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Bifurcation and chaos in a dc-driven long annular Josephson junction
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Simulations of long annular Josephson junctions in a static magnetic field show that in large re-
gions of bias current the system can exhibit a period-doubling bifurcation route to chaos. This is in
contrast to previously studied Josephson-junction systems where chaotic behavior has primarily
been observed in an external ac field.

Recently there has been some interest in the subject of
chaotic behavior of soliton motion in the perturbed sine-
Gordon system. ' This system has been used to de-
scribe many physical objects in one-dimensional prob-
lems, such as charge-density waves, dislocations in solids,
nonlinear spin waves in superAuid phases of He, fer-
romagnetic or antiferromagnetic systems, etc. In particu-
lar the perturbed sine-Gordon system has been successful
in explaining and predicting the behavior of Aux Aow in
long Josephson tunnel junctions (JTJ's). Studies of the
dynamics of magnetic Auxons in long Josephson junctions
coupled to external magnetic fields have been a subject
undergoing much progress in the past few years. The
modeling has mostly been done in terms of soliton solu-
tions to the perturbed sine-Gordon equation. In the case
of oscillating rf magnetic fields, studies have been made
to understand the phase-locking phenomena observed ex-
perimentally. ' ' In the case of constant dc magnetic
fields, work has been done to explain the so-called Fiske
steps in the dc current-voltage characteristics of long
linear JTJ's. '" In both cases the interaction between
the junction and the magnetic field has typically been
modeled as perturbations of the open boundary condi-
tions to the finite-size perturbed sine-Gordon system.
However, recently it was demonstrated that under some
circumstances this interaction could also take place in the
interior of the system. '

The aim of this paper is to demonstrate that the Auxon
motion in a junction, with annular geometry coupled to
an external dc magnetic field, can result in bifurcations
and chaotic motion. This is in close analogy with the re-
ported chaotic and intermittent behavior of the Fiske-
step mode. However, there are some significant
differences between the system studied here and the one
studied in Refs. 3 —5, since the annular geometry does not
provide any open boundary conditions through which the
external magnetic field can perturb the system. Also, the
Fiske-step mode of the long linear junction is character-
ized by an infinite sequence of annihilation and creation
of solitons, whereas the annular geometry junction fixes
the total number of solitons as a constant in time.

The perturbed sine-Gordon system studied here is
given by '

—P« —sin(P)=b, (B n)+a/,a

In order to fix the total number of solitons to one, the
boundary conditions for the annular geometry are chosen
to be

—P« —sin(P) =b sin(kx )+a/, —g, (3)

where b =BA2~/L and the wave number k =2~/L cor-
responds to the chosen length of the system. Defining the
total energy H of the system Eq. (3) as

H= f ( —,'P„+—,'P, + 1 cosP)dx, — (4)

we get the power input to the system as

= —a f P,dx+g f P,dx b f P, sin(kx )dx.—
dt 0 0 0

The soliton solution to the unperturbed sine-Gordon sys-

$(0)=p(L ) 27r. —

Here B is the normalized magnetic field, the normalized
flux density of the junction is p with orientation n,
where n is a unit vector, and 6 is the coupling between
the external field B and the flux density of the junction.
For a JTJ which consists of two superconductors separat-
ed by a thin insulating layer, P denotes the quantum-
mechanical phase difference between the wave functions
of the two superconductors, and the normalized space-
dependent voltage across the thin barrier is proportional
to P, . The normalized loss due to quasiparticle tunnel-

ing is given by aP, and the normalized bias current densi-

ty forced through the junction is given by g. The spatial
dimension (x) is normalized to the Josephson penetration
depth A,~ and the time dimension (t) is normalized to the
inverse plasma frequency co0

' of the junction.
If we consider the magnetic field as spatially homo-

geneous we get the following equation of motion from
Eq. (l):
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$=4tan '[exp[@(u)(x —xo u—t)]], (6)

where the instantaneous soliton position is xo, the veloci-
ty is u and the inverse Lorentz contraction is y(u)
=1/(1 —u )' . Using the adiabatic perturbation treat-
ment we insert the profile Eq. (6) in Eq. (4) and Eq. (5)
and get

H=8y(u)
GIH = —8au y(u) —2rrrlu
dt

2(1 i 2)1/2
+2vrub sech —sin(kxo).

