

In the absence of
dipole interaction
and magnetic field

P S, P'

Taking into account
dipole interaction

Q p 2
In magnetic field

Q

In weak
coupling

S Q

Sound

Spin waves

Orbital modes

Spin-orbit modes

&23 V12

011 +U21,

ll12+ V23

033~ U33

0 +1

0 +1 0

+1
0

031+U32

+1
U31 Q 32

—1

+1
ll 11 + U 21

+
011+U22

~32~ U32

+1
+1

Pseudosound

Pseudospin modes

013 + U23

023 V12~

0 +1 0 +1

+2
Q 32 + V 31 p 9 3I U 32

0 +1
31 & V31

U I I ~21

+1
+1

Clapping modes

U I I 021
Q 23 + U 13, +2

V23

~ 11 V21~

Zl21 + U I I,

0 +1

+1
0 11 U 21 + ll 22 + V 12,

Q2I + V I I 012+ U22

&22

~11 U21~

Q2I + V I I

U22 7

&22+ V12 021 + U I I + @12 V22

0 12 U22

~22+ V12
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g c;,(p)c~b(p) A;J,b(p)+ —,
' g [c;,(p)cjb( p)+c;, (p)c~q( p—)]B~,i, (p) .

This form determines, in first approximation, the Bose spectrum obtained from the equation

detg =0 . (21)

Here Q is a matrix of quadratic form, determined by the tensor coefficients A, ,b, B;,& in (20). These quantities are pro-
portional to the integrals of the products of the Green's functions of the fermions. Most effective in the calculation of
these integrals is the Feynman procedure customarily used in relativistic quantum theory. In the present case the pro-
cedure is based on the identity

1 d 0.'

(co i +g+ b. )(co2+ g~+ 6 ) [a( ro, +g+ 6 ) + ( 1 —a ) ( co~+ f2+ b, ) ]

It is easy to evaluate by this procedure the integrals with respect to the variables co and g, and then with respect to the
angle variables and the parameter a. The quadratic part of S& for the A phase of the model is a sum of three quadratic
forms, the first of which depends on the variables c;„ the second on c;2, and the third on c&3. The second and third
forms are transformed into the first by the substitutions c;2~c;& and c,3

—+ic;2. The quadratic form of the variables c;, is

4Z'
c;, (p)cj, (p) + g n „n,jG, 62(g, +i co, )((f2+ icoz)

g pv

2b,oZ+ [c;,(p)cj, (
—p)+ c;,(p)c, ( —p) ] g ( n, +in 2 ) n „n,~

6., GzI ~ ., +.,=.
(23)

where

6(p)=(co'+g +4 ) ', b. =40(n, +n2)=rosin 9 . (24)

Here b,o is the maximum value of the energy gap of the Fermi spectrum. In the term (ni+in2) of (23) the upper and
lower signs correspond to multiplication with respect to c;&c &

and c;,c,, respectively.
We now investigate all the Bose-spectrum branches defined by (23) at zero momentum k. At k=O the form of the

variables c;i(co,k=O), and c;, (co, k=O) are a sum of a form of c», c», c2„cz„and a form of c», c». The coefficients of
c;,c „c;,c „and c;,c, (i,j= 1,2) can be expressed as

4Z'
y 2 1' lj((1+i~1)((2+i~2)6162

26, Z
( ni+n)2[(g, +&co, )(( +ioi )G, G —6, ],

P( +Pi =P

2S,'Z' Z'~o
(n, +in2) n„n, iG, Gz=b, g (n, +zn)G, G .2(25)

P) +P2 =P
'J2V

P)+Pp =IP

Here b;~ (i,j= 1,2) are the elements of the matrix

1 +i
+/ 1

(26)

We denote the coefficient of 5;. in (25) by f (co), and the
coefficient of b;, by g (co). We also put

u
&

=R.ec
& &, U ]

= Imc
& &,

in which the minus sign corresponds to the variables
c &, c &, and the plus sign to c &;c &

.
On going from the left to the right sides of the formu-

las in (25) we averaged (at k=O) over the azimuthal an-

gle, on which the functions G„Gz, g„and gz are in-
dependent. We have used the equality

(28)

The quadratic form of the variables ui, u~, v, , v2 (k=O)
can then be taken as a sum of two forms:

[ [f(co)+g (co)](u, + v ~ )
—2g (co)u, v~]

z'
y / J+ gn„n, 6, =0i (27)

+ [ [f ( co )
—g (co ) ]( v, + u ~ )

—2g ( co )v, u 2 I .

