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Experimental studies of the nonlinear evolution in time of planar second-sound pulses in

superAuid He have been carried out at temperatures 2 to 25 mK below Tz. The pulse evolution in

helium is compared to solutions of the Burgers equation, and corrections for the effect of the heater
and bolometer substrates are made by numerical integration of the heat-diffusion equation with ap-
propriate boundary conditions. Agreement between measured and calculated pulse shapes is found

to be excellent. Fits to the data of the model are used to obtain the linear second-sound velocity. A
new method for studying the critical behavior of second sound very close to Tq, where nonlinear
effects are always important, is suggested.

I. INTRODUCTION

One of the great successes of two-Auid hydrodynamics'
has been the prediction of the velocity u2 and damping
Dz of second sound in terms of thermohydrodynamic pa-
rameters and transport coefficients. Indeed, experimen-
tal determinations of these parameters have provided a
detailed test of the theory. Most often, the theory has
been used in a linearized form which is valid only for
small-amplitude sound, and much of the effort that has
gone into comparing experiment and theory has depend-
ed on the existence of a parameter range where the linear
equations are a sufficiently good approximation for the
amplitudes accessible in experiments. A more extensive
test of two-Quid hydrodynamics involving the nonlinear
terms is desirable, and several studies have been done.
One of the earliest observations of the formation of
shocks in second sound was reported by Osborne, fol-
lowed shortly thereafter by a measurement of the ampli-
tude dependence of the velocity of second sound. Since
then, studies of second-sound propagation in a nonlinear
regime have been used to probe various nonlinear aspects
of the theory. ' Much of this work pertains to parame-
ters for which a nonlinearly propagating pulse has at-
tained a self-similar shape involving a shock front.
Very little quantitative work has been done on the early-
time evolution of second-sound pulses of given initial
shape before the formation of a shock. ' This early-time
evolution is very sensitive to the nature of the nonlinear
terms in the hydrodynamic equations and is the topic of
this paper. The good agreement of our pulse-shape mea-
surements with the theory provides a detailed experimen-
tal con6rmation of the corresponding nonlinear terms in
the two-fIuid hydrodynamic equations.

Furthermore, an understanding of the effect of the non-
linear terms on the evolution of second-sound pulses al-
lows us to extend the region over which we can measure
certain critical properties of helium. For example, the
determination of the superAuid density p, is of great in-

terest in the study of critical phenomena. Using the ex-
pression

2 PS
920 =0

p„C

and measurements of the entropy per unit mass (cr ), the
heat capacity per unit mass (C ), and the zero-amplitude
limit of the second-sound velocity (u2o), the superAuid
density can be determined. ' In this expression, p„ is the
normal-Quid density, such that p, +p„=p, the density of
helium. Where nonlinearities can be ignored, the
second-sound velocity u 2 is a good approximation to u2O

and direct measurement of u2 can be used to determine

p, . However, sufficiently near the superAuid transition
temperature Tz(P), second sound of any measurable size
propagates nonlinearly, and u2 never approximates u2O.
We describe a method for extracting u20 from second-
sound pulse measurements in this region. The superAuid
density can then be calculated from the linear expression
[Eq. (1)], even in the region where linear second sound is
not directly accessible.

It has been shown theoretically' ' that the normal-
fIuid velocity U, in a second-sound planar pulse is given
(to lowest nonlinear order) by solutions of Burgers equa-
tion. We show that one can account quantitatively for
the measured time evolution of the shape of nonlinear
planar second-sound pulses propagating in the Quid in
terms of solutions of this equation. ' For this purpose we
have undertaken a detailed study of pulses at large
enough amplitudes near enough to T& that nonlinear
efFects can be clearly seen, but far enough from T& so that
the linear amplitude-range is also experimentally accessi-
ble. In practice, this meant working at temperatures
from 2 to 25 mK below T&. In the quantitative compar-
ison between the experiment and theory, we found it
necessary to include careful thermal modeling of the
pulse generator (heater) and detector (bolometer). Our
composite model thus includes heat diffusion in the
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II. EXPERIMENTAI. TECHNIQUES
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short cell and the first two in the long cell will be free of
three-dimensional effects.

The heater input was generated by a Wavetek model
178 programmable wave-form synthesizer, and a separate
measurement directly detected the voltage at the heater.
Thus the measured temperature amplitude, which de-
pended on the bolometer calibration, could be checked
against the known heat input. Digitizing of the voltage
at the heater was accomplished through the use of a
Nicolet model 12/70 signal processor to 8-bit accuracy.

Bolometers were biased with a constant dc current,
and their voltage output was amplified using a PAR mod-
el 118 differential preamplifier and a PAR model 114
signal-conditioning amplifier. The output of the model
114 amplifier was also digitized by the signal processor,
and some signal averaging was used to increase the
signal-to-noise ratio.

