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Starting from the well-known quantum-field-theory low-density expansion for the ground-state
energy of a strongly interacting many-fermion assembly, we rearrange the series into a quantum-
thermodynamic perturbation theory that is then applied to liquid *He. Extrapolation to physical
densities is implemented order by order via Padé and related approximants. We employ both the
hard-core square-well potential and the Aziz pair potential with the Barker-Henderson (BH) and
Weeks-Chandler-Andersen (WCA) potential-decomposition schemes familiar from classical fluid
studies. The binding energy, saturation density, and sound velocity are calculated, with no adjust-
able parameters, and compared with Green-function Monte Carlo (GFMC) computer simulations,
experimental data, and recent variational calculations. Our binding-energy and saturation-density
results for the Aziz-WCA case, and the sound velocity result for the Aziz-BH case, are found to be

within 2% of the GFMC data.

I. INTRODUCTION

A long-standing problem in theoretical physics applied
to condensed matter is that of calculating the equation of
state of materials from first principles. Or, what is the re-
lation among the macroscopic thermodynamic observ-
ables such as internal energy, pressure, entropy, density,
temperature, etc., which arises from a given dynamic law
at the microscopic, molecular level? Although some un-
certainties remain for matter at moderate-to-high densi-
ties, significant progress' has been achieved over the past
four decades in calculating the ground-state energy of a
many-particle system with strong two-body interactions
V(|r;;|) which are short-ranged attractive and repulsive
at shorter ranges. The Hamiltonian is
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where 0 =g =1 is a coupling parameter, with g =0 corre-
sponding to the ideal-gas case. Alternatively, instead of
g, one can introduce 0 <A <1 such that

ViD=V —1;) =V, + AV, - )

Here A is a “switching” parameter and the decomposition
(2) into ““repulsive” and ‘‘attractive” parts of the potential
is still to be defined.

An important first step in understanding any liquid is
to be able to determine from first principles its ground-
state energy and equilibrium density at zero pressure, for
which one needs to solve the Schrdédinger equation for
the system. Short of doing Monte Carlo simulations, it is
customary to resort to some approximation scheme pro-
viding accurate results. Approaches to many-body
theory in condensed-matter physics can be categorized as
perturbative,? variational,® or Monte Carlo* (i.e., comput-
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er simulations). The approach here is perturbative and
our starting point is the exact low-density expansion®
which includes, and systematically goes beyond, the Jas-
trow and Brueckner starting points of present-day varia-
tional and perturbative approaches, respectively. From
the low-density expansion we derive a perturbative
scheme picture based not on the ideal-gas fluid as the un-
perturbed or reference system, viz., Eq. (1), but rather on
the nontrivial fluid of hard or soft spheres contained in
the two-particle potential function, namely, Eq. (2). It is
inspired in what is perhaps the most successful scheme
for describing classical fluids, including liquids, based on
an innovative idea of van der Waals for studying equa-
tions of state. The familiar van der Waals equation of
state has been one outcome of this idea. Another is the
thermodynamic perturbation theory (TPT) implemented
by Barker and Henderson® (BH) and by Weeks, Chandler,
and Andersen’ (WCA). The quantum version, called
QTPT for ‘“quantum thermodynamic perturbation
theory” was applied® to a hard-core-plus-attractive-
square-well pair potential modeling liquid “He. A recent
decisive, critical test of the QTPT method encouragingly
materialized® when one was able to work with a potential
(2) for which “exact” ground-state results were available
in the literature, viz., Green-function Monte Carlo
(GFMC) simulations. Such is the case of liquid “He
modeled as a fluid of identical massive bosons interacting
pairwise via either the traditional Lennard-Jones (6-12) or
the more realistic Aziz potential, Fig. 1. Energy, densi-
ty,® and sound-velocity'® predictions for liquid “He with
either potential, based on the exact three-term, low-
density expansion, proved to be within the statistical er-
rors of the corresponding GFMC data.