(29)

which determines the value of the gap that enters in
6, =(co,+g+h, sin 0, ) These forms correspond to the matrices
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f (cp)+g (cp) —g (cp )
—g (cp) f (cp)+g (cp)

f (cp) g—(cp) —g (cp)
—g (cp) f (cp) g(cp—)

(30)
or

f (cp)[f (co)+2g (cp)] =0,
f (cp)[f (cp) —2g (cp) ] =0,

f (cp)=0, f (cp)+2g (co)=0,
f (cp) 2g (c—p)=0 .

(31)

Equating their determinants to zero, we obtain the equa-
tions

We add to (31) the equation obtained from an examina-
tion of the terms with c3& and c3].

h (co)=g + g n3($1+ice, )(g 2+i F1) 616 2
4Z 2

P1+P2 =P

= 2Z'
[2n 3 ($1+ico1)((2+ico1)61G2 —(n 1+n 2 )G1]=0 .

P1+P2 =P

The three equations of (31) can be combined into one:

2Z2
(n, +n2)I[(g, +i cp)(g 2+i cp)2(1,0)b, ]G, G2 —6, I =0,

P1+P2 =P

(32)

(33)

in which +(1,0)b, denotes either b, or —b, or 0.
Changing from summations to integrals in (32) and (33) (at T~O) and substituting the expressions for 6, and 62, we

can write

2Z2k 2

(2~)'cF

2Z'k'

(2~)'cF

=0,

1

(cp, +g+b, )

2cos 9(g, +1cp, )($2+1cp2) sin 0dQ dcp, dg,
( 2+ g2+ g2)( 2+ (2+g2) ( 2+ g2+ g2)

f (g +1ico, )($2+icp2)+(1,0)b,

( 2+ g2+ g2)( 2+ g2+ g2 )

=0.
(34)

a(1 —a)cp

b. +a(1—a)co

2a(1 —a)co +6 +(1,0)b,
b, +a(1—a)co

=0.

Integrating with respect to co, and g, with the help of the Feynman procedure, we get

Z kF Q2
da cosOdA ln

2
=0,

4m cF b, +a(1 —a)co

Z kF
da sin OdQ ln

2 24m 3cF b, +a(1—a)co

(35)

Calculating the integrals with respect to 0., substituting co~Aocu, and putting cosO=x, we arrive at the equations

f ee +4(1—x ) [cp +4(1—x )]' +codx 1 —x
2 1/2co[co +4(1—x) ]'/ [cp +4(1—x )]'/ —cp

f co +2(1—x ) [co +4(1—x )]' +co
dx 1 —x ln

2+4( 1 2) ]1/2 [ 2+4( 1 2) ]1/2

cp [co +4(1—x )]' +co
ln

p [~2+4( 1 x 2]1/2 [~2+4( 1 x 2) ]1/2

f cp +2(1—x ) [cp +4(1—x )]' +co
co[co +4(1—x )]' [cp +4(1—x )]'/ —cp

(36)

The first of these equations is the equation f —2g=O, the
second is f=0, and the third is f +2g=O, and the fourth
is h=0. They determine the Bose spectrum at k=0 fol-
lowing the analytic continuation ico~E. The spectrum
branches corresponding to the second and fourth equa-
tions are doubly degenerate. To take into account the
forms of the variables c,-2 and c;3 which lead to similar

equations for the spectrum, it is necessary to multiply by
3, the multiplicity of each branch in the considered mod-
el.

The third and fourth equations in (36) have roots co=0
and correspond to the Goldstone modes. From the first
and second equations we obtain the complex energies of
the nonphonon modes E1(k=O) and E2(k=O).
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I ~

1 ~ 25 ~ggga OH+~

1.20 +
ci .I ~

i. i& "II &t

II
I

I
0 0.05

jx = —0.43
1 i'x = 03~~~ i~~ ~~A (

1-T/T
C

) I
0. 10 0. 15

FIG. 1. The normalized clapping-mode resonances from Ref.
4 for two choices of 3=2.03 ( A ) and 2.64 (~ )

[ A =60(0 ) /ka T ] ~ Two upper curves follow from KE theory
by using the formula E,t pp' g

