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The nuclear-spin-relaxation rate, 1/T&, in several of the heavy-fermion compounds has been mea-
sured. The temperature dependence of 1/T, clearly reflects the T dependence of the f-electron sus-

ceptibility, g, even though the experiments are performed on the non-f sites. A calculation is per-
formed using the slave-boson approach to the periodic Anderson model. It is shown that the f
electron susceptibility does indeed give the observed T dependence of 1/T, as well as that of the
neutron-scattering half-width. The fact that the conduction-electron relaxation rate reilects the f
electron susceptibility can be explained by including spin fIuctuations in our model. These have pre-
viously been largely ignored. We extend the calculation to the case of the noncubic Ce compounds
in which anisotropy is important. We show that the anisotropy of 1/T, does not reflect the magnet-
ic anisotropy of the f electrons. The Knight shift is also considered. The enhancement of K' is
seen to be approximately the same as for 1/( T& T)), but in this case the anisotropy of K is related to
that ofy .

I. INTRODUCTION

The properties of heavy-fermion compounds have been
investigated by a variety of experimental techniques. 12

Cerium and ytterbium compounds, in particular, have
been studied by neutron-scattering experiments. '

Neutron-scattering experiments provide important infor-
mation concerning the anomalous magnetic properties of
these compounds, indicating the presence of complex in-
commensurate magnetic correlations in, for example,
CeCu6 and CeRuzSi2.

Another dynamical technique which can be used to
help clarify the microscopic pI.cture is nuclear magnetic
resonance (NMR) and it is primarily this technique that
we consider here. The NMR relaxation rates, 1/TI, and
the Knight shifts, E, have been measured at the Al site in
CeA12 (Ref. 5) and YbCuA1, ' at the Si site in CeRu~Siz,
and at the Cu site in CeCu6, and finally at both the Cu
and Si sites in superconducting and nonsuperconducting
CeCu2Si2. ' " At very low temperatures, the relaxation
rate 1/T, varies linearly with temperature up to a tern-
perature T, which is equal to 0.2 K in CeCu6, roughly
5 K in CeCu2Siz, ' and 8 K in CeRuzSi2. Thus, below
T*, 1/TI follows the Korringa law but with the value of
I/Ti T showing an extremely large enhancement. For
example, the value of 1/(T, T) as T~O is equal to 88
(sec K) ' in CeCu6, roughly 5 (sec K) ' in CeCuzSi2, '

and 1 (sec K) ' in CeRu2Si2, which can be compared
with the values 0.025 (sec K) ' in LaCu~Siz (Ref. 10) and
0.014 (sec K) ' in LaRu2Si2. As T is increased, 1/TI T
becomes temperature dependent, with 1/TI reaching a
plateau for T- T~, where T~ is the Kondo temperature.
At still higher temperatures, there is a slow decrease with
increasing temperature. It follows that 1/( T, T) de-
creases very rapidly with increasing temperature in all
these compounds. The low-temperature increase of 1/Ti
also occurs in CeA12, which orders antiferromagnetically

at T&=3.9 K. 1/Ti continues to increase above the
transition temperature, with no anomaly at T&.

Moreover, the relaxation rate and the Knight shift of
the tetragonal compound CeRuzSi2 have been found to be
clearly anisotropic. Kitaoka et al. have measured the

Si spin-lattice-relaxation rates 1/T&~I and 1/T» for an
applied field perpendicular and parallel, respectively, to
the c axis. I /TI~ is about three times larger than I /TI~~.
Both increase linearly with increasing temperature up to
10 K then remain approximately constant at higher tem-
peratures. The Knight shift E shows a large anisotropy,
with the ratio K~~/K~ of the Knight shifts parallel and
perpendicular to the c axis equal to 30 at 4.2 K. This is
comparable to the anisotropy of the magnetic susceptibil-
ity p~~/pz 15 at 4 2 K ~ K~~ ~ho~~ a maximum ~round 12
K followed by a rapid decrease, while Ez is almost tem-
perature independent. In the case of CeCuzSiz, a very
small anisotropy has been observed for the relaxation
rate.

