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Starting from the well-known quantum-field-theory low-density expansion for the ground-state
energy of a strongly interacting many-fermion assembly, we rearrange the series into a quantum-
thermodynamic perturbation theory that is then applied to liquid 'He. Extrapolation to physical
densities is implemented order by order via Pade and related approximants. We employ both the
hard-core square-well potential and the Aziz pair potential with the Barker-Henderson (BH) and
Weeks-Chandler-Andersen (WCA) potential-decomposition schemes familiar from classical fluid

studies. The binding energy, saturation density, and sound velocity are calculated, with no adjust-
able parameters, and compared with Green-function Monte Carlo (GFMC) computer simulations,
experimental data, and recent variational calculations. Our binding-energy and saturation-density
results for the Aziz-WCA case, and the sound velocity result for the Aziz-BH case, are found to be
within 2%%uo of the GFMC data.

I. INTRODUCTION

A long-standing problem in theoretical physics applied
to condensed matter is that of calculating the equation of
state of materials from first principles. Or, what is the re-
lation among the macroscopic thermodynamic observ-
ables such as internal energy, pressure, entropy, density,
temperature, etc. , which arises from a given dynamic law
at the microscopic, molecular level'? Although some un-
certainties remain for matter at moderate-to-high densi-
ties, significant progress' has been achieved over the past
four decades in calculating the ground-state energy of a
many-particle system with strong two-body interactions
V( ~r," ~

) which are short-ranged attractive and repulsive
at shorter ranges. The Hamiltonian is

g2 N N

V;+g g V(~r, . ~),
i=1 i (j

where 0 g ~ 1 is a coupling parameter, with g =0 corre-
sponding to the ideal-gas case. Alternatively, instead of
g, one can introduce 0 ~ A, ~ 1 such that

(2)

Here A, is a "switching" parameter and the decomposition
(2) into "repulsive" and "attractive" parts of the potential
is still to be defined.

An important first step in understanding any liquid is
to be able to determine from first principles its ground-
state energy and equilibrium density at zero pressure, for
which one needs to solve the Schrodinger equation for
the system. Short of doing Monte Carlo simulations, it is
customary to resort to some approximation scheme pro-
viding accurate results. Approaches to many-body
theory in condensed-matter physics can be categorized as
perturbative, variational, or Monte Carlo (i.e., comput-

er simulations). The approach here is perturbative and
our starting point is the exact low-density expansion
which includes, and systematically goes beyond, the Jas-
trow and Brueckner starting points of present-day varia-
tional and perturbative approaches, respectively. From
the low-density expansion we derive a perturbative
scheme picture based not on the ideal gas fluid as th-e un-
perturbed or reference system, viz. , Eq. (1), but rather on
the nontrivial Quid of hard or soft spheres contained in
the two-particle potential function, namely, Eq. (2). It is
inspired in what is perhaps the most successful scheme
for describing classica/ Auids, including liquids, based on
an innovative idea of van der Waals for studying equa-
tions of state. The familiar van der Waals equation of
state has been one outcome of this idea. Another is the
thermodynamic perturbation theory (TPT) implemented
by Barker and Henderson (BH) and by Weeks, Chandler,
and Andersen (WCA). The quantum version, called
QTPT for "quantum thermodynamic perturbation
theory" was applied to a hard-core-plus-attractive-
square-well pair potential modeling liquid He. A recent
decisive, critical test of the QTPT method encouragingly
materialized when one was able to work with a potential
(2) for which "exact" ground-state results were available
in the literature, viz. , Green-function Monte Carlo
(GFMC) simulations. Such is the case of liquid He
modeled as a Auid of identical massive bosons interacting
pairwise via either the traditional Lennard-Jones (6-12) or
the more realistic Aziz potential, Fig. 1. Energy, densi-
ty, and sound-velocity' predictions for liquid He with
either potential, based on the exact three-term, low-
density expansion, proved to be within the statistical er-
rors of the corresponding GFMC data.

We believe QTPT has two advantages over previous
methods: (1) it exploits the maximum available rigorous
many-body information for a given pair potential, and (2)
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r2
u, (r)~

3

A, (0)
V(r)

if v(r) is short ranged. The integrals alluded to above
15, 16 g fo

Ao(0)=a = f dr rv(r)uo(r),
0

Ro= f dr [(r—a) —uo(r)],
a 02

A, (0)= —,
' f dr r v (r)u, (r) .