—PYREX SUBSTRATE'

g~ Cr F ILM

—GOLD ELECTRODES—

(b)

BOLOMETE R

B. Cell geometry

The geometry (Fig. 1) was defined by two fiat Pyrex
plates separated by a copper spacer [Fig. 1(b)] with a cav-
ity of square (3.18X3.18 cm ) horizontal cross section
[Fig. 1(a)] in the middle. The thickness of this spacer,
and therefore the length of the cavity, varied in the two
cells. The heater, bolometer, and their respective elec-
trodes were deposited on the inner surfaces of the Pyrex
plates. In order to prevent electrical shorting of the elec-
trodes by the copper spacer, Mylar spacers 51 or 127 pm
thick [Fig. 1(c)] were inserted between the plates and the
copper. At low temperatures the combination of Mylar
and copper spacers were 0.362 cm thick in the one cell
and 0.120 cm thick in the other, so that the long cell was
about 3 times the length of the short cell, and both cells
were quite broad and fiat. Copper caps [Figs. 1(d) and
1(e)] covered both ends of the cell and were sealed to the
copper spacer using gold 0 rings. Clearance holes were
drilled in the copper spacer to allow for the bolometer
and heater leads. Feedthroughs for the heater and
bolometer leads were epoxied into the copper caps.

In each cell the top copper cap contained a fill hole to
which a short length of copper capillary was soldered.
Small stainless-steel capillaries [Fig. 1(f)] with brass con-
nectors silver soldered on were then soft soldered to the
copper capillaries; a single 0.25-mm-i. d. stainless-steel
capillary was used to fill both cells through a brass con-
necting T, and this capillary was sealed at the cryostat
top with a valve.

C. Heaters

Each heater [Fig. 2(a)] consisted of a thin (approxi-
mately 200-A) chromium film vapor deposited on a Pyrex
7740 substrate (3.8X3.8X0.32 cm ). Thick (1500-A)
gold electrodes bordered two sides, and the chromium
covered an open surface that was 3.18 X 3.18 cm (so that
it just filled the cell cavity). Their resistances at 2. 1 K
were 110.9 0 in the short cell and 183.4 0 in the long
cell. The heater deposition was done using a line source
of length ~ 2. 54 cm and a source-to-substrate distance of
27 cm, ensuring that the heaters were uniform in thick-
ness across their surface to better than 2.5%.

(c)

FIG. 2. Heater and bolometer on their respective substrates.
(a) Heater, (b) bolometer, and (c) expanded view of bolometer
trace. Not drawn to scale.

D. Bolometry

The bolometers [Figs. 2(b) and 2(c)] made fast detec-
tion of the sound pulses possible. Thin Pb-Au films
with zero-field superconducting transitions just above T&,
similar to devices described elsewhere, ' were made
by a lift off procedure to ensure maximum homogeneity
of the films. Substrates were the same as for the heaters,
and the source-to-substrate distance was again 27 cm, but
the bolometers were much smaller, only 0.25 cm on a
side. Electrodes were deposited first; then a photoresist
pattern for the bolometer was placed on top of this, and
gold (200 A) and lead (430 A) were deposited (in that or-
der). Each bolometer was a single 42-p, m-wide trace that
folded back on itself 30 times [Fig. 2(c)] for a normal
resistance just above the transition of 3500 0 for bolome-
ter 1 (in the long cell) and 4200 0 for bolometer 2 (short
cell). Room-temperature resistances were 17.4 and 19.3
kA, respectively.

A magnetic field ranging up to about 800 G was pro-
vided by a superconducting magnet in the persistent
mode and was used to tune the transition into the desired
temperature range. With the bolometer biased with a
constant current, temperature fluctuations could be
determined from changes in the voltage across it by using

6V=i 6T .. dR
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Here R is the bolometer resistance, i is the current
through the bolometer, and 5T is the incremental temper-
ature change. A typical figure of merit, K =R 'dR /dT,
was about 60 K ' at a resistance of 300 0 and a bias
current of 54 pA. Currents between 10 and 200 pA were
employed.

Resistance-versus-temperature curves for bolometer 1

are shown in Fig. 3(a). Bolometer 2 is similar. Bolome-
ter slope dR/dT versus resistance and figure of merit
versus resistance are plotted in Figs. 3(b) and 3(c), respec-
tively. Both were calibrated against a germanium ther-
mometer at each field and temperature at which second-
sound data were taken, immediately before or after mea-
surements were completed. To accomplish this each de-
vice was biased at the working current and the voltage
across it at different temperatures was measured with a
Keithley model 195 or 196 multimeter. As can be seen
from the figures, these devices are quite current sensitive,
so that the addition of the digita/ multimeters to the cir-
cuit can cause both noise and a slight shift in the calibra-
tion. Nonetheless, the precision of these calibrations was
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FIG. 3. Characteristic curves for bolometer 1 in the long cell.
(a) Resistance vs temperature at various bias currents, (b) the
bolometer slope (dR /dT) vs resistance, and (c) R ' dR /dT vs
resistance.

about 0.1%%uo, and the accuracy 1% or better. Typically,
resistance measurements were taken at intervals of 4 mK
for +12 mK about the working temperature. Since regu-
lating the open bath required always working below Tz,
smaller intervals were used closer to T&. Bolometer
slopes and figures of merit were determined from this
data using a spline fit.