The temperature dependence and the enhancement of
I /TI clearly rejects the f-electron susceptibility despite
the fact that the experiments are performed at the non-f
sites. The anisotropy, however, is much smaller than
would be expected for the f electrons. In contrast, both
the temperature dependence and the anisotropy of the
Knight shift seem to be related to the f-electron suscepti-
bility. The NMR experiments, therefore, yield important
information not only about the f electrons but also about
the relation between f and conduction- (c)-ele-ctron sites.
A model based on spin fluctuations has previously been
used to account for the temperature dependence of the
neutron-scattering quasielastic linewidth and the NMR
relaxation rate measured at the Si site in CeCu2Si2 or at
the Al site in CeAlz. ' In this model, the half-width I of
the neutron quasielastic line is connected to the 4f sus-
ceptibility on the Ce atom enhanced by spin ftuctua-
tions, ' while the relaxation rate 1/T, on the noncerium
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site measures the s-electron generalized susceptibility
which is indirectly enhanced by the 4f electrons via the
s fex-change interaction. '

In the present paper, we consider the nuclear relaxa-
tion and the Knight shift by using the slave-boson ap-
proach to the periodic Anderson model, ' which is ap-
propriate to describe the low-T properties of the heavy-
fermion compounds. We start by considering the energy-
and k-dependent susceptibility of the f electrons yf(k, to).
Relating this to 1/T, in the usual way, we can calculate
the T dependence of the relaxation rate for the f sites,
1/T&. It is found that this is in qualitative agreement
with experiment. Assuming that the susceptibility de-
scribes a Lorentzian at low co, we can also use 1/Tf to-
gether with g (0,0), to calculate the neutron-scattering
half-width. Again, this has the correct qualitative behav-
ior. We generalize to the case where crystal-field splitting
is included as is relevant for the noncubic Ce compounds.
This produces an anisotropy in 1/T, . We show that the
Korringa relation is approximately obeyed in each mag-
netic channel and in the case where one channel dom-
inates, the anisotropy of 1/Tf is approximately equal to
that of the magnetic susceptibility.

We consider next the connection between the c- and f
electron susceptibilities to produce a relation between
1/T& on the c sites and 1/T, . At the mean-field level,
the conduction-electron susceptibility is largely
unaffected by the presence of the f electrons and the ob-
served temperature dependence is not found. Including
corrections O(1/N), where N is the f-electron degenera-
cy, also produces no simple relation between 1/T, and

In order to account for the observed properties, we
need to include spin fluctuations which do not appear in
the model until we go at least to order 1/N . The impor-
tance of spin fluctuations in the heavy-fermion com-
pounds has already been suggested by Doniach' and
Houghton et al. ' although, in general, they have largely
been ignored. Following Doniach, ' we perform a ladder
summation to obtain a Stoner susceptibility in which the
"bare" susceptibilities are those coming from the mean-
field quasiparticle bands. The calculation now becomes
somewhat analogous to that of Jullien and Coqblin' for
describing NMR experiments on nearly magnetic ions in
metallic hosts, and it is shown that 1/T, is straightfor-
wardly related to 1/T, . We consider again the problem
of the anisotropy. By using a realistic model in which the
c electrons have spin +—,

' as opposed to the "spin-X"
model frequently used, we show that the anisotropy of
1/T, is not reflected in the relaxation on the c-electron
sites and the only anisotropy comes from the anisotropic
hyperfine constants.

Finally, we calculate the Knight shift K. It is shown
that E has approximately the same enhancement as
1/T& T and the anisotropy is directly related to the mag-
netic anisotropy of the f electrons. These theoretical re-
sults are successfully compared with the experimental
data in the heavy-fermion compounds.

II. RELAXATION ON THE f SITES
The nuclear relaxation rate is related to the susceptibil-

ity g(q, co) in the following way:

1
=2@„king[A„t(q)] lim

1 q
co~0

Imp(q, co ) (2.1)

In this section, we consider this quantity calculated for
the f electrons and postpone the discussion of how this is
related to NMR on the c sites until Sec. III. Within the
slave-boson approach to the periodic Anderson model,
the effective Hamiltonian is written'

2 Ekckmckm + Xsffm f'
k, m j,m

+ g (Ve ' c„ f1 +H. c. )+iA(p —1),
k, j,m

(2.2)

where V=p V and cf =EO+i A, . p and i A, are the mean-
field parameters which are determined by minimizing the
free energy. This gives p'=1 —nf, where nf is the mean

f valence. Ef —Tz gives the energy scale for the system.
We have used the "spin-N" model where both the f and c
electrons are characterized by an N-fold degenerate spin-
quantum number m. The theory then develops as an ex-
pansion in 1/N.