(7)

(10)

On the other hand, the scattering parameter A o (x) ap-
pearing in (3) in the (three-body) p (i.e., k~) contribution
to the energy, is potential-shape dependent and arises nat-
urally from the various many-body selective infinite par-
tial summations' ' through the integral

Ao'(0)—:—
—,
' f dr r v(r) u(or) .

0

BH(1967) %CA(1971)

As the pair potential V(r) is decomposed in QTPT into
repulsive and attractive portions in (2), we can expand a,
R o, A, (0), and A o (0) numerically in powers of A,:"

FIG. 2. Illustration of BH and WCA potential decomposi-
tions into repulsive and attractive parts of a typical interatomic
potential like LJ or Aziz.

a =ao(i+a, A, +a2A, + . +a6A6+ ),
Ro=ro(1+r, A+r2A, + . +r6A6+ . ),
A, (0)=t (I+i,A+i A, + . +r6A6+ . ),
Ao (0)=po(1+p, A, +p2A, + . +p6A, + . .

) .

(1 la)

(1 lb)

(1 lc)

(1 ld)

e, (x)=1+k, x+k2 x +k3 x + .

(j =1,2, . . . , 6),
k; =f;+, If, (i =1,2, 3) .

(14)

(15)

The Aziz potential can be decomposed via the two famil-
iar BH (Ref. 6) and WCA (Ref. 7) schemes mentioned be-
fore and displayed in Fig. 2. In (11) the a;, r;, t;, p; are
reported for the Aziz-BH and Aziz-WCA cases in Ref.
17. Substituting (1 la) —(1 ld) into (3), introducing the di-
mensionless variable kzao=x, and expanding, leads to
the ground-state energy rearranged as the double series,
in x and A, , given by

The coefficients f; (i =1, . . . , 5; j =0, 1, . . . , 6) were ob-
tained" (note that f4 =0) by using the computer-algebra
packaged program called MACSYMA. The values of f;
for Aziz-BH and Aziz-WCA are listed in Tables I and II,
and the k," defined in (15) are listed in Tables III and IV.

III. DENSITY-SERIES ANALYSES

E 3%x eo(x)+ $ f, xe (x)A~+
lorna 02

-=Eo+kE)+k E2+
where

eo(x):1+fiox+f2ox +f3ox +fsox + ' '

(12)

(13)

It is apparent that extrapolation to finite densities is
the main task of any microscopic quantitative approach
to the many-body Quid problem, whether it be variational
or perturbative in technique. In extending a theory
which is asymptotically exact in the di1ute-gas region, to
one expected to be suitable in the dense-liquid region,
care must be exercised not to cross gas-to-liquid phase
boundaries which may leave one in a spurious phase dia-

TABLE I. Coefficients f;; of Eqs. (12) and (13) for Aziz-BH.

0.353 678
—0.359 101
—0.245 926
—0.191 624
—0.151 322
—0.119712
—0.094 730

0.185 537
—0.376 764
—0.066 752

0.060 930
0.135 074
0.175 397
0.192 997

0.384 776
—2.134 120
—0.205 503

0.144 674
0.273 165
0.305 570
0.292 663

—0.025 328
0.655 874

—0.234 123
—0.392 697
—0.563 786
—0.742 253
—0.918 767
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TABLE II. Same as Table I but for Aziz-WCA.

0.353 678
—0.340 703
—0.233 038
—0.183 273
—0.146 443
—0.117293
—0.093 983

0.185 537
—0.357 461
—0.072 326

0.043 242
0.112 138
0.151 645
0.171 001

0.385 105
—1.985 148
—0.215 569

0.104 304
0.228 562
0.266 870
0.262 989

—0.025 515
0.599 677

—0.195 549
—0.324 151
—0.462 358
—0.607 028
—0.751 721

E 3%x
Eo(x)+ g f,jxE (x)A)+

10ma 0

=-Eo+AEi+A, E2+ . (16)

and is ready for the A,-series Pade analysis or extrapola-
tion. The density-extrapolated functions so(x) and E (x),
to the series eo(x) and e (x), must satisfy the following
global constraints or "boundary conditions. "

(1) Since, for a hard-sphere fluid, the energy increases
with density up to an ultimate, finite (random or regular)
packing density xo at which, by the uncertainty princi-
ples, the energy diverges as a second-order pole, we ex-
pect that (a) the total energy by which (16) with 2=0 is
proportional to x so(x) implies that Eo(x) itself must
therefore not decrease faster than 1/x . (b)
Eo(x) ~(xo —x) as x~xo, and (c) since the closest
packing density p for hard spheres of diameter c is
presumably the primitive-hexagonal regular packing den-
sity p&=&2/c, the value xo must, by (10), be equal to
(6m &2/v)'~ for v-species fermions, which is about 3.47

gram "sheet. " In QTPT as implemented here, arrival at
the equilibrium liquid point is explicitly achieved"
without crossing phase boundaries. Thus, QTPT is a
"natural" way of correctly constructing the equation of
state of a quantum liquid from first principles.