We believe QTPT has two advantages over previous
methods: (1) it exploits the maximum available rigorous
many-body information for a given pair potential, and (2)
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FIG. 1. Hard-core-square-well (HCSW), Aziz, and Lennard-
Jones (LJ) pair potentials v (7) (in K) are compared. Note the
drastic scale change between the positive and negative ordinate
axes.

in predicting the properties of the liquid state it explicitly
avoids'! crossing phase boundaries, specifically the one
separating the single-phase gas from the two-phase gas-
liquid regions. (Of course, negative-pressure portions of
the energy versus density curve must be discarded in the
usual manner via the equivalent Maxwell construction.)
In this paper we apply QTPT with a realistic pair poten-
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tial to fermions, and study the ground-state properties of
liquid *He modeled via the Aziz pair interaction. In Sec.
II we rearrange the low-density ground-state energy ex-
pansion into QTPT form; Sec. III summarizes order-by-
order density-series analyses; Sec. IV discusses the
attractive-coupling-series Padé analysis; Sec. V gives our
equation-of-state predictions compared with experiment,
simulations, and with recent, very exhaustive, variational
calculations; and Sec. VI presents our conclusions.

II. REARRANGEMENT
OF LOW-DENSITY EXPANSION

Every theoretical (nonsimulational) approach to the
general many-body Schrédinger equation is necessarily
an approximation of one kind or another. The most fa-
miliar systematic approximation scheme from elementary
quantum mechanics is perturbation theory. In imple-
menting this technique of quantum-field theory, one en-
counters the dilemma that perturbation theory leads, in
general, for the fully interacting ground-state energy, to
infinite terms in the series, when dealing with singular in-
teractions. These divergences can be handled by applying
infinite partial summation of selected Feynman diagrams
which leave a finite but nonanalytic expansion in the den-
sity. The two most divergent sets of diagrams comprise
the familiar “ladder” diagrams; when the next most
divergent set is summed to this we have the so-called
“complete” set of diagrams,5 etc. The resultant finite,
but nonanalytic, expansion for the ground-state energy
per particle is then’

ﬁ2k2 R (0)
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where the leading term is the ideal-Fermi-gas contribu-
tion and the dimensionless coefficients C; are convenient-
ly tabulated in Ref. 12. In (3), fiky is the Fermi momen-
tum related to the particle density p=N /Q, with Q the
volume, through

_ vk 2
67

with v being the number of distinct fermion species. For
the case of *He, v=2 and, consequently,’ C¢=0. The
symbols a, R, and 4,(0) stand for the scattering parame-
ters of effective-range theory13 and are, respectively, the
s-wave scattering length a, the s-wave effective range R,
and the p-wave scattering length (cubed) A4,(0)—all of
which characterize the potential assumed to act between
pairs of particles in a shape-independent way. This is a
consequence of the fact that these three parameters are

p ) 4)

interrelated by effective-range theory with the scattering
phase shift §,(k) in the /th partial wave through the low-
energy (#°k2/2m —0) expressions'*

1
4,(0)

kM *leotd, (k)= — +1Rk?+0(k*)

(1=0,1,2,...). (5

Indeed, one can write these dynamical parameters as in-
tegrals over the pair interaction V (r)=(#%/m)v(r) and
reduced zero-energy radial wave function u,(r).'* This
function satisfies the zero-energy Schrodinger equation

o(r+ 1D
-

ui'(r)— u)(r)=0 (6)

with #,(0)=0. For r— oo,
ug(r)—(r —a) and

one must clearly have
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2 A,(0)
“1(”)“’?_7 ,
if v(r) is short ranged. The integrals alluded to above
arel5 16
Ay(0)=a =f0°°dr rv(Pugy(r) , @)
Ro=—2 [“dr((r—aP—ud(r], (8)
ag*o
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On the other hand, the scattering parameter A4 (x) ap-
pearing in (3) in the (three-body) p? (i.e., k£) contribution
to the energy, is potential-shape dependent and arises nat-
urally from the various many-body selective infinite par-
tial summations!>!# through the integral

A(’)'(O)E—%fo dr riv(riug(r) . (10)
As the pair potential V' (r) is decomposed in QTPT into

repulsive and attractive portions in (2), we can expand a,
Ry, 4,(0), and A4{ (0) numerically in powers of A:!!

a=ag(l1+a A+a, A2+ - +agAs+ ), (11a)
Ro=ro(1+rA+rA2+ - +rhs+ 1), (11b)
A0)=to(1+t A+, 24+ - -+t A5+ -2, (11¢)

AG(0)=po(1+pA+p,A%+ -+ +pAl+---) . (11d)