E. Resolution

In theory (for biasing with a perfect current source),
the resolution of these devices should be limited by
Johnson noise voltage, which is given by

5 V„=(4k' TR b,f )
'

With the typical values K =60 K ', R =300 0,, i =50
pA, and bf=300 kHz, Eqs. (2) and (3) give a resolution
of 0.1 pK at 2 K. In practice, our resolution was about
an order of magnitude worse than this because of an
amplifier noise voltage of about 2.3 nV/&Hz, but some
averaging over successive pulses brought it down again to
the submicrokelvin region. For future work very near T&
where much smaller sound amplitudes will have to be
used but lower frequencies are sufhcient, the use of a
smaller bandwidth (say 30 kHz) and moderate signal
averaging (of about 200 pulse sequences) will yield a reso-
lution of 0.03 pK.

F. Thermometry and temperature regulation

A germanium thermometer in a five-wire bridge ar-
rangement was used to regulate the bath temperature to
better than 1-pK stability. Output from the bridge was
fed back into a Linear Research model 130 temperature
controller, the output of which drove a 301-0 metal-film
resistor in the bath space. The thermometer was calibrat-
ed against He vapor pressure using the 1958 vapor pres-
sure scale of temperatures. Since the bolometers re-
quired working in a magnetic field, our thermometer was
surrounded by a lead-foil tube to exclude the field and
thus prevent drift. Nonetheless, it was not used to
determine absolute temperatures, but only for bolometer
calibrations and bath regulation.

Absolute temperatures were determined for each data
set from the second-sound velocity at vapor pressure us-
ing the data of Ref. 21. Errors were limited by the uncer-
tainty in the cell lengths; an uncertainty of 7 pm in the
length of the shorter cell leads to uncertainties in the
temperature of only 150 pK at T& —T=0.01 K.

G. Pulse distortion

The input to the heater from the Wavetek model 178
synthesizer is a voltage haversine, yielding a haversine
squared for the heater power. However, even in the
linear regime, the pulse measured at the bolometer (and,
in fact, even the temperature pulse that leaves the heater)
is not quite a haversine squared. Factors which contrib-
ute to pulse distortion can be minimized by working in
appropriate frequency regimes, but nonetheless must be
well understood in order to interpret the data.
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Thermal boundary eQects

where j is the heat Aux into the glass substrate and j& is
the heat Aux into the helium. At the bolometer the total
heat Aux is zero. We also have the jump condition at the
boundary,

Tg TQ RQj (5)

where T and TI, are the temperatures at the boundary in
the glass (i.e., at the heater or bolometer) and helium, re-
spectively, and Rz is the Kapitza resistance. Finally, at
the boundary we use the linear relationship, for heat Aow
in the helium (in one dimension),

where u2O is the linear velocity of second sound, C is the

Without the large Kapitza (thermal) resistance between
the heater/bolometer substrates and the helium, this ex-
periment would not be possible. It is only because of the
large reAection coefficient at the walls of the cavity,
which is due primarily to the Kapitza resistance, that
detection of successive echoes is at all possible. A discus-
sion of the second-sound attenuation at the walls and
ends of the cavity can be found in Ref. 20. At the ends of
the cavity (the bolometer and heater substrates), these
losses are found to be negligible. The side-walls are ir-
relevant in our work since we never detect second sound
reflected from these walls in this experiment (see Sec.
II G 2 below).

While the Kapitza resistance prevents reAection losses
once a pulse has been launched into the helium, it also
delays and distorts the pulse launched at the heater and
the pulse detected at the bolometer. For example,
launching a pulse of peak power 10 mW/cm heats up
the substrate and causes a temperature jump up to 5 mK
across the heater-helium boundary if the Kapitza resis-
tance is 0.5 cm K/W. This temperature jump is typical-
ly two orders of magnitude larger than the second-sound
amplitude. It will lead to a temperature gradient and
thus heat diffusion into the glass substrate away from the
helium. After completion of the heater pulse, most of
this heat diffuses slowly back toward the heater-helium
boundary and will be released into the helium. 'While the
net conductive heat loss through the glass is negligible,
the distortion due to the combination of the boundary
resistance and the thermal mass of the heater substrate is
not. A similar situation prevails at the bolometer. While
the heat loss into the bolometer substrate is negligible in
its effect on the pulse in the helium (here the very large
Kapitza resistance leads to a very small heat current into
the bolometer), thermal gradients in the glass will again
cause distortion of the detected pulse. We take both
effects into consideration by numerically integrating the
heat-diffusion equation with the following boundary con-
ditions.