The primary specific task of the QTPT is extrapolation
of the series eo(x) and e (x) (j = 1,2, . . . , 6), Eqs.
(13)—(15), to nonzero x values. We denote these extrapo-
lations by Eo(x) and E, (x), respectively. Once obtained,
(12) will become

for v=2. However, in contrast to the boson hard-sphere
Quid where accurate (GFMC) computer simulations are
available' to guide our analysis and selection of the op-
timum so(x), there are unfortunately no similar
computer-simulation studies of fermion hard spheres. On
the other hand, there is one valuable Jastrow Monte Car-
lo (1-MC) calculation ' for two-species fermions interact-
ing with the soft repulsive Bethe homework vo potential,
which is the repulsive part of the 'So Reid soft-core
nucleon-nucleon potential. A Pade analysis of this Quid
was reported in Ref. 22 giving energy very close to the J-
MC data points and being everywhere below these
(rigorous upper-bound) results, over the whole density
range of the simulations. One optimum so(x) was found
which is a [0/4](x) approximant to eo

' (x). We know
of no previous many-body method —perturbative or
(non-Monte Carlo) variational —which does not violate
at some density the rigorous upper bound as provided by
the benchmark variational Monte Carlo data of Ref. 21
to the ground-state energy of this many-fermion system,
for which many calculations have been performed, and
which are conveniently reviewed in Ref. 23. Thus, we
adopt that eo(x) form here for the soft cored Azi-z in-

teraction, but for the HCSW calculations we will use the
[3/1](x) extrapolant to eo '~ (x) found in Refs. 12, 22,
and 24 which leads to a second-order pole in Eo(x) at
xp =1.939 15.

(2) Perturbation theory for a negative definite perturba-
tion to the ground-state energy, as in (2), demands that
both first- and second-order corrections to the energy E&
and E~ of (16) be negative for al/ densities. Since f» (0

TABLE III. Coefficients k;; of Eqs. (14) and (15) for Aziz-BH.

—0.176 839
1.049 186
0.271 431

—0.317966
—0.892 625
—1.465 157
—2.037 343

—0.045 860
5.942 949
0.835 626

—0.754 992
—1.805 189
—2.552 547
—3.089 462

—0.156 998
—1.826 432

0.952 007
2.049 312
3.725 743
6.200 335
9.698 816

0.110 158
—6.417 795'
—0.557 474
—4.725 388'

'From the estimation procedure Eq. (21).
Deduced through SP conditions.
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TABLE IV. Same as Table III but for Aziz-WCA.

—0.176 839
1.049 186
0.310363

—0.235 942
—0.765 745
—1.292 968
—1.819493

'From the estimation procedure Eq. (21).
Deduced through SP conditions.

—0.045 860
5.826 623
0.925 041

—0.569 113
—1.560 753
—2.275 234
—2.798 271

—0.157 163
—1.760 115

0.839 129
1.768 672
3.157 251
5.175 294
7.998 509

0.110339
—6.172 119'
—0.529 121
—5.505 516

E=—Eo+kE, (as x~xp) . (17)

Therefore, in addition to having a second-order pole, E
must depend linearly on the attractive well strength A, ,
as x —+xp. In view of (16), this means that
E2=E3= . =0, as x~xp, implying that

E2(xp ) =E,(x~)= =0 . (18)

We shall refer to these very important high-density rela-
tions (17) and (18) as the Stell-Penrose (SP) conditions.

(5) Since the Aziz potential to be used is a soft-cored
potential, the choice of the optimum Fade-derived Eo(x)
suggested by the J-MC simulations on Bethe homework
fermions, and stated at the end of condition (1) above, are
in order. However, for the purpose of fixing the high-
density behavior of E,(x) through E6(x), we shall assume
that, as close packing is approached, our soft-sphere fluid
behaves, for all practical purposes, as a hard-sphere fluid
with sphere diameter ao, the s-wave scattering length of
the repulsive part of the potential decomposed by either
the BH or WCA scheme. More importantly, since no fer-
mion hard-sphere fluid simulations are available, and in
order to determine xz, we postulate that any quantum
fluid of identical hard spheres will develop an energy (and
thus also, pressure) singularity at a universal density

for all j, this implies that both E,(x) and E2(x) should be
non negatiu-e for all x.