The magnetic susceptibility is defined as

g '(q, t)= (T,[S '(q, t)S '( —
q, 0)]), (2.3)

where

Sf'(q)= X &' fk fk+, ,

k, m, m'
(2.4)

with similar expressions for the c electrons. e'
= ( m

~ p, m ' ), where i is the direction of the magnetic
field and p, is the magnetic moment along the i axis.
With use of the mean-field Hamiltonian (2.2), the f
electron susceptibility is given by

g (q, co)=pop 6 (k+q, co+v)Gf(k, v), (2.5)

where 6 (k, v) is the f-electron Green function,

Gf(k, v) = 1

v —Ef —V /(v —Ek)

A+(k) A (k)+
v E(k) v E+—(k)—(2.6)

E+ (k) are the quasiparticle bands given by

E+(k) =
—,
'

I sk+Ef+[(sk —Ef ) +4V ]' (2.7)

and A+(k) are the f electron weights in the bands

1A+k= —1+
E+ (k) E(k)—(2.8)

go=ps+ m is the magnetic moment.
We start by considering the case with N=2. Using

where Ah&(q) is the spatial Fourier transform of the
hyperfine field from the magnetic ion at R,", Aht(R, &).
We neglect the q dependence of A ht(q) and consider

g lim [Imp(q, co)/co] .
q

co~0
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the above expression for G (k, v) in (2.6), we find a num-
ber of terms which contribute to the susceptibility: intra-
band terms for the lower and upper bands and interband
terms between the two bands. Since 1/T, involves the

imaginary part as co—+0, there will be no contribution
from the interband terms which describe excitation
across the hybridization gap. The contribution from the
lower band can be written

f(E (k)) —f(E (0+q))
Imgf(q, co) =1m+ A+ (k) A+ (k +q)

k e E—k+q+E k
=sr+A+�

(k) A+(k +q)[f(E (k)) —f(E (k +q) )]5(e—E (k +q)+E (k)),
k

(2.9)

where y =y /po. Using the free-electron approxima-
tion

lim Im
f(,~)

co—+0 CO

2

)
0(2k —q)

kq
(2.10)

where po is the conduction-electron density of states, as-
sumed to be constant. We can now perform the sum over
q and obtain

Imp f(q, co)
lim
N~O CO

2

=capo J dE — f'(E ),

(2.1 1)

where it can be shown that

A+/A = V /(E —ef)

At T=O this is easily evaluated and comparison with

gf (0,0) shows that the Korringa relation is obeyed, i.e. ,

ck + q E'k +q /2 +qk cosO

we can integrate over the angle 0 between k and q. Also
taking the limit as ~~0, we find

1/T, T-1/T to take place over a temperature range—Tz. We need to also include the T dependence of the
mean-field parameters cf and nf. Here we encounter a
problem. The mean-field solution has an artificial phase
transition at a temperature T, at which point nf =1. It
can be shown that as nf~l, 1/T, T-1/V and so
diverges. If, however, we suppress the temperature
dependence of nf by allowing for the temperature depen-
dence of p, the Fermi level, T, is pushed to high tempera-
tures and we obtain sensible results around TI . '

The low-temperature behavior found using this pro-
cedure is shown in Fig. 1. The peak found at low T de-
pends sensitively on the filling factor x, where x, the
number of electrons in the band, is between 0 and 2. This
nonuniversal behavior can be contrasted with the suscep-
tibility where g varies little with x. This is interesting in
view of the fact that, experimentally, the temperature T*
at which 1/T, T ceases to be constant varies greatly from
compound to compound, e.g. , T*=0.03T& for CeCu6
(Ref. 9) compared to T*-0.7' for CeRuzSiz. Experi-
mentally there is no evidence for a low-temperature peak.
We note, however, that the peak arises from a very small
positive curvature in 1/T„which may not be clear ex-
perimentally. At higher temperatures, 1/T, saturates as
shown on the curve plotted in Fig. 2 for x =1.5 (J =0).

g lim ' =ng[f(0,0)]Imp f(q, co)

CO~0 CO
q

(2.12)

whereof(0, 0)=poV /Ef.
It follows that the low-temperature value of 1/(T& T),

I/(Ti T)o is given by

1.0-

1

(T, T) 0

2
m

27n kB ~ hf Po m
(2.13)

05-
Thus, the enhancement of 1/( T, T)0 is given by the
square of the heavy-fermion effective mass, just as the
enhancement of the T term in the low-temperature resis-
tivity.