The Aziz potential can be decomposed via the two famil-
iar BH (Ref. 6) and WCA (Ref. 7) schemes mentioned be-
fore and displayed in Fig. 2. In (11) the a;, 7, ¢;, p; are
reported for the Aziz-BH and Aziz-WCA cases in Ref.
17. Substituting (11a)-(11d) into (3), introducing the di-
mensionless variable kpa,=x, and expanding, leads to
the ground-state energy rearranged as the double series,
in x and A, given by

L 13:;’;25 eolx)+ élfljxej(x)xwr -
=E,+AE,+ME,+ -, (12)
where
eo(x)=14f1ox + x>+ f3ox >+ fsox*+ -, (13)
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FIG. 2. Illustration of BH and WCA potential decomposi-
tions into repulsive and attractive parts of a typical interatomic
potential like LJ or Aziz.

e (x)=1+kyjx +kyx>+kyx>+ -
(j=12,...,6), (14)
kj=fis;/f1; (i=1,2,3). (15)

The coefficients fij i=1,...,5j=0,1,...,6) were ob-
tained!! (note that f, ;=0) by using the computer-algebra
packaged program called MACSYMA.'® The values of f;;
for Aziz-BH and Aziz-WCA are listed in Tables I and II,
and the k;; defined in (15) are listed in Tables III and IV.

III. DENSITY-SERIES ANALYSES

It is apparent that extrapolation to finite densities is
the main task of any microscopic quantitative approach
to the many-body fluid problem, whether it be variational
or perturbative in technique. In extending a theory
which is asymptotically exact in the dilute-gas region, to
one expected to be suitable in the dense-liquid region,
care must be exercised not to cross gas-to-liquid phase
boundaries which may leave one in a spurious phase dia-

TABLE 1. Coefficients f;; of Egs. (12) and (13) for Aziz-BH.

l

X 1 2 3 4

0 0.353 678 0.185 537 0.384776 —0.025 328
1 —0.359 101 —0.376 764 —2.134120 0.655 874
2 —0.245926 —0.066752 —0.205 503 —0.234123
3 —0.191 624 0.060930 0.144 674 —0.392 697
4 —0.151322 0.135074 0.273 165 —0.563 786
5 —0.119712 0.175 397 0.305 570 —0.742253
6 —0.094 730 0.192997 0.292 663 —0.918767
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TABLE II. Same as Table I but for Aziz-WCA.

1

x 1 2 3 4

0 0.353678 0.185 537 0.385 105 —0.025515
1 —0.340703 —0.357461 —1.985 148 0.599 677
2 —0.233038 —0.072326 —0.215 569 —0.195 549
3 —0.183273 0.043242 0.104 304 —0.324151
4 —0.146 443 0.112138 0.228 562 —0.462 358
5 —0.117293 0.151 645 0.266 870 —0.607 028
6 —0.093 983 0.171001 0.262 989 —0.751721

gram “‘sheet.” In QTPT as implemented here, arrival at
the equilibrium liquid point is explicitly achieved!!
without crossing phase boundaries. Thus, QTPT is a
“natural” way of correctly constructing the equation of
state of a quantum liquid from first principles.

The primary specific task of the QTPT is extrapolation
of the series ey(x) and ej(x) (j=1,2,...,6), Egs.
(13)—(15), to nonzero x values. We denote these extrapo-
lations by gy(x) and €;(x), respectively. Once obtained,
(12) will become

E _ 3#%x? 6 ;

e go(x)+ XE(X)AIA - - -

N 10ma% 0 jglflj J
=E,+AE,+ME,+ -+, (16)

and is ready for the A-series Padé analysis or extrapola-
tion. The density-extrapolated functions eq(x) and g;(x),
to the series eg(x) and e;(x), must satisfy the following
global constraints or ‘“boundary conditions.”

(1) Since, for a hard-sphere fluid, the energy increases
with density up to an ultimate, finite (random or regular)
packing density x, at which, by the uncertainty princi-
ples, the energy diverges as a second-order pole, we ex-
pect that (a) the total energy by which (16) with A=0 is
proportional to xZ2ey(x) implies that ey(x) itself must
therefore not decrease faster than 1/x2%  (b)
go(x) = (xy—x)"“ as x—xgy, and (c) since the closest
packing density p for hard spheres of diameter c is
presumably the primitive-hexagonal regular packing den-
sity po= V'2/¢3, the value x, must, by (10), be equal to
67>V 2/v)'3 for v-species fermions, which is about 3.47