(7)

As noted in Ref. 12 we can then find a zero-voltage state
(u =0) if

tern [left-hand side of Eq. (3)] with infinite length is given
by

in space. In Fig. 1(a) we show the calculated dc I V-curve
of the system. Initially the bias current g was chosen to
be zero. For r) very close to the value ~5il =0.279 of Eq.
(10) we find that the junction switches to a state with
finite voltage, roughly given by ( P, ) = 2m u /L, where u is
given by Eq. (12). Decreasing the bias current below the
value ~5g~ we stay on a finite-voltage branch of the I V-
curve until the system switches back to the zero-voltage
state at about g=0.073. However, a large part of the
shown curve consists of states much more complicated
than the behavior predicted by the adiabatic perturbation
results Eqs. (10)—(12). The two resonantlike steps visible
in Fig. 1(a) have their origin in the more detailed behav-
ior shown in Fig. 1(b). Here we have plotted the time of
Bight for the soliton to pass one time through the junc-
tion. Clearly, we observe a bifurcation cascade corre-
sponding to each of the two steps in the I-V curve Fig.
1(a). In both sequences of bifurcations Fig. 1(b) we find
hysteresis as indicated also in Fig. 1(a). To make sure we

.2
~i)~ &b sech sin(kxo). (9) 0.3 I I I I I

Hence, by variation of the soliton position xo we find the
largest possible bias current of a zero-voltage (-velocity)
state to be

0.2—
7T2

~5i)~ =b sech
L

(10)

In the low-velocity limit (u «1) we get the equation of
motion from Eq. (8)

d f dg vrrlk ~k
~5 ~

.
(~)

Gjt Ejt 4 4

where g=kxo. This is the equation of motion for the
damped and driven pendulum. The analogy between a
sma11 Josephson junction' without any spatial extension
and the annular long junction coupled to an external dc
magnetic field is now clear, since g corresponds to the
quantum-mechanical phase difference between the two
superconductors of a small junction with the critical
current ~5i) ~. However, in the high-velocity limit, Eq. (8)
reduces to

0.1—

—0.0
—0.0 0.5 1.0

Normalized average voltage

I I I I I I I I

dg ~iI/4a
dt [1+(~r)/4a) ]' (12)

which is equivalent to the power balance velocity of the
soliton in the long junction with no magnetic field.
Hence, the close analogy with the small junction is then
only true in the low-velocity limit, since the I-V charac-
teristics of the annular junction wi11 approach an almost
vertical asymptote, corresponding to the largest velocity
of the soliton (u =1), as the bias current is increased to
g=1. For bias currents g& 1, there will be no localized
2~ kink and the system will behave similarly to the small
junction. '

The results of the numerical solution of Eq. (3) are
shown for the system parameters L =6, a=0.075, and
b =0.75. The numerical method used is a finite-
difference scheme, second order in time and fourth order
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Normalized bias current g

FIG. 1. Solution of Eq. (3) under variation of the normalized
bias current g for the system with the normalized parameters:
a =0.075, b =0.75, and I.=6. (a) Part of the normalized dc I-V
curve. (b) Poincare-like plot showing the time of Aight for the
soliton to pass one time through the junction.
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have reached a steady state we have allowed the system a
transient time of 8000 normalized time units after each
change of 10 in the normalized bias g.