The calculation can be extended numerically to finite
temperatures. Terms from the upper band also need to
be included. These are given by (2.11) with E ~E+.
At high temperatures we expect 1/T, T-1/T and, as the
characteristic temperature scale in the problem is Tz, we
expect the crossover from 1/T, T =const to

0.2 l
Og

T„

FIG. 1. (T, T)0/T& T against T/T& at low temperatures for
x = 1.2, 1.5, and 1.8, where ( T& T)o is the zero-temperature limit
of T, T.
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„=0.6

.2

resistivity' and the magnetic field susceptibility. The
f-level degeneracy, originally 6, is split and we have three
doublets with renormalized energies cof E]f cpf +6],
and c2f cof+A2, where 6i and h2 are the crystal-field
splittings. Within the mean-field approximation, we get
six hybridized subbands, E„+,where n =0, 1, and 2 runs
over the three doublets. The susceptibility is now given
by

0 2'

= g ~a' ~~f/ .(q, co),
m, m'

(2.14)

FIG. 2. 1/y J,&T, against T/T& for J,~=O, 0.2, 0.4, and 0.6
with y=2y„k~ 3 &&.

While the value at which it saturates depends on x, the
temperature at which it does so is roughly Tz in all cases.
Thus, the present theoretical model accounts fairly well
for the experimental results in heavy-fermion compounds
and, in particular, for the low-temperature Korringa be-
havior with an enormous value of 1/( Ti T)0 and the satu-
ration of 1/T& above Tz.

Let us now consider the problem of the relaxation rate
in noncubic cerium compounds. In this case, crystal-field
eft'ects are important as previously established for the

.(q, co)=g G/(k+q, co+v)G/ (k, v) .
k, v

(2.15)

G/ is given by (2.6) with E+~E +. m is here defined as
an eigenstate of the crystal field.

When we look at the relaxation as T~O, we find that
there are both intraband and interband terms. For the
intraband terms we can easily generalize from (2.12) to
obtain

g lim
q

co~o

Imp / (q, co)
(2.16)

Since the field mixes terms with m and m', we need also
to consider terms coming from g .. The calculation
proceeds in a similar way as before, giving

Imp/, (q, co) p 2 p 2

=vrpo JdE f'(E )
(E —c, &) (E —c. &)

O(E (k) —E . (k+q, —l))O(E (k+q, +1) E(k))—
kq

(2.17)

where E (k +q, +1)=E (k +q, cos8=+ I). In gen-
eral, it is difficult to perform the sum over q due to the 0
functions. At T=O, however, the expression simplifies
and we find

g lim
q

CO~0

Imp/, (q, co) 2=&Q,Pp-
~mf ~m'f

(2.18)

where a is a constant between 0.5 and 1 which depends
on the crystal-field splitting. Calculating the analogous
terms in y/ .(0,0), we find

p 2

y/, (0,0)-
emf Em'f

where the corrections are of order (Ink)/6 for large
crystal-field splitting. Then, approximately,

1
=2y„k~ g2 A hei lim

TfT P2

Q7~Q
. II

Imp/i( q, co )
(2.20)

1 =2y „kag A
hi~~

lim
TfT

q
co~0

+ 9 h~qlim
Cc) —+ Q

Imp/i( q, co )

(2.21)

To a reasonable accuracy, therefore, we obtain the result
that the Korringa relation works for each term in the
summation over m and m '.

We can then relate Imp parallel and perpendicular to
the c axis to I /T/iT measured parallel and perpendicular
to the c axis in the following way:

g lim
cg) ~Q

Imp/ .(q, co)
(2.19) where g~=y =y and g~t=y'. In general, there is no

simple relation between the total susceptibility and the
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relaxation. In many cases, however, the low-T suscepti-
bility is dominated by a single term and, in this case, the
Korringa relation mill work. Calculating, for example,
the anisotropy of 1/Ti T using the experimentally de-
duced parameters for the crystal-field levels in