-2

for v=2. However, in contrast to the boson hard-sphere
fluid where accurate (GFMC) computer simulations are
available! to guide our analysis and selection? of the op-
timum ¢gy(x), there are unfortunately no similar
computer-simulation studies of fermion hard spheres. On
the other hand, there is one valuable Jastrow Monte Car-
lo (J-MC) calculation?! for two-species fermions interact-
ing with the soft repulsive Bethe homework v, potential,
which is the repulsive part of the S, Reid soft-core
nucleon-nucleon potential. A Padé analysis of this fluid
was reported in Ref. 22 giving energy very close to the J-
MC data points and being everywhere below these
(rigorous upper-bound) results, over the whole density
range of the simulations. One optimum gy(x) was found
which is a [0/4](x) approximant to e, !/2(x). We know
of no previous many-body method—perturbative or
(non-Monte Carlo) variational-—which does not violate
at some density the rigorous upper bound as provided by
the benchmark variational Monte Carlo data of Ref. 21
to the ground-state energy of this many-fermion system,
for which many calculations have been performed, and
which are conveniently reviewed in Ref. 23. Thus, we
adopt that gy(x) form here for the soft-cored Aziz in-
teraction, but for the HCSW calculations we will use the
[3/1](x) extrapolant to e, '/?(x) found in Refs. 12, 22,
and 24 which leads to a second-order pole in g4(x) at
xp=1.93915.

(2) Perturbation theory for a negative definite perturba-
tion to the ground-state energy, as in (2), demands that
both first- and second-order corrections to the energy E,
and E, of (16) be negative for all densities. Since f; <0

TABLE III. Coefficients k;; of Egs. (14) and (15) for Aziz-BH.

i
j 1 2

3 4

0 —0.176 839 —0.045 860 —0.156 998 0.110158
1 1.049 186 5.942 949 —1.826432 —6.417795%
2 0.271431 0.835 626 0.952 007 —0.557474°
3 —0.317966 —0.754 992 2.049 312 —4.725388°
4 —0.892 625 —1.805 189 3.725743

5 —1.465 157 —2.552547 6.200 335

6 —2.037343 —3.089 462 9.698 816

2From the estimation procedure Eq. (21).
*Deduced through SP conditions.
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TABLE IV. Same as Table III but for Aziz-WCA.

1

X 1 2 3 4

0 —0.176 839 —0.045 860 —0.157 163 0.110339
1 1.049 186 5.826 623 —1.760115 —6.172119°
2 0.310363 0.925041 0.839 129 —0.529 121°
3 —0.235942 —0.569 113 1.768 672 —5.505 516"
4 —0.765745 —1.560753 3.157251

5 —1.292968 —2.275234 5.175294

6 —1.819493 —2.798271 7.998 509

2From the estimation procedure Eq. (21).
®Deduced through SP conditions.

for all j, this implies that both €,(x) and €,(x) should be
non-negative for all x.

(3) Furthermore, the first-order energy correction E,
must decrease monotonically in p, or €,(x) must not de-
crease in x faster than 1/x3. This is because E; is essen-
tially an expectation value of the negative V,,, calculated
with the many-body wave function of the fluid with
repulsive potential V.

(4) If the repulsion were a hard-core one, as close pack-
ing xp is approached, €,(xp), €3(xp), . . ., should individ-
ually vanish. This requirement suggests itself, from the
recent proof by Stell and Penrose,?* based on the Gibbs-
Bogoliubov inequalities, that classical thermodynamic
perturbation theory becomes exact in first-order as close
packing is approached. This is rigorous in one and two-
dimensions, and has been conjectured to also hold in
three dimensions. We assume that it further holds in the
quantum case. The energy at close packing should then
be given by

EEE0+}LE1 (aS x—>xP) . (17)

Therefore, in addition to having a second-order pole, E
must depend linearly on the attractive well strength A,

as x—xp. In view of (16), this means that
E,=E;= -+ =0, as x —>Xxp, implying that
g(xp)=gs(xp)=---=0. (18)

We shall refer to these very important high-density rela-
tions (17) and (18) as the Stell-Penrose (SP) conditions.