At the heater the total heat Aux jo as a function of time
is given by the Joule heating corresponding to the heater
voltage, and conservation of energy requires

(4)

heat capacity per unit mass at constant pressure of heli-
um, To is the unperturbed temperature of the system, and
p is the density of helium. This expression can be derived
from the linear relation U„= ( Th —To )u 2o C /( o. To ) and
the boundary condition jI, =po. T0U„, where U„ is the ve-
locity of the normal-Auid component, o. is the entropy
per unit mass of helium, and where we have assumed that
there is no net mass Aow. It is important to note that we
use this relationship only at the boundary, and not once
the second sound has propagated any distance into the
helium.

To complete this part of the model, we need the Kapit-
za resistance (Rx ) of the heater-helium or bolometer-
helium interface. In the analysis of the actual data, we
use for the initial pulse the bolometer signal for the first
echo and calculate the bolometer signal for the nth echo.
This leads to cancellation of most of the thermal effects of
the substrate and interface. To estimate a value for Rz,
we used the power output measured at the heater as the
initial condition. This pulse is modified slightly, but
significantly, by the thermal boundary effects when it
enters the helium. An additional effect occurs when the
pulse is detected at the bolometer. As a result of the cu-
mulative effects at the heater and bolometer, the effect of
the Kapitza resistance is quite pronounced here. A value
of 0.5 cm K/W was consistent with the measurements in
both cells, and this value was used in all fits shown in
Figs. 7—9 below.

It is interesting to note here that Tsoi and
Nemirovskii (TN) have in fact suggested using non-
linear second sound as a probe of the Kapitza resistance.
In their analysis of the heater-helium boundary, a charac-
teristic relaxation time ~=Rz C~ for thermal energy
transfer into the helium is deduced. Here CH is the
specific heat per unit area of the heater. After the onset
of a square pulse at the heater, the amplitude of second
sound into the helium will exponentially approach its
maximum value with time constant w. TN point out that
the dependence of second-sound speed on amplitude,
which is in turn dependent on r(Rx. ), may be used as a
probe of Rz. We note also that in their analysis, TN as-
sume a thin planar heater so that the heat Aux is given by
CH BT~/Bt. This simplification greatly enhances the trac-
tability of the problem, but it cannot be used here be-
cause of the effect of the heater substrate.

Figure 4 shows an example of the effects of the boun-
daries on a heat pulse and detected signal. In Fig. 4(a)
the measured heat fiux at the heater j,(t) (open circles)
and the calculated heat-fiux profile in the helium jh(t)
(solid line) are shown. The current jt, (t) is then used as
an initial condition for the solution of the Burgers equa-
tion in the helium (see Sec. III), which results in a tem-
perature profile incident on the bolometer given by the
open circles in Fig. 4(b). This incident pulse reflects al-
most perfectly from the bolometer substrate, so much so
that the reAected pulse is indistinguishable in our mea-
surements from the incident pulse. However, the small
heat current that does enter the bolometer substrate gives
us a temperature profile at the surface of the substrate
(i.e., at the bolometer) that is given by the solid line in
Fig. 4(b). Note that, as well as being slightly modified in
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different by about 10%, no direct comparison of data in
the two cells is possible. However, fits of the model de-
scribed in Sec. III (which neglects these interactions) to
the data were just as good and yielded the same results in
both cells.

Even in a single cell, it is possible to probe the effects of
self-interactions. If we launch a two-cycle haversine at
the heater, the bolometer will detect first a pulse that has
passed only through the reflected part of itself and then a
pulse that has passed through both itself and the first
pulse. Double pulses were run in the long cell at reduced
temperatures of 10 and 2X10 and at single-pulse
lengths [full width at half maximum (FWHM) of the ini-
tial pulse] as long as —,

' the cell length (or —,
' the cell length

from start to finish). This is a region of parameters where
nonlinear effects are relatively large and where the pulse
spends a significant fraction of its time self-interacting.
An example is shown in Fig. 6. Here each pulse has a
FWHM of 0.022 cm, about 6% the length of the long cell
(in which this set was taken), although its length from
start to finish is 0.060 cm (about 16% of the length of the

50.0
A

25.0

long cell). The data are taken at 10 in reduced temper-
ature, the most nonlinear regime investigated (a = —126;
see Sec. III). Figure 6(a) shows the actual data for the
first arrival of the pulse pair. For Fig. 6(b) we have shift-
ed the second pulse along the time axis to coincide with
the first using a least-squares algorithm and then plotted
the two pulses and their differences [Fig. 6(c)]. The
differences are a subtraction of the shifted second pulse
from the first. Clearly, the agreement between the two
pulses is excellent, and self-interaction does not play a
significant role. Longer and shorter pulses were also
used, but the nonlinear effects were less pronounced for
the longer ones, and although nonlinear effects were more
pronounced for the shorter ones, they self-interacted for
relatively shorter periods of time. In all cases residuals
were similar to those shown.