1.236O( T) (1 (O. OOS—0. 106x, ' —0.052F2) [b,o(T)/Ka T)) at x, '=0 and
x 3

—0.4, respectively. Solid curve is the result of Ref. 3 ~

The resulting CE energies are

E, (0)=ho(1.96—i0.31),
E2(0)=b. (o1. 17 i 0 13—), .

the second of the modes being doubly degenerate.
The difference between ReE here and in Ref. 10 is due

to the fact that taking CE damping into account
(ImEWO) leads via dispersion relations to renormaliza-
tion of ReE. Dobbs et al. have made precise measure-
ments of the clapping-mode frequency. They obtained
E„, ;„s=( l. 15+0.01)b.o( T), which is in excellent agree-
ment with the results of Brusov and Popov (Fig. 1). This
shows mainly the CM damping is significant in obtaining
the right value for the clapping-mode frequency.

The Brusov and Popov theory does not require taking
high pairing corrections into account, used in KE theory
to explain the discrepancy between the KE value of the
clapping-mode frequency E,&, ;„=1.23ho(T) and the
experimental data. ' Note that a 6% difference remains
between experimental data of Ref. 4 and KE theory (Fig.
1) in spite of taking higher pairing and Fermi-liquid
corrections into account.

The other interesting fact, obtained first in Ref. 3, is
that the number of Goldstone modes in the weak-
coupling approximation is equal to 9 rather than 5, which
takes place in real He -A. The existence of four addition-
al quasi-Goldstone spin-orbit modes is a consequence of
the latent symmetry of the system and we investigate this
equation below in more detail.

THE LATENT SYMMETRY, ADDITIONAL
GOLDSTONE MODES, W-BOSONS

+trAA AA +trAA A'A —trAA A*A

—
—,'trA A trA A ', (3&)

where A (the order parameter) is a complex matrix with
elements A;, . The A phase in the weak coupling model
is described by the order parameter

1 0 0
i 0 01

(39)
2

0 0 0

and the phonon variables are

'Ll2) Uii, 012+V22, 0 j3+U23p Q3$

(40)V31, 032, U32, 033, U33

where u;, =Re A,, and U,, = Im A;, . These variables cor-
respond to the Goldstone modes of the spectrum not only
in the Ginzburg-Landau region, but also at all T (T, . In
the limit as T~O, the first three of the variables in (40)
correspond to sound waves with cFk/v'3, and the six
remaining ones to orbital waves czk~l. The phonon spec-
trum is thus degenerate in the spin index.

To take into account the strong-coupling effects, we
consider F with arbitrary coefficients of the fourth-order
terms:

F= —trA A+vtrA AP+a(trA A)

+b trAA AA +c trAA A*A

+d trAA A*A +e trAA trA A* . (41)
The condition 6F=O yields in the A phase an order pa-

rameter in the form

1 0 0
—(a +b +d)'/ i 0 0 (42)
2

0 0 0
To find the phonon variables we calculate the second
variation 6 F

We shall show that taking into account strong-
coupling effects decreases the number of phonon modes
from 9 to 5, and that turning on a magnetic field de-
creases the number of phonon modes from 9 to 6 for
weak coupling and from 5 to 4 when strong-coupling
effects are taken into account.

We consider, in the Ginzburg-Landau region
~T —T, ~

&& T„ that part F of the action which is in-
dependent of the gradients. In the weak-coupling model
we have

F = —trAA +U trA AP+(trAA )

o F= —trAA +vtrA AP+a tr[(A C) +(C A) +2A AC C+2A CC A]

+b tr[2AAtCC +2A ACtC+ACtACt+ AtCAtC]

+c tr[AA CC + A A*C C+ A*A CC +A AC C*+ AC A*C +A CA C*]
+d tr[AA TC*Ct+ A TA*CtC+ A *AtCCt+ A tACTC*]+4e~trCTA~~, (43)
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where C is the matrix (42) and A is a variable matrix. Substituting the values of C, C, C, and C, we get

o F=v(a +b+d)(u&3+U&3+u23+U23+u33+U33)+4a(u„+Uz, )

+ b [ (uii+Uzi) —(u13 —
Uz3)

—(uiz —Uzz)
—

( zz+U1z) —(uz3+V13)' —(u32 32 33 33)]

+2 [ ("» '») +("23+'») + ("»+'») +("» '22) +("22+V») +("» '23) ]