(5) Since the Aziz potential to be used is a soft-cored
potential, the choice of the optimum Padé-derived gy(x)
suggested by the J-MC simulations on Bethe homework
fermions, and stated at the end of condition (1) above, are
in order. However, for the purpose of fixing the high-
density behavior of g,(x) through €4(x), we shall assume
that, as close packing is approached, our soft-sphere fluid
behaves, for all practical purposes, as a hard-sphere fluid
with sphere diameter a,, the s-wave scattering length of
the repulsive part of the potential decomposed by either
the BH or WCA scheme. More importantly, since no fer-
mion hard-sphere fluid simulations are available, and in
order to determine xp, we postulate that any quantum
fluid of identical hard spheres will develop an energy (and
thus also, pressure) singularity at a universal density

value independent of statistics. This is reasonable since
close packing implies perfect localization of the particles
which, in turn, implies distinguishability. Since this den-
sity value pp is known?® for at least one quantum hard-
sphere fluid, namely, bosons, to be pp/p;=0.371 as ex-
tracted from GFMC (Ref. 19) data, Eq. (4) means that,
for v=2 fermions

xp=03m2pp) Pay=[(37*V2)(0.371)]'*=2.5 ,

if po=""2/a} is used.

The five conditions just stated generally permit selec-
tion of a single density-series extrapolant from among a
family of several possible ones, all of which, by construc-
tion, reproduce the exactly known initial series (13)
and (14), eo(x) or e;(x), as x—0. In the well-known
method of Padé extrapolation,?®?’ the Padé approx-
imant [L/M](x) to a given Taylor series
f(xX)=fo+f1x +fx*+ -+ is defined as the ratio of
two polynomials in x, the numerator being of order L and
the denominator of order M, namely,

1+p,x +p,x2+ -+ +p, xt _ Prx)
14+g,x +gox?+ -+ +gux™ Qy(x)’
(19)

such that [L/M](x)—f(x)=0(x* ™ *1)_ Consequent-
ly, a binomial expansion of (19) about x =0 generates a
power series identical through order x £ "™ to the origi-
nal power series. The advantage of a rational approxi-
mant such as (19) is its ability to mimic nontrivial zeros
and poles of the unknown function f(x). Padé approxi-
mants have been shown to accurately reproduce a given
function even out to values of x where the original Taylor
series to the function no longer converges. They have
even been found to be useful in representing functions
with diverging Taylor series.

We now discuss in greater detail the approximants
g(x) to (14) with j=1. By using the coefficients k;
(i =1,2,3) for either Aziz-BH (Table III) or Aziz-WCA
(Table IV), we set up and examine all third-order Padé
approximants, [2/1](x), [1/2](x), and [0/3](x), plus the
so-called non-Padé form (2/2)(x) introduced in Ref. 11
via the “tailing” method. We immediately discard forms
(2/2) and [0/3] because they violate condition (3) above.
Approximant [1/2] has a pole at x =0.5 so it, too, is dis-

[L/M](x)=
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carded. This leaves only [2/1](x) and [3/0](x), the latter
being the original series (14) for i =1. As a check on the
high-density behavior of these two remaining forms, we
consider the following rough estimate'?® for the attrac-
tive potential-energy contribution of the hard-core-
square-well (HCSW) potential shape designed by Bur-
khardt* to be “phase-equivalent” to the He-He
Lennard-Jones potential. It has a depth — ¥V, range R,
and hard-core diameter ¢. The estimate simply states
that

AE, /N =—1Vy(47R%,—1), (20)

where the term in the parentheses is the number of hard-
sphere centers between two concentric spheres of radii R
and c, centered about a given particle (i.e., inside the at-
tractive well of that particle’s HCSW potential). By
equating the above to the j =1 term in (6), one can obtain
an estimate for the value of the first-order extrapolant at
close packing, which depends on the parameters of the
HCSW. From Eqgs. (4), (16), and (20) and the fact that
A=mV,(R —c)?/#* for the HCSW problem as defined in
Ref. 12, we obtain for this estimate of £,(x) at x, the ex-
pression

5[4R3x3 /9mc3—1]
3xpfna’

where a=(R —c)/c =2.264095, if R =5.5 A, c =1.685
A as given in Ref. 29. For the ¢£,(x) of the Aziz potential
we found results very similar to those with the HCSW,
Fig. 3, where we found that the [2//2](x) two-point
fourth-order Padé approximant best represents g,(x).
This approximant is defined such that, for small x, it
reproduces the three known coefficients of e,(x) in (14),
and, in addition, satisfies the constraint

est(

€y xP)E_ 5 (21)

[2//72)(xp)=¢(xp)=¢§(xp)=5.914 901

determined from Eq. (21) for the Burkhardt HCSW,
where, in accordance with global constraint (5) above,
xp=2.5 for v=2 fermions.