(3) Furthermore, the first-order energy correction E„
must decrease monotonically in p, or e, (x) must not de
crease in x faster than 1/x . This is because E, is essen-
tially an expectation value of the negative V,«, calculated
with the many-body wave function of the fluid with
repulsive potential V p.

(4) If the repulsion were a hard-core one, as close pack-
ing x~ is approached, Ez(x~), s3(x~ ), . . . , should individ-
ually vanish. This requirement suggests itself, from the
recent proof by Stell and Penrose, based on the Cxibbs-

Bogoliubov inequalities, that classical thermodynamic
perturbation theory becomes exact in first-order as close
packing is approached. This is rigorous in one and two-
dimensions, and has been conjectured to also hold in
three dimensions. We assume that it further holds in the
quantum case. The energy at close packing should then
be given by

value independent of statistics. This is reasonable since
close packing implies perfect localization of the particles
which, in turn, implies distinguishability. Since this den-
sity value p~ is known for at least one quantum hard-
sphere fluid, namely, bosons, to be pp/po=0. 371 as ex-
tracted from GFMC (Ref. 19) data, Eq. (4) means that,
for v=2 fermions

xz=(3~ p~)' ao=[(3~ V2)(0. 371)]'~ -=2.5,
if po=&2/ao is used.

The five conditions just stated generally permit selec-
tion of a single density-series extrapolant from among a
family of several possible ones, all of which, by construc-
tion, reproduce the exactly known initial series (13)
and (14), eo(x) or e.(x), as x~0. In the well-known
method of Pade extrapolation, ' the Pade approx-
imant [L/M](x) to a given Taylor series
f(x)=f0+f,x+f2x + is defined as the ratio of
two polynomials in x, the numerator being of order L and
the denominator of order M, namely,

1+p,x+p2x + . +pLx PL(x)
[L /M](x) —=

1+q,x+q, x'+ . +q x gM(x)
'

(19)

such that [L/M](x) f (x)—:0(x + +'—). Consequent-
ly, a binomial expansion of (19) about x =0 generates a
power series identical through order x + to the origi-
nal power series. The advantage of a rational approxi-
mant such as (19) is its ability to mimic nontrivial zeros
and poles of the unknown function f (x). Pade approxi-
mants have been shown to accurately reproduce a given
function even out to values of x where the original Taylor
series to the function no longer converges. They have
even been found to be useful in representing functions
with diverging Taylor series.

We now discuss in greater detail the approximants
e, (x) to (14) with j= l. By using the coefficients k, ,
(i =1,2, 3) for either Aziz-BH (Table III) or Aziz-WCA
(Table IV), we set up and examine all third-order Pade
approximants, [2/1](x), [1/2](x), and [0/3](x), plus the
so-called non-Pade form (2/2)(x) introduced in Ref. 11
via the "tailing" method. We immediately discard forms
(2/2) and [0/3] because they violate condition (3) above.
Approximant [1/2] has a pole at x -=0.5 so it, too, is dis-
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mVo(R —c) /i)t =1.719086

for the Burkhardt HCSW and unity for the Aziz
interaction. We use the chosen extrapolants E, (x )

(i =0, 1,2, . . . , 6) stated before. In Fig. 5 we plot E/N
versus x for the HCSW, with [0/0] representing (22) with
A. =O, or the energy per particle of the hard-sphere
fluid. This lies everywhere above the ideal-Fermi-gas
curve, as it should. The dashed curves marked
[1/0],[2/0], . . . , [6/0] stand for the energy-per-particle
"straight" perturbation series in A, , from first to sixth or-
der, respectively. The solid curve represents the fluid He
experimental data summarized in Ref. 30. Although our
converged energy minimum is substantially far from the
zero-pressure experimental binding energy, the QTPT
scheme is seen to be converging quickly beyond third or-
der. This serious discrepancy between the predicted
versus the experimental energy-density equilibrium point
is attributable to two possible sources: (a) the HCSW po-
tential, even though it is phase equivalent to the more
realistic He-He Lennard-Jones potential, is still inade-
quate for a many-body calculation, and/or (b) the extra-
polant used to represent the hard-sphere fluid is inade-
quate in the relevant density range.