+2d [2(u»+Uz& ) —(u, z
—vzz) —(uzz+v, z) —(u» —vz3) —2(uzz —

U&z)
—2(uz3 —

U&3)

(1123 +V/3 ) —(u32 +V32 )+u33 +U33 ]+4e [(u» —
Vz, ) +(uz, +V» ) ] (44)

We consider first the system in a zero magnetic field
(v=O). Equation (44) is the sum of five quadratic forms
multiplied by the independent coefficients a, b, c, d, and e.
The variables

iP+ VPP& 0 i3 VP3& QP~ V ii & 'Ll3i 7 U3i (45)

do not enter in any of these forms, which therefore corre-
spond to Goldstone modes. Thus, allowance for the
strong-coupling effects decreases the number of phonon
branches from 9 to 5. The modes u3z, U3z, @33, and U33,
which correspond in the weak-coupling approximation to
orbital waves, become nonphonon modes when the
strong-coupling effects are taken into account.

Expression (44) at v%0 describes the system in a mag-
netic field. In the weak-coupling approximation the num-
ber of phonon modes decreases from 9 to 6, and the vari-
ables u &3+ v/3 033 and U33 become nonphonon because
of the appearance of the gap -pH in the spectrum. In a
system with a strong coupling, the mode that becomes
nonphonon upon application of a magnetic field is
u»+Vzz (the modes u33 and V33 in the case of strong cou-
pling remain Goldstone modes at U=O), and the number
of Goldstone modes decreases from 5 to 4.

To gain an idea of the total Bose spectrum (including
the Goldstone branches) when strong-coupling effects are
taken into account, we write (44) at H =0(v=O) in the
form

5 F =4(a +b +d)(u11+U21) +4(c +e)[(u 1)
—

U21) +(u21+U11) ]

+2(c b —d)[(u»——U23) +(u, z
—vzz) +(uzz+v, z) +(uz3+U13) ]

4d ( u 23 V &3 ) + ( u 22 V &2 ) ] 4( b +d )( u 32 + V 33 + u 33 +V 33 )

For comparison we write down 5 F in the weak-coupling approximation, using a =b =c = —d = —2e= l in (46):

o F =4[(u»+Vz, ) +(u23+U13) +(uzz —
V,z) ]

(46)

+2[(u11 —V21) +(u21+U)) ) +(u13 V23) +(u12 Vzz) +(uzz+V12) +(u23+U13) ]+0[1132+u33+U32+V33]

(47)

The form (47) has three eigenvalues equal to 4, corre-
sponding to the variables 11+U21 22 U12 and
0 p3 U ]3 The branches E ] correspond, as T~0, to
these variables. The other nonzero eigenvalue equal to 2
corresponds to six variables: uz, +U», u, z

—
Uzz,

13 23~ 11 21~ 22 12 23 13~ 2
branches as T~O.

The calculation of the Bose spectrum in Ref. 10 yields
6 clapping modes and three 26o modes, i.e. , as many as in
the weak-coupling case considered here. Formula (46)
shows that in the general case allowance for the strong-
coupling effects leads to splitting. The clapping modes
break up into two groups —two branches correspond to
the eigenvalue 4(c +e) and four correspond to the num-
ber 2(c —b —d). The three 260 branches also break up
into one branch with eigenvalue 4(a+b+d) and two
branches with eigenvalue —4d. We note that no con-
clusion can be drawn from the data of Ref. 10 concerning
the splitting of the branches.

The branches u 3p lE 33 U3$ and v 33, which in the

weak-coupling approximation are orbital waves, become
the normal flapping modes and the superflapping modes
when the strong-coupling effects are taken into account,
as shown by comparison with the data of Ref. 10.

Volovik" first showed that the fermions in the He -2
are chiral and a field theory in superfluid He-2 which
describes the dynamics of chiral fermion excitations in-
teracting with the order-parameter collective boson
modes is similar to the theory of the electroweak interac-
tion. The roles of photons and 8' bosons are played by
orbital waves and four quasi-Goldstone spin-orbit modes,
which we obtained above, respectively.

An equation of the Dirac type for fermions in He-A
near the poles of the Fermi sphere can be derived from
the Bogoliubov equation, in which it is necessary to take
into account the fluctuations 5 A„of the order parameter
A„around its equilibrium value

A,'0'=b. od (e', +iez) .
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6k 8"= e
1

F' '
2&F

'
Aa=kzl v„WD = 2kze ~—rdp(l V)d

(48)

equations (48) also incorporate the effect of the fiuctua-
tional spin S-[dBd/Bt], which accounts for a third
component of the 8' field, in precisely the same way as
density fIuctuations account for a third component, along
I, of the "photon" field A.