The behavior of &,(x) for the Aziz potential (both BH
and WCA) was again found similar to that of the HCSW
potential. Since not approximant from the “small’’ fami-
ly of third-order extrapolants shows acceptable Stell-
Penrose behavior, we proceed to the ‘“large” family of
fourth-order approximants [L//M](x), with L +M =4,
which satisfy €,(xp)=0, namely, the appropriate SP be-
havior. The two-point Padé extrapolants [2//2](x),
[1//3](x), and [3//1](x) all develop poles for x <2, i.e.,
well within the physical interval of densities, and so we
discard them. Only the [4//0](x) survives the global
constraints (1)—(5) above and is thus chosen as the op-
timum representation.

As for g5(x), it again differs little from the HCSW case,
with [0/3](x) clearly being the best of the “small” family
of extrapolants, albeit with an imperfect Stell-Penrose be-
havior because €3(xp) does not quite vanish. This can be
refined further if we go to the large family of two-point
Padé approximants allowing us to impose the SP behav-
ior approximant via the condition [2//2](xp)=0. We
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FIG. 3. Two-point Padé extrapolants to e,(x) of Eq. (14) for
the HCSW potential such that &,(xp)=¢*(xp,)=5.825 809, as
calculated via Eq. (21), for x» = 1.939 15 which is the zero of the
[3/1] approximant to ey '/%(x), Eq. (13).

finally plot in Fig. 4 the chosen extrapolants ¢,(x)
(i=2,3,...,6) only for the Aziz-BH case since the
Aziz-WCA case is very similar.

IV. ATTRACTIVE-COUPLING-SERIES ANALYSES

Having constructed good density extrapolants g(x)
and g;(x) to each of the series ey(x) and e;(x) in the
QTPT energy expressions (12)—(15), the resulting series
(16) for the ground-state energy per particle can be

rewritten as

E %252 6 fljxej(x) .

— = gq(x) |1+ ———A |, 22
N 10ma3} o 21 go(x) 22)
4 -

i=2[a//0]

€;(x)

N

0.5 1 1.5 2.5

FIG. 4. Optimum approximants ¢;(x) to e;(x)
(i=2,3,...,6) of Eq. (14) for the Aziz potential with BH
decomposition, selected according to criteria set forth in the
text. The open circle marks the value xp,=2.5 emerging from
the postulate discussed under global constraint (5) of the text.
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where the leading term refers to the hard-sphere fluid.
This may now be analyzed as a A series to extrapolate to
nonzero A values. Specifically, we can represent (22) in
terms of Padé approximants in A by writing

E _ 3#x?

N 10ma2

golx)[L/M](A) (L+M=6), (23)

and investigate the “spread” at A=A,p .. and at any
given x value, of all the (L +M)th order energies. The
value of Ay, ica1 Will be

mVy(R —c)?/#=1.719086

for the Burkhardt HCSW and unity for the Aziz
interaction. We use the chosen extrapolants g;(x)
(i=0,1,2,...,6) stated before. In Fig. 5 we plot E/N
versus x for the HCSW, with [0/0] representing (22) with
A=0, or the energy per particle of the hard-sphere
fluid. This lies everywhere above the ideal-Fermi-gas
curve, as it should. The dashed curves marked
[1/0],[2/0],...,[6/0] stand for the energy-per-particle
“straight” perturbation series in A, from first to sixth or-
der, respectively. The solid curve represents the fluid *He
experimental data summarized in Ref. 30. Although our
converged energy minimum is substantially far from the
zero-pressure experimental binding energy, the QTPT
scheme is seen to be converging quickly beyond third or-
der. This serious discrepancy between the predicted
versus the experimental energy-density equilibrium point
is attributable to two possible sources: (a) the HCSW po-
tential, even though it is phase equivalent to the more
realistic He-He Lennard-Jones potential, is still inade-
quate for a many-body calculation, and/or (b) the extra-
polant used to represent the hard-sphere fluid is inade-
quate in the relevant density range.