For the purposes of analysis of single pulses, we will
use pulse lengths as small as or smaller than those shown
in Fig. 6 (less than 6% the length of the long cell) so that
the effects of self-interactions are negligible.

4. 8'edging

The effect of a small angle between the heater and
bolometer can be calculated for our square detector. A
slight wedge will cause the measured amplitude of a
monochromatic plane wave reflecting off the cell end
walls to be modulated by a function dependent on the
geometry of the detector and phase variations across it.
For the square detectors used here, we find that the en-
velope function by which a Fourier component of wave
number k must be multiplied is

1.12 1.22 1.32
time (ms)

1.52 sin[(n —
—,
' )ka8cosa] sin[(n —

—,
' )ka8sina]

F(8,a, k)=
(n —

—,')ka8cosa (n —
—,')ka8sina

75.0

50.0

~ 25.0

a0
00
00

0.0

0.6 (c)

bb b,

b

1.12 1.17 1.22
tixne (ms)

1.27

FIG. 6. Absence of distortion due to pulse interaction is
demonstrated. For these data, t =10 u= —126, and FTHM
=0.022 cm. Data were taken in the long cell, I =0.362 cm. (a)
Raw data at the first arrival of a double pulse. (b) Open dia-
monds: first cycle; open circles: second cycle, time shifted so as
to give a best fit with the first cycle. For clarity, only every oth-
er point is shown. (c) The dift'erence between the first cycle and
the time-shifted second cycle. All points are shown.

for the nth arrival of the pulse at the detector (nth echo),
where a is the size of a side of the detector (0.25 cm) and
0 is the wedge angle. a is the angle between one edge of
the detector and the plane formed by the incident and
reflected wave vector of the pulse (plane of reflection).
Note that if this angle is zero, the modulation function
reduces to the form sinx/x, where x =(n —

—,')ka8. In
this case phase variations are zero as we move across the
detector parallel to one edge, and the plane of reflection
is parallel to the other edge.

To estimate the size of any wedge in the apparatus de-
scribed above, consider that the copper spacers used to
separate the Pyrex substrates were flat and parallel to
better than 5 pm. The Mylar spacers probably represent
the largest source of alignment errors. Even for a total
deviation from parallelism of 13 pm (roughly 10% of the
thickest Mylar spacer) across the cell, 8 would be only
about 4X10 rad. This causes amplitude modulations
of less than 4% for all wave numbers below 3100 cm
(wavelengths above 20.3 pm) provided only the first two
echoes are considered; for wave numbers below 1570
cm ' (wavelengths above 40.0 pm), this criterion holds
for at least the first three echoes. In this study we restrict
ourselves to pulses where significant Fourier components
are not amplitude modulated by more than 4% as calcu-
lated using the above assumptions, which are probably
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more restrictive than necessary. Furthermore, for the
second-sound velocities relevant to this experiment, the
frequencies corresponding to these wave vectors are
sufFiciently high that we avoid them anyway for electron-
ic reasons.

5. Electronics

Finally, we consider distortion from electronic sources.
In our case the largest effect was from a 300-kHz single-
pole filter in line with the preamplifier for the bolometer
circuit. This was deliberately installed to limit the noise
bandwidth. In general, we tried to avoid working in a re-
gime where this filter had a significant effect. However,
where necessary, the effect of the filter could be account-
ed for in the modeling. Several more troublesome but
even smaller effects remained.

The worst unaccounted signal distortion was due to the
limitations of the preamplifier. Above 1 MHz, its gain
fell off rather sharply. Small but noticeable phase shifts
appeared even at much lower frequencies and led to dis-
tortions of the pulse shape. These effects, although small,
nonetheless prevent accurate measurements of second-
sound damping in this experiment. Shorter pulses with
higher-frequency components would have been necessary
for this purpose since we are working at or near the
minimum in the second-sound damping (10 —10 in
reduced temperature).

Each bolometer was connected to the room-
temperature electronics through a shielded twisted pair
of leads (Microtech MS-2) with a capacitance C 5 200 pF.
The simplest model for our bolometer circuit gives a
single-pole cutoff frequency co, of 1/RC (where R is the
bolometer resistance). In order to keep the bandwidth of
our circuit as wide as possible, the bolometer was run at
about 300 A, so that co, /2~ was approximately 2.5 MHz.
Working at low R lowered the bolometer sensitivity
somewhat [see Fig. 3 and Eq. (2)], but gained enough
bandwidth that any filtering effects from the cables were
completely negligible.

In general, we worked at frequencies that were as small
as possible and still fulfilled the requirements of Sec.
II G 3; i.e., pulses had to be long enough not to contain or
develop significant frequency components higher than
100 kHz and short enough that self-interactions were not
noticeable.