In Fig. 2 we show color contour plots of the normal-
ized magnetic (lux density P as a function of x and t for
three different values of the normalized bias current g.
The time axes are horizontal and cover a time interval of
200 normalized time units. The space axes are vertical,
covering the junction length of 6 normalized units. The
color code, indicating the value of P„,is shown to the
left, where the low value (black) corresponds to P„=—1

and the high value (yellow) to P, =5.
The bottom plot, Fig. 2(a), shows the system dynamics

for g=0. 115. Here we see the origin of the steplike
structure in the dc I-V curve Fig. 1. The soliton motion
through the junction is perturbed by the spatially oscillat-

ing background, and the soliton motion excites time-
dependent background modes, which are then interacting
with the soliton motion. Although we have a soliton (2m
kink) present at all times, this strong interaction between
soliton and background is very similar to the Fiske-step
mode in long linear junctions coupled to external magnet-
ic fields in which a soliton annihilation at one boundary
creates a plasma wave which then triggers a soliton
creation at the other boundary. Figure 2(b) shows the
system for g=0. 125. Here the period-two behavior is
visible as expected from Fig. 1(b). Increasing il further
the system passes through a period-doubling sequence
and for iI =0.135 we find [Fig. 2(c)j the system in chaotic
motion with irregular behavior of the soliton trace (red
and yellow) and the background. The bias value
r1=0. 135 is in the hysteresis region, seen in Fig. 1(a), and

(b)

(a)

FIG. 2. Contour plots of the normalized (lux density P as a function of space and time. The color code is shown to the left as a
vertical bar indicating the lowest value P„=—1 as black and the largest value P„=5as yellow. The parameters are as in Fig. 1. (a)
(bottom plot) Period one for g=0. 115. (b) (next to bottom plot) Period two for my=0. 125. (c) (next to top plot) Chaotic for g=0. 135.
(d) (top plot) Period one for g =0.135.
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any point in Fig. 2(d). This is, of course, compensated by
the very slow soliton motion (small P ) near x =L/2 in
Fig. 2(a), resulting in lower average velocity (average
voltage) than the state shown in Fig. 2(d). The steplike
structures and the bifurcation cascades leading to chaos
are caused by the interaction between the soliton mode
and some excited cavity modes, which act like a feedback
to the soliton mode. Hence we do not believe that this
kind of complicated behavior is present in the simplified
collective coordinate approach, which models the system
as a relativistic particle (the soliton) in a constant spatial-
ly periodic potential [Eq. (8)].

Finally we show in Fig. 3 the spectral power density
S(co) of the normalized (spatially averaged) voltage
V=L ' f oP, dx for the modes shown in Fig. 2. Figure
3(a) shows the spectrum of the period-one mode in Fig.
2(a) for r) =0. 115. The fundamental power contribution
at ~=co, =0.65 is seen and in addition three harmonics.
For g=0. 125 we find a considerable subharmonic gen-
eration at co= —,'co, corresponding to the bifurcated state
Fig. 2(b). Figures 3(c) and 3(d) show the spectra of the
two different modes for g=0. 135. Fig. 3(c) is clearly
representing the chaotic mode, since we observe a large
noise rise at all frequencies, whereas Fig. 3(d) represents
the periodic mode of Fig. 2(d).

The dynamical states in a long annular Josephson junc-
tion and a long linear junction have been found to be very
similar if the systems are coupled to an external static

magnetic field. In spite of the direct differences between
the Fiske-step mode in linear junctions and the type of
mode studied in this paper, we find that both systems are
able to make bifurcation cascades and to operate in
chaotic modes. Like the observations of the negative
dynamical resistance branch in the dc I-V curves, we ob-
serve a weak indication of negative dynamical resistance
in the bias region between q=0. 11 and g=0. 13 (the
negative resistance branch is more clear if a choice of
et=0. 1 is made). However, unlike the observations
done at the Fiske-step mode, we have been able to ob-
serve this feature in a nonchaotic and nonbifurcated
branch of states.

We finally note that long annular Josephson junctions
are well within current fabrication capabilities. '

Measurements have been made on these systems contain-
ing one or more solitons. The bifurcation and chaos phe-
nomena described in this paper should therefore be easy
to verify experimentally.
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