In terms of the fields in (48), the Bogoliubov equation
for the Bogoliubov spinor P takes the following form near
the poles of the Fermi sphere:

i —eA0 —eo W0 +e[c~~l'r3+ci(eiri+e272Bt

Only certain combinations of Auctuations act on the
fermions. These combinations form a "photon" field and
W field"

kF
A, +iA = — d l'6A,

p

on the values +1 and —1 for fermions near the upper
and lower poles, respectively.

An important point is that in the weak-coupling ap-
proximation (in which the Fermi spheres with different
spin projections do not interact with each other) there is
an additional SO(3) symmetry, which combines the "pho-
tons" and the Wbosons in a single triplet (more precisely,
a sextet, when we take into account the polarization of
the collective modes). In this approximation, the Wbo-
sons, like the Goldstone orbital waves (or "photons"),
have no mass in consequence with results obtained above.
But as Brosov and Popov showed first (see above) four
additional Goldstone modes become nonphonon if we
turn on the strong-coupling corrections. It means that
the W bosons acquire a mass via the strong-coupling
corrections. Consequently, and in contrast with the
Weinberg-Salam theory, the Higgs phenomenon is not re-
quired for the appearance of massive 8'bosons in He -A.

THE LINEAR ZEEMAN EFFECT FOR CLAPPING
AND PAIR-BREAKING MODES

Below we consider the influence of magnetic fields on
the CE spectrum in He - A. '

In accordance with Nasten'ka and Brusov's idea' for
the investigation of the CE spectrum in the presence of a
magnetic field, we must take into account both the addi-
tional term in SI, and the distortion of the order parame-
ter. The latter in our case is equal to'

X —.V; —eA, —eo. 8'
E

/=0 . (49) c;,(p)=c&PV 5 0(6„a++i',~a )(5, , +i5,~) . (50)

Here

Here ~; and o are the Pauli matrices corresponding to
the Bogoliubov isospin and ordinary spin. This equation
is reminiscent of the Dirac equation for massless chiral
fermions in the Weinberg-Salam theory. The primary
distinction is in the anisotropy of He -A along the I and
d axes. The velocity cI~

= Uz along I is far greater than the
transverse velocity c~=Ap/kF, and we have 8' d =0;
i.e., there are no Z bosons. The charge e =k.l /k~ takes

6)+6) 6 t ~
=X (0)(r+r)h ) /2Ppgg

2A

ri = (X'( 0)/X ( 0) )T, ln( 1.14ea/T, ),

h =, b, =2cZ —,
T,

'

is a single fermion spectrum gap, determined by the gap
equation

(a++a ) sin 0 (a+ —n ) sin 0

co +(g—pH) +b, sin 8(a++is ) co +(g+pH) +6 sin 0(a+ —cz )
(51)

We could calculate the CE spectrum of our system in
the presence of a magnetic field by the techniques
developed above (see, Appendix B, part II) but using the
deformed OP (50). Making these calculations in Appen-
dix A, we obtained 18 equations, which completely deter-
mine the CE spectrum in He- A in an arbitrary magnetic
field H and with arbitrary CE momenta k. In Appendix
B we consider the case of small H and zero momentum of
CE, k=0, and calculate the linear corrections to the CE
spectrum. We obtained for the energies of clapping and
pair-breaking modes:

clapping: E, =(1.17 i0 13)b, —, 0.
E2 3

= ( 1.17+1.70@ H) b 0

—i (0. 13+1.20yH)60,

pair breaking: Ei =(1.96—i0.31)60,

E2 3
= (1.96+2.04y H) b 0

—i (0.31+0.06yH)50 .

(52)

So for small H we have threefold splitting of the clapping
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and pair-breaking modes; i.e., we have a linear Zeeman
effect for these modes. Magnetic fields lift the degeneracy
of pair-breaking modes completely, and lift the degenera-
cy of clapping modes particularly, each branch of the
latter modes remaining twice degenerate.

Note that the magnetic field changes both the real and
imaginary parts of the CE energies, i.e., it changes the
CE frequencies and damping even in the linear approxi-
mation. The damping of some of the modes increases
while others decrease with a magnetic field.