CeRuzSiz, ' we find
r

g lim Imp(/co
Ccj —+0 J

- =13,g lim (Imp/i/n~)
co~0

and, so if we take the Ah&'s as being equal, we find

(TiT)i '

7

compared with g~~(0)/yt(0)=11. ' The calculation can
also be extended to finite temperatures. With the same
parameters we find that the shape of both I/T,

~~

and
I /T, t is roughly the same as that found in Fig. 1 for
J,&=0. Up to T of the order of 1.5' the anisotropy
varies very little from its value at T=O and above this
temperature the anisotropy decreases rapidly as shown in
Fig. 3, where we have plotted both T/i~~~/T, t and

y~~ /gt as
a function of T/Tz. The crystal-field levels lie at approx-
imately 10' and 50' above the ground-state doublet.
We see in Fig. 3 that ihe ratio T

&~~
/T1y is still larger than

1 for T=25T~. This corresponds to T=O. Shz and so
we are not yet in the region T &)4z, where we expect the
anisotropy to disappear. The disappearance of the an-
isotropy at very high temperatures has been checked by
the classical perturbation-theory calculation at tempera-
tures high compared with Tz within the simple method
previously used to derive the resistivity. ' We have cal-
culated the relaxation rate of the doublet ground state in
a noncubic cerium Kondo alloy or compound within the
perturbation theory up to third order in the exchange in-
tegrals of the Coqblin-SchrieAer Hamiltonian with

crystal-field effects as previously done for Au Yb (Ref. 22)
alloys and we have shown that there is no anisotropy in
the relaxation rate in contrast to the case of the resistivi-

19

Thus, the consideration of the relaxation rate directly
measured on the f site can yield a very large theoretical
anisotropy at low temperatures, which disagrees with the
experimental data in CeRuzSiz. In Sec. III we will obtain
much better agreement with experiment by considering
that the relaxation rate is really measured at the Si site
and not directly at the Ce site in these compounds.

It is also interesting to consider the neutron-scattering
half-width I . Experimentally it is found that the data
are reasonably well fitted with a Lorentzian for the imagi-
nary part of the susceptibility. We assume that

g/(q, co) I
qIm ' =g(q0)—

I +n (2.22)

This form is also found approximately from the slave-
boson technique for small Fermi surfaces. It is then
easily shown that

g/(q, 0)
lim [Imp /(q, ni)/co]

(2.23)

2' T
~k~

(2.24)

This is just the result found by Lopes et al. ' for the
small-q limit, with X =2, in a spin-fluctuation model,
with T~ replaced by TsF, the spin-fluctuation tempera-
ture. The temperature dependence of I has been calcu-
lated and a typical curve is shown in Fig. 4: the half-
width starts from the finite value given by (2.24) and after
a small initial decrease it increases slowly with a negative
curvature and almost saturates at higher temperatures.
The curve shown in Fig. 4 has the typical shape of the
neutron quasielastic linewidth observed experimentally in

For small q and ai we can approximate g(q, 0) =g(0, 0);
then, using (2.11), we find, at T =0,

3,'„=0.6

p4
P.2
0

I

2Q p

FIG. 3. T,
~~

/T„and y(~/y/, against T/T» Parameters are.
as for CeRu2Si2.

FIG 4 I
q /I 0 against T/T& for Jeff Op 0 2& 0 4p aIld 0 6p

~here I o is the zero T value of I .
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many cerium compounds ' ' and, for example, in CeCu6
(Ref. 4) and CeRu2Si2. In particular, it is experimental-
ly observed that the very low-temperature value of the
half-width has a finite value proportional to Tz and the
half-width increases slowly with increasing temperature
as theoretically derived here. We will go back to this
problem in Sec. III where a better agreement with exper-
iment will be obtained at high temperatures.

g lim Im
co~0

X sv(l ~)
J~f 'g lim ( Imff/co )

co~0

[1—J~X'(0, 0)X (0,0)]

ceptibility and neglecting the q dependence of

Re[ X'(9 0)X (9 o)]

we obtain

(3.2)
III. SPIN FLUCTUATIONS

(5p(k, co)5p( —k, co) )

by its high-frequency value 1/iA, =1/Eo, where Eo is the
bare f-electron energy The oth. er boson propagators are
zero in the same limit. ' In the Kondo limit, we can
evaluate the ladder diagrams shown in Fig. 5, looking
again at the case where N =2. The c-electron susceptibil-