The more realistic Aziz interatomic potential alleviates
difficulty (a) above, and we found that, using the soft-

tolo] ~r r ~IDEAL GAS

- t, [1/O](»,
'4L~

0.5
"=. [21O] "

rr
+ m m +r

X, )

1.5[

HCSW

t3/0], [4/0],[5/0],ts(

where the leading term refers to the hard-sphere Quid.
This may now be analyzed as a A. series to extrapolate to
nonzero A. values. Specifically, we can represent (22) in
terms of Pade approximants in X by writing

E 3%x
so(x)[L/M](A, ) (L +M ~ 6),

10mao

and investigate the "spread" at A, =k h „„& and at any
given x value, of all the (L+M)th order energies. The
value of ~physica) will be

-l.2-

-2-

-2.4

-28-

302
0.15 0.2 0.25 0.3 0.35 0.4

Q'3

FIG. 6. Ciround-state QTPT energy per particle as a function
of po' for the Aziz potential with BH decomposition. Here
o =2.556 A and p= kF'/3~', Eq. (4). The solid curve stands for
the experimental results for liquid He, and the circles are the
GFMC (computer-simulation} results.

-2.32- [5/0] [2/4]

[5/1] [3/3]~ [4/2]

sphere eo(x) discussed under global constraint (1) above
succeeded nicely in avoiding difficulty (b). Results for the
Aziz-BH case are shown in Fig. 6 where, in order to also
compare with the computer- (CxFMC) simulation results
of Refs. 31 and 32, we change our density parameter
from x =(pao)' to po, where cr =2.556 A. Perturba-
tion results through sixth order are given for the
attractive-coupling-constant A, series (22), and are labeled
[n/0](A, ) (n =1,2, . . . , 6) in Fig. 6. Also displayed are
the GFMC data points listed in Table V, as well as the
experimental curve. Figure 7 displays the Aziz-WCA,
sixth-order QTPT results on an expanded scale. Agree-
rnent with the CxFMC and experimental results in both
energy and density in the saturation density region is
better with the WCA than with the BH decomposition.
We found that, at higher densities, the QTPT converged
results tend to have smaller curvature than the simula-
tion data —most probably a reflection of the inevitable

-2.36- [1/5] (&)

GFMC~" AZIZ-WCA

FIG. 5. Ground-state energy per particle as a function of
x =kFc for the HCSW potential. Curves labeled [L/M](/)
refer to the L/I Pade approximants to the I. +M partial sum
of the k series, Eq. (23). The curve labeled [0/0] refers to the
pure hard-sphere fluid using the [3/1] approxitnant of Ref. 24;
the solid curve is the experimental result (Ref. 30) for liquid 'He
at zero absolute temperature.

-2.4
0.265

I I

0.27 0.275
I I I

0.28 0.285 0.29
pQ' 3

FIG. 7. Same as Fig. 6 but for the Aziz-%'CA case and in an
expanded scale. The error bar for the GFMC results is +0.1 K.
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TABLE V. Results of fixed-node Green-function Monte Car-
lo calculations for 54 He atoms interacting via the Aziz poten-
tial in a periodic box. All errors 5 are between 0.01 and 0.02
{cr=-2.556 A) [R. M. Panoff' {private communication)].

po

0.200
0.237
0.273
0.277
0.300
0.327
0.377

—(K)
iV

—2.030+5
—2.300+5
—2.375+5
—2.375+5
—2.300+5
—2.050+5
—1.160+6

breakdown of the assumption made in dealing with the
series eo(x), where our Aziz interaction soft spheres have
been regarded as hard spheres of diameter ao. However,
this approximation should be adequate at lower densities
including, fortuitously, the saturation region of liquid
He.

The "smallness parameter" which naturally emerges in
the QTPT for the description of a quantum liquid is A, ,
the strength of the attractive interatomic potential. Its
adequacy as a "smallness parameter" at the equilibrium
density can be gauged from how small a "spread" will re-
sult at that density among the energy minima of all
sixth-order Pade approximations —[6/0], [5/1], [4/2],
[3/3], [2/4], and [1/5]—to the energy. If the [1/5] result
were ignored, this spread is substantially smaller than the
size as the GFMC uncertainty of 6=+0.01 K.

the straight sixth-order perturbation A, series of Eq. (22),
namely,

E 3%x
eo(x )[6/0]( 1,),

10ma,2
(24)

fPl C
Bp

(25)

where m is the He atomic mass [for which
fi /m =16.085775 KA (Ref. 16)],p is the number den-
sity, and the pressure P is given by

p d(E/N)'-=p' a. (26)