We can compare our results with those from Refs. 15
and 16. Our CE spectrum differs via the existence of four
additional quasi-Goldstone modes. Moreover, our results
for CE energies are more precise because we take into ac-
count the CE damping via the process of Cooper pair
breaking.

In Ref. 15 some modes remain unchanged while the
frequencies of others are shifted from co; to (co,. + f1 )'~
(here 0 is the effective Larmor frequency). This expres-
sion does not take into account the gap distortion. Our
results for the real parts of the CE energies are closer to
those found in Ref. 16. (There however the CE damping
is not taken into account and the inAuence of a magnetic
field on it is not investigated. ) The linear splitting of
some CE frequencies via gap distortion was also found:

in principle a possibility that an additional term in the ac-
tion (without gap distortion) will lead to linear field
corrections to the mode energies.

As follows from (53), to obtain the collective-mode fre-
quencies in He -2 in a magnetic field one needs to make
the substitution b, +5+—yH. From our data (52) it fol-
lows that this conclusion cannot be applied directly. In-
stead of this principle, we obtained the next one: To get
the collective-mode frequencies in applied magnetic field
one must make the substitution 6—+5+a;yH, where a;
depends on type of collective mode (clapping or pair
breaking) and is different for the real and the imaginary
parts of frequency for the same mode. The cause of this
difference is connected with the fact that in this paper, in
opposition to Ref. 16, we take into account the damping
of collective excitations via the existence of a gap in the
single-particle spectrum.

We mentioned above that threefold splitting of the
clapping and pair-breaking modes could be observed in
zero-sound experiments. Note that in the case of the 3
phase, in contrast to the case of the 8 phase, the gap dis-
tortion is linear in the field. This leads to the possibility
of observing this effect in moderate fields.
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The frequencies of other modes are shifted from the
zero-field values co, to (co, +0 )', i.e., remain un-
changed in linear field approximation.

Later, we concluded that the linear Zeeman effect for
clapping and pair-breaking modes takes place via the dis-
tortion of the order parameter only (or particle-hole
asymmetry) in the case of zero k. For nonzero k there is

APPENDIX A: THE EQUATIONS FOR CE
SPECTRUM IN He'- A IN ARBITRARY

MAGNETIC FIELD AND AT ARBITRARY CE MOMENTA

In first approximation the CE spectrum is determined
by the quadratic part of Sz. To obtain it we need to cal-
culate G. One has for 6

Z '(i co g+ pH cr 3
)—I~

—2C (n] —in2)(a+(] i a cr2)I—
Inverting 6 ' one gets

2c(n, +in2)(a+6, +ia cr2)I

Z '( i co+ g+ p—H o 3)I+
(A 1)

6» G&z6=
62) G22

where 6» =

a +b
d ]

0 b
~+ 6»

0

g) +$2
d2

0 g ) +lqp —a~+b
d2

0

—a~ —b
I

where a =Z '(ice —g'), b =Z 'pH, q& =Z 'bin, +in&)a+, q2=iZ 'h(n& +in )2a
d~ 2=Z [co +((+pH) ]+3, sin2g(a++-a )
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Using the expression (Al) for G and the following expression for u:

u —
( V)

—1/z —(n 1; n—z; )c;,(p, +pz )o,

one can obtain the quadratic part of S&

(n 1;
—nz, )c;,(pl +pz )o.,

2

+
V g &];n ([ ~ (n, +I'II ) [ —

83C;3C +c),(c;,cj, c—; c )+iB (c, ,c +c, c, )7+H.c. ]
— 2 2 — .''. f f —.f . .f t .f.+

p, i, a P]+Pz =P

Here

+Dl(c;]cj]+c;]c1+c;zcjz+c;zc z)+D3(c]3c 3+ci3c'3)

2( iz jl CilCjz Cizc I
—C;1C.2))

0]
(&++a-) (a+ —a-)' (a (1)+b)(a (2)+b) (a (1)—b)(a (2) b)+ Die= +
d, (1)d, (2) dz(1)dz(2) ' ' dl(1)dl(2) dz(l)dz(2)

2 2 1 + 1
D (a (1)+b)(a (2)—b) (a (1)—b)(a (2)+b)

dl(2)dz(1) d, (1)dz(2) '
dl(1)dz(2) d (1)d, (2)

By diagonalizing the quadratic form we get its canonical form (here u,, =Rec,„v;,=Imc;„and the summation is with
respect to p, +pz =p):