H. Procedure

With the cells at about 4 K, helium was admitted to
them through two liquid-nitrogen-cooled charcoal traps
until the sample pressure was several atmospheres. The
cells were then sealed and cooled to the working tempera-
ture. Helium contracts enough between 4 and 2 K that a
liquid-vapor interface formed somewhere above the
bolometer and in the top cell. Thus the sample was al-
ways at vapor pressure. A Texas Instruments model 149
pressure gauge was used to confirm the sample pressure.

In a typical experiment a single haversine voltage pulse
was applied to the heater from the Wavetek model 178
function synthesizer, and the first several echoes of the
resulting second-sound pulse at the bolometer were

recorded and digitized with the Nicolet model 12/70 sig-
nal processor. Approximately 1 s later, after the sample
returned to equilibrium, a second pulse was launched,
and its first several echoes recorded and added to the pre-
vious signal. The signal input to the heater was also
monitored and recorded. With all the timing controlled
by an IBM PC/XT computer, this procedure was repeat-
ed anywhere from 1 to 100 times. Most data sets were
the addition of about 30 such signals. Once complete,
data sets were transferred from the signal processor to
the computer over a serial port.

Our ability to use signal averaging depended strongly
on our temperature stability. Fluctuations in tempera-
ture cause Auctuations in the second-sound velocity,
meaning that successive pulses arrive at the bolometer at
slightly different times. To ensure that signal averaging
was not distorting the data, occasional single-sweep sets
were taken several seconds to a minute apart. The results
of two such sweeps were then subtracted. In general, re-
siduals could be completely accounted for by noise in the
pulse-shape measurement, and no evidence of systematic
deviations could be found. For the smallest reduced tem-
peratures and the shortest pulses (where the nonlinearites
were most evident and shock fronts developed), signal
averaging could not be done. However, these pulses were
outside the range of this study (see previous section).

Bolometer calibrations (resistance R versus tempera-
ture T) were obtained every time the working tempera-
ture or magnetic field was changed. The bolometer resis-
tance was measured immediately before or after each
data set so that the slope dR/dT could be determined
separately for each data set from the calibration and the
known resistance.

As discussed in Sec. IIG 1, it is possible to use the
power applied to the heater as a boundary condition to
solve for the initial heat pulse into the helium. From this
and the nonlinear theory discussed in the next section, we
can then calculate the pulse at the bolometer at the ar-
rival times of successive echoes. Then the bolometer
response can be modeled (including here the effect of elec-
tronic filtering) so that a direct comparison of the calcu-
lated and measured pulses is possible. However, as we
also noted in Sec. II G 1, this procedure is quite sensitive
to the characteristics of the substrate (Rz, the specific
heat, and the thermal conductivities of the glass) as well
as the second-sound velocity. So while we use this
method to find a suitable value for Rz, we turn to a
slightly different method for exploring the nonlinear
properties of the Auid.

For our initial conditions we used the measured tem-
perature profile of the first arrival of a pulse at the bolom-
eter. Using this pulse for boundary values, we solved for
the second-sound pulse that must have been rejected
from the bolometer substrate. This rejected pulse then
becomes the initial condition to solve for the temperature
profile at the bolometer at the arrival time of the succes-
sive pulses. Then the bolometer response is modeled and
a comparison with (or a fit to) the measured data is done.
Here the fits are quite insensitive to the boundary param-
eters, and a single-parameter fit, adjusting only the linear
second-sound velocity u2O, is used. In effect, since we are
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starting and ending with a bolometer signal, most of the
intermediate distortion at the boundaries cancels, as op-
posed to the method previously described and illustrated
in Fig. 4 where the boundary corrections twice distort the
initial signal and there is no cancellation.

Our model then consisted of three parts: a calculation
at the bolometer boundary of the reflected pulse into the
helium, a nonlinear calculation of the second-sound prop-
agation in the helium, and another calculation at the
bolometer boundary to account for bolometer response.
The first and third of these have been discussed in Sec.
II G 1. They are very nearly the same calculations; in the
first case the temperature of the boundary is measured
and the resulting reAected second-sound pulse is calculat-
ed, while in the third case the incident second-sound
pulse is given and the boundary temperature is calculat-
ed. A Crank-Nicholson method is used to numerically
solve the diffusion equation in the glass. The nonlinear
calculation of the sound propagation remains to be dis-
cussed.

III. CALCULATION
OF NONLINEAR SECOND-SOUND PROPAGATION

If the equations of two-Quid hydrodynamics are ex-
panded to second order for small changes in temperature
(T) and small counterfiow velocities, and if thermal ex-
pansion (i.e. , the coupling to first sound) is ignored, it can
be shown that the Burgers equation with damping de-
scribes the one-dimensional propagation of second
sound. ' ' In terms of the normal-Auid velocity u„, the
sound-pulse evolution is given by solutions of

»n
Bt

D2 Bv„
+(uzo+aU„)

X BX
(7)

where D2 is the second-sound damping, u2O is the veloci-
ty of linear second sound given by Eq. (1), and a is the
Khalatnikov nonlinear coefficient

u qoC
3

T

Here o. and C are the entropy per unit mass and heat
capacity per unit mass at constant pressure of helium, re-
spectively. Near Ti, a —t ' [where t =(Ti —T)/Ti], so
that the nonlinearities will be apparent even for the
smallest amplitudes of v„ if t is small enough.