The more realistic Aziz interatomic potential alleviates
difficulty (a) above, and we found that, using the soft-

s ,,’ I' ]
[0/0]/:)::’,/\}DEAL Gas  / i
T e < 7
e T [vol wf X
0 0.5 N 1 7 1
_ ‘%% [2/01 7
Y S35
=0 2
= [3/014/0},[5/0],[6/0]
w HCSW
_2 -
EXPT
_3 L

FIG. 5. Ground-state energy per particle as a function of
x =kpc for the HCSW potential. Curves labeled [L/M](A)
refer to the L /M Padé approximants to the L + M partial sum
of the A series, Eq. (23). The curve labeled [0/0] refers to the
pure hard-sphere fluid using the [3/1] approximant of Ref. 24;
the solid curve is the experimental result (Ref. 30) for liquid *He
at zero absolute temperature.

12 833

[5/0),[6/0)~

0.15 0.2 0.25 0.3 0.35 3 0.4
po

FIG. 6. Ground-state QTPT energy per particle as a function
of pa® for the Aziz potential with BH decomposition. Here
0=2.556 A and p=k3/37%, Eq. (4). The solid curve stands for
the experimental results for liquid *He, and the circles are the
GFMC (computer-simulation) results.

sphere €4(x) discussed under global constraint (1) above
succeeded nicely in avoiding difficulty (b). Results for the
Aziz-BH case are shown in Fig. 6 where, in order to also
compare with the computer- (GFMC) simulation results
of Refs. 31 and 32, we change our density parameter
from x =(pa3)!’? to po>, where 0 =2.556 A. Perturba-
tion results through sixth order are given for the
attractive-coupling-constant A series (22), and are labeled
[n/0)(A) (n=1,2,...,6) in Fig. 6. Also displayed are
the GFMC data points listed in Table V,%? as well as the
experimental curve.’® Figure 7 displays the Aziz-WCA,
sixth-order QTPT results on an expanded scale. Agree-
ment with the GFMC and experimental results in both
energy and density in the saturation density region is
better with the WCA than with the BH decomposition.
We found that, at higher densities, the QTPT converged
results tend to have smaller curvature than the simula-
tion data—most probably a reflection of the inevitable

=232 1 imse. [6/0] 2/4]
S Seamaaooazas -}—--——--—_‘_—_
X [5/1] 1331’
E L
wi
~236 v __MUSIO®
GFMC AZIZ-WCA
-2.38 |
_2-4 1 1 L A J
0.265 0.27 0275 0.28 0285 0.29
po's

FIG. 7. Same as Fig. 6 but for the Aziz-WCA case and in an
expanded scale. The error bar for the GFMC results is 0.1 K.
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TABLE V. Results of fixed-node Green-function Monte Car-
lo calculations for 54 3He atoms interacting via the Aziz poten-
tial in a periodic box. All errors & are between 0.01 and 0.02
(0=2.556 A) [R. M. Panoff (private communication)].

3

po N (K)

0.200 —2.030+68
0.237 —2.300+8
0.273 —2.375+8
0.277 —2.375+8
0.300 —2.300+8
0.327 —2.050+8
0.377 —1.160+8

breakdown of the assumption made in dealing with the
series ey(x), where our Aziz interaction soft spheres have
been regarded as hard spheres of diameter a,. However,
this approximation should be adequate at lower densities
i3nc1uding, fortuitously, the saturation region of liquid
He.

The “smallness parameter’” which naturally emerges in
the QTPT for the description of a quantum liquid is A,
the strength of the attractive interatomic potential. Its
adequacy as a ‘“‘smallness parameter” at the equilibrium
density can be gauged from how small a “spread” will re-
sult at that density among the energy minima of all
sixth-order Padé approximations—[6/0], [5/1], [4/2],
[3/3], [2/4], and [1/5]—to the energy. If the [1/5] result
were ignored, this spread is substantially smaller than the
size as the GFMC uncertainty of §=+0.01 K.

V. RESULTS AND DISCUSSION

Using the g;(x) (i =1,2, ..., 6) extrapolants chosen ac-
cording to various physical constraints which follow from
thermodynamic perturbation theory, we first calculate
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the straight sixth-order perturbation A series of Eq. (22),
namely,

E _ 3#x?