2Z 2 2

Sh — g + Q D3cos 0 (u33+U33)+ g + g (Dl+Dz)cos 0 [(u3]+U3z) +(u3z+U3]) ]
2 2 2 —1 2 2 2

PV 13V
r

2Z 2

+ g + g (D, Dz)cos 0—[(u» —v3z) +(u3z U3, ) ]
2 2 2

V

2 2+g ++D3sin0[(v»+uz3)+(u, 3
—vz3)]+g'+g( —b, sin 083+D3)sin 0(u, 3+Uz3)V V

2

+ g '+ g (b, sin 083+D3)sin 0 (U]3 uz3)V

2

+ g '+ y (D, +Dz)sin 0 [(u]z+U„+uz]+Uz] ) +(u„+U,z
—

uzz
—

vz, ) ]V

t

+ g '+ g (Dl Dz)sin 0 [(u—lz Ull uz] vzz) +(ull viz uzz Uzl ) ]V

+ g '+ +sin 0[D, +Dz —b, sin 0(I)]+Bz)] (u, z+v» —uz, —vzz)V

+ g '+ g sin 0[D, Dz —b, sin 0(I)—] —Bz)] (u» —v»+uz, —uzz)

2

+ g '+ y sin 0[D, +Dz+b, siII 0(])]+Bz)] (u, ]+U„+uzz+v„)'V

2

+ g '+ g sin 0[D, Dz+b, sin 0(])]—Bz)] —(u„—v, z
—uzz+vz, )V (A3)

The eq]Iation detQ=O, where g is the matrix of quadratic form (A3), gives us 18 equations which completely determine
18 collective modes in He -3 in an arbitrary magnetic field and at arbitrary CE rnomenta.

APPENDIX 8: THE CE SPECTRUM FOR SMALL FIELDS AND ZERO CE MOMENTA

Below we consider the case of small H and k=O, and calculate the linear correction to the CE spectrum. Setting
k=O and retaining the first-order terms in the field we obtain
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(I) f (1—(1+2c)I)cos OsinOd8=0, u33, v33,
0

f (
—1+(1+2c)I)cos OsinOdO+yH f (1+2cI)cos Osin 8d8=0,

0 o 1+4c

u31 +u32~ u32+V 31( u31 V32, u32 U31 ) ~

(II) f I sin Od 8=0, uz3 —u»,

f 3 + 4c
0
I sin g d 0+AH

o 1+4c (2 —I)sin Od8=0, u, ]+v,z+uzz+Uz](u, ]
—v]2 —uzz+vz, );

(III) f (1+2c)I sin 8 d8=0, u„+u23, u» —uz3,
0

f (1+2c)Isin 8dO+yH f (1+2cI)sin Od8=0,
0 o 1+4c

u]2+v]1+uz]+uzzr u]]+U]2 uzz Uz](u]2 v]] ttz]+Uzzt u]] v]2+uzz Uz])

(IV) f (1+4c)I sin Od8=0, u]3+uz3,

f 7T 3 3(1+4c)I sin 8dO+yH 4cI sin 8d8=0, u, z+u» —uz, —vzz(u, z
—u»+uz] —uzz)

0 0

(Bl)

where

& I +4c + 1-ln
&I+4c V I+4c —1

E =Eo+pHE& we obtain

(E )
E =E0+yHE] =E0 1+

1 0
(B2)

c = 4u sing

CO

yH=

We have four groups of three or six equations. The I and
II groups describe the Goldstone modes. For these
modes we need to take into account the quadratic field
corrections. In Ref. 4 (see part III above) the conclusion
has been made that in the presence of a magnetic field
three out of nine Goldstone modes become nonphonon
because of the appearance of the gap —pH in their spec-
trum.

The III and IV groups of equations describe the clap-
ping and pair-breaking modes. If we write these equa-
tions as F0(E)+yHF, (E)=0 and try to express E as

i (0. 13+1.20yH—)50;
pair breaking: E, =(1.96—i0 31)b0, .

Ez 3 =(1.96+2.04yH)b0

i (0.31+—0.06yH)b, 0 .

(B3)

Using the values of Eo obtained by Brusov and Popov
earlier we obtain for the energies of clapping and pair-
breaking modes:

clapping: E, =(1.17—i0. 13)+0,

Ez 3 =(1.17+1.70yH)b, 0
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