To calculate o. we used entropy data from Ref. 25. The
derivative Bu 2O /0 T was determined from a spline fit to
the data of Ref. 21, and C„[in J/mol K] was determined
from the formula

Cp A oint +Bo—Dot lnt —Eot

where HO=5. 100, Bo=15.52 Do= —14.5, and Eo=69.
The second-sound damping (D2 ) was taken from Ref. 20.

Burgers' equation is expected to describe the evolution
of one-dimensional second sound in the regime where
(5p, /p, ) « 1 and where coupling to first sound is negligi-
ble. Furthermore, Burgers' equation describes only
second sound traveling in one direction; it cannot ac-

count for interactions of left- and right-going pulses, for
example, or for the interaction of a single pulse with itself
as it reAects off a wall. We have shown experimentally
that these self-interaction effects are unmeasurably small
in the parameter range covered by this study. To lowest
order the coupling of second to first sound may be
neglected when (C /C, —1)«1. For helium at saturat-
ed vapor pressure, (C /C, —1) & 10 and these effects
are small. The nonlinear coupling of first and second
sound is discussed in a paper by Putterman and Gar-
rett. Some preliminary calculations indicate that the
effect of this coupling is quite small, but further work is
warranted, especially if the technique described herein is
to be extended nearer to T&.

A qualitative understanding of the solutions of the
Burgers equation is useful to understanding this experi-
ment. If we set a equal to zero, we have a linear equation
that describes the propagation of waves with speed u 2O in
one direction. For nonzero a the term in parentheses in
Eq. (7) is an effective second-sound velocity u2 for sound
of amplitude v„. Since a is negative near T&, larger-
amplitude sound moves relatively slower, causing smooth
pulses to lean backwards and eventually form shock tails.
As higher wave numbers are generated by this steepening
of the pulse shape, the damping term, whose strength in-
creases with the curvature of the sound pulse, will have
relatively larger effects on the shape of the pulse. Thus
the competition between nonlinear steepening and linear
dissipation determines the final shape of these pulses.
Since a is known from thermodynamic measurements,
pulse shapes can be used to determine the value of D2.

For the present we hope to demonstrate that Eq. (7) in
fact describes the evolution in time of second sound quite
accurately, using previously measured values for Dz.

For numerically solving the Burgers equation, we again
used a Crank-Nicholson scheme. For this calculation
we transformed into a frame moving with velocity u2o.
This greatly simplifies the numerical work since all
changes in second-sound amplitudes are relatively slow
and due only to the nonlinear and damping terms. To
implement this procedure, it was necessary to use the
generated or refiected pulse shape (with appropriate
thermal modeling) as an "initial" condition for the solu-
tion of the Burgers equation. Strictly, one should do the
integration in a stationary frame and generate the pulse
from the boundary condition at one wall. This procedure
is much more demanding on computer time since very
small spatial and time steps are required. We have car-
ried it out for a few typical cases and compared it with
the initial-value calculation in the moving frame. In the
regime discussed in this study, there was no significant
difference in the results obtained by the two methods.

IV. RESULTS

Typical examples of measured pulse shapes and fits of
the model to them are shown in Figs. 7—9. All fits shown
here used the first arrival of the pulse at the bolometer (a)
as the initial condition and then fit u20 to the sixth echo
(d). Parts (b) and (c) of these figures are comparisons of
the model with echoes 2 and 4. In parts (b) —(d) the data
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FIG. 7. Pulse evolution for 0.'= —30.3, t =5.01 X 10, u2O =598.3 cm/s, and Dz =3.03 X 10 " cm /s. The FWHM of the initial
pulse is 0.022 cm. (a) First echo, used to generate initial condition for the model. (b) Open circles: second echo; line: model. {c)
Same as (b), but for fourth echo. (d) Same as (b), but for sixth echo. This echo was used to determine u». Residuals are shown
below.

are plotted as open circles, and the fit is given as a con-
tinuous line. The residuals are plotted below each part.
For clarity, not all data are shown, however, all residuals
are plotted. Only data from the short cell are shown
since more pulses are available for comparisons (recall
that the first six are planar). Agreement of data obtained
in the long cell with the model is equally good in all
cases.