= (x)[6/0](N),
N IOma%EOx[ 1)

(24)

and determine from this the saturation density p, and
binding energy (E /N), predicted for liquid *He. In Table
VI, we collect together the QTPT results at the satura-
tion energy-density point, and compare with laboratory
(expt.) and computer-simulation (GFMC) experiments, as
well as with the recent variational results®> based upon a
Jastrow trial wave function with substantial further
corrections to account for triplet, spin-dependent, and
backflow correlations. Also included in Table VI are
sound speed c¢ results which are a very stringent test of
the ground-state equation of state. The sound speed c is
defined through

me2=22 (25)
P
where m is the ‘He atomic mass [for which
#/m =16.085775 K A 2 (Ref. 16)], p is the number den-
sity, and the pressure P is given by
d(E/N)
P=p——=2

P 3 (26)
Since the QTPT expression (24) for E /N is an explicit
function of x, related to p through x =(37%p)!/3a,, which

comes from (4), (25), and (26), it then yields (in m/s)

1 9

13 | 4AE/N)
x2 dx

¢ =17.5021 ax

172
] @

Using MACSYMA computer algebra we evaluated this ex-
pression at the calculated saturation densities determined
for the HCSW, Aziz-BH, and Aziz-WCA cases.

TABLE VI. QTPT results for the density p, energy-per-particle E /N, and sound speed c, all at the
equilibrium minimum, compared with experimental liquid *He (expt), GFMC (fixed-node), and varia-
tional calculations. Percentage errors are against GFMC data.

Variational QTPT (present work)
Expt. GFMC calculation Aziz
Ref. 30 Refs. 31 and 32 Ref. 33 HCSW BH WCA
ps (A7 0.016 0.0163 0.0166 0.0097 0.0195 0.0166
E/N (K) —2.47 —2.37 —2.47 —0.7516 —3.172 —2.33
+0.01
¢ (m/s) 182.9 176.7% 185 118.1 173.2 150.8
PPomME 1109 9 1.5 40.6 19.9 1.5
PGFMC
E—E
= _O™ME 1100 % 4.2 68.3 33.8 1.7
EGFMC
¢ —CGFMC
— 100 % 4.7 33.2 2.0 14.7
CGFMC

?From Eq. (30).
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In order to compare with the GFMC result, we write*©

s i

E/N=Ey+ 3 a;
i=2

P~ Po
Po

> (28)

where, from (25) and (26), we can deduce that
a,=1mc?. (29)

First, we applied a least-squares method with the GFMC
data listed in Table V to extract E, and the a;
(i =2,3,4,5) of (28). Then (29) gives (in m/s)

corme=176.7 , (30)

which is the value cited in Table VI.

Lastly, as a convenient, though rough, comparison cri-
terion, percentage errors are given in the table which are
calculated against the corresponding GFMC central
figure. We see that, for the WCA decomposition of the
Aziz potential, the energy and density are both within
2% of the GFMC values as is the sound speed for the BH
decomposition. The results can probably be improved by
searching for a more suitable decomposition of the poten-
tial, perhaps intermediate between the BH and WCA
ones, as already proved!” to be the case for bosonic “He.

VI. CONCLUSIONS

Starting with the well-known, exact, low-density
equation-of-state series for a many-fermion system, we
rearrange the expansion into a double series (in density
and attractive coupling) which is appropriately termed a
quantum thermodynamic perturbation theory. Through
the application of Padé approximants, the low-density
terms in the perturbation expansion are extrapolated or-
der by order to higher (i.e., physical) density.

Not surprisingly, the hard-core-square-well potential is
too simple a model to yield reliable results. For the Aziz
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interatomic potential, on the other hand, the predicted
results are excellent both as regards saturation density
and binding energy, but moderately good for sound
speed, under the WCA potential decomposition, when
compared against the GFMC (computer-simulation)
data. On the other hand, for the BH potential decompo-
sition, although both energy and density predictions are
not as good as in the WCA case, the sound speed predic-
tion is excellent. We conclude, in general, that QTPT is a
convenient scheme to describe the ground-state equation
of state of the fermion liquid *He, as found previously® !°
for the bosonic liquid “He, but that, as in this latter case,
an optimum potential decomposition may lie intermedi-
ate between the BH and WCA extremes dealt with here.

The results of this study are based on a very simple,
inexpensive calculational scheme when compared with
other intricate, complex methods, either of the variation-
al or Monte Carlo kind—the latter, however, being used
as benchmarks against which we compare our results.
Finally, a “‘smallness parameter” emerges which is ap-
propriate for describing the quantum liquid state in terms
of a rapidly convergent scheme in a manner which explic-
itly avoids crossing gas-liquid phase boundaries.
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