Since the QTPT expression (24) for E/N is an explicit
function of x, related to p through x =(3rr p)' ao, which
comes from (4), (25), and (26), it then yields (in m/s)

1/2

and determine from this the saturation density p, and
binding energy (E/N), predicted for liquid He. In Table
VI, we collect together the QTPT results at the satura-
tion energy-density point, and compare with laboratory
(expt. ) and computer-simulation (GFMC) experiments, as
well as with the recent variational results based upon a
Jastrow trial wave function with substantial further
corrections to account for triplet, spin-dependent, and
backflow correlations. Also included in Table VI are
sound speed c results which are a very stringent test of
the ground-state equation of state. The sound speed c is
defined through

V. RESULTS AND DISCUSSION

=17 5021c =17.5021 X
Bx Bx

(27)

Using the e;(x) (i =1,2, . . . , 6) extrapolants chosen ac-
cording to various physical constraints which follow from
thermodynamic perturbation theory, we first calculate

Using MACSYMA computer algebra we evaluated this ex-
pression at the calculated saturation densities determined
for the HCSW, Aziz-BH, and Aziz-WCA cases.

TABLE VI. QTPT results for the density p, energy-per-particle E/N, and sound speed c, all at the
equilibrium minimum, compared with experimental liquid He (expt), GFMC (fixed-node), and varia-

tional calculations. Percentage errors are against GFMC data.

Expt.
Ref. 30

GFMC
Refs. 31 and 32

Variational
calculation

Ref. 33 HCSW BH

QTPT (present work)
Aziz

WCA

p, (A. -')
E/X (K)

0.016
—2.47

P PGFMC

PGFMC

0.0163
—2.37
+0.01
176.7'

0.0166
—2.47

1.5

0.0097
—0.7516

118.1

40.6

0.0195
—3.172

19.9

0.0166
—2.33

1.5

E—EG
100 %

EGFMC
4.2 68.3 33.8 1.7

'From Eq. (30).

C CGFMC
100 %

CGFMC
47 33.2 2.0 14.7
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In order to compare with the GFMC result, we write

5

E/X =Eo+ g a,
1=2 Po

(2&)

where, from (25) and (26), we can deduce that

a2 2
PnC (29)

First, we applied a least-squares method with the GFMC
data listed in Table V to extract Eo and the a,
(i =2, 3,4, 5) of (28). Then (29) gives (in m/s)

VI. CONCLUSIONS

Starting with the well-known, exact, low-density
equation-of-state series for a many-fermion system, we
rearrange the expansion into a double series (in density
and attractive coupling) which is appropriately termed a
quantum thermodynamic perturbation theory. Through
the application of Pade approximants, the low-density
terms in the perturbation expansion are extrapolated or-
der by order to higher (i.e., physical) density.

Not surprisingly, the hard-core-square-well potential is
too simple a model to yield reliable results. For the Aziz

&GFMC

which is the value cited in Table VI.
Lastly, as a convenient, though rough, comparison cri-

terion, percentage errors are given in the table which are
calculated against the corresponding GFMC central
figure. We see that, for the WCA decomposition of the
Aziz potential, the energy and density are both within
2%%uo of the GFMC values as is the sound speed for the BH
decomposition. The results can probably be improved by
searching for a more suitable decomposition of the poten-
tial, perhaps intermediate between the BH and WCA
ones, as already proved' to be the case for bosonic He.

interatomic potential, on the other hand, the predicted
results are excellent both as regards saturation density
and binding energy, but moderately good for sound
speed, under the WCA potential decomposition, when
compared against the GFMC (computer-simulation)
data. On the other hand, for the BH potential decompo-
sition, although both energy and density predictions are
not as good as in the WCA case, the sound speed predic-
tion is excellent. We conclude, in general, that QTPT is a
convenient scheme to describe the ground-state equation
of state of the fermion liquid He, as found previously '
for the bosonic liquid He, but that, as in this latter case,
an optimum potential decomposition may lie intermedi-
ate between the BH and WCA extremes dealt with here.

The results of this study are based on a very simple,
inexpensive calculational scheme when compared with
other intricate, complex methods, either of the variation-
al or Monte Carlo kind —the latter, however, being used
as benchmarks against which we compare our results.
Finally, a "smallness parameter" emerges which is ap-
propriate for describing the quantum liquid state in terms
of a rapidly convergent scheme in a manner which explic-
itly avoids crossing gas-liquid phase boundaries.
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