For Figs. 7 and 8 the theory and data are indistinguish-
able. In Fig. 9, which is at the same temperature as Fig.
8, but uses a shorter pulse, there is a very small

discrepancy visible in the last echo, and the fit has a g
per degree of freedom of 1.4. The data for the sharpening
edge of the pulse here is slightly less steep than the model
predicts; however, the diA'erence is small enough that nu-
merical errors, uncertainties in the values for the thermal
properties of the glass or boundaries, or electronic filter-
ing effects (all of which are more important at the higher
frequencies present in this pulse) may well account for
the entire effect (see Secs. III and II 6 5). No discrepan-
cies larger than those shown in Fig. 9 were found within
the scope of this study.
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FIG. 8. Pulse evolution for n= —69.6, t =2.02 X 10 ', u2o =418.4 cm/s, and D2 =3.24X 10 " cm /s. The FWHM of the initial
pulse is 0.022 cm (a)—(d) are the same as for Fig. 7, except that, for clarity, only every fourth point is plotted. All residuals are plot-
ted.
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FIG. 9. Same parameters as Fig. 8, but the initial pulse FWHM is 0.011 cm. (a) —(d) are the same as for Fig. 8, except that every
other point is plotted. All residuals are shown.

Since our model for the evolution of pulses in this sys-
tem is based on the Burgers equation, any comparisons
are subject to the restrictions discussed in Sec. III; for ex-
ample, no coupling to first sound has been considered,
and self-interactions of the pulse at the heater and bolom-
eter substrates have been ignored. The requirement that
5p, /p, ((1 is easily satisfied in all cases; typical second-
sound temperature excursions are 60 pK or less, so that
even at t=1X10, the smallest reduced temperature
used in this study, 6p, /p, was only about 0.02. That the
pulses we study are one-dimensional is discussed in the
experimental section. Self-interactions are also discussed
there, and the only experimentally untested assumption
we make is that coupling to first sound is negligible.

All data and fits shown represent the temperature vari-
ations of the bolometer, rather than the second-sound
temperature deviations. As discussed earlier, these pulse
profiles are very close to a factor of 2 bigger and slightly
modified from the profiles in the helium.

It is worth noting that while the fits shown were quite
insensitive to the value of D2, at only slightly shorter
pulse lengths (involving slightly larger wave numbers),
the sensitivity increased significantly. In the former case
attempts to adjust D2 led to errors about as big as or
bigger than D2 itself, while for the latter (at pulse lengths
only a factor of 2 smaller) precision of the fits was about
10% of D2. Unfortunately, because of the electronic dis-
tortions at high frequencies, the accuracy of these mea-
surements is in doubt. So, in this study, we have confined
ourselves to a regime where nonlinear effects are deter-
mining pulse shape, and dissipative effects are still quite
small. However, closer to Tz where both nonlinear and
dissipative effects are larger, these pulse shapes should be
considerably more sensitive to the value of D2 at longer
widths (lower wave numbers). We considered a pulse
generated from a single cycle of a 10-kHz-voltage haver-

0.5
Dz in em z/s:

a 0.P

0. 1

0.0
P.23 2.33

t.irne (ms)

FIG. 10. Example of predicted second-sound pulse shapes at
t =10 . For an initial condition, a single cycle of a 10-kHz
haversine squared with peak input power 1.5 W/m was used.
The calculated temperature profiles in the helium at the bolom-
eter (one Aight time later in the short cell) with two different
values for D& are shown.

sine applied at the heater at a reduced temperature of
10 . The initial FWHM of the pulse in the helium was
0.00197 cm, corresponding to a width in time of 0.036
ms (u2o-=54 cm/s). Using our model, we calculate the
shape of this pulse after one trip across the short cell.
The results for two second-sound dampings, different by
20%, are shown in Fig. 10. Note that these pulses have a
FWHM after a single pass across the short cell that is
significantly longer than the initial FWHM. The initial
amplitude, which was 1 pK, has also been significantly
reduced. Only a slight sharpening of the pulse is visible
as the increased damping effectively begins to cut off high
frequencies generated by the nonlinear terms. The pulse,
however, is far from linear; a is nearly —9000.
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V. CONCLUSIONS

In summary, we find good agreement of our data with
solutions of the Burgers equation for temperatures from
2.2 to 22 mK below T&. The model takes into account
the pulse distortion due to thermal effects in the detector,
and in slightly modified form, it can also be used to model
the second-sound generator and account for electronic
filtering effects. The geometry of our experiment
simplifies the problem, enabling us to use a one-
dimensional theory and to disregard boundary effects at
the copper-cell sidewalls. So far, coupling to first-sound
and self-interaction effects have been ignored; however,
such corrections may become necessary for work closer
to T&, and further analysis in this regime may be needed.

The only adjustable parameter in this study has been
the second-sound velocity, although it is possible to work

in a region where there will be good sensitivity to the
second-sound damping as well. Since pulse-shape mea-
surements do not depend upon the linearity of the sound,
it should be possible to extend or improve upon measure-
ments of the second-sound damping and velocity' '

very near T&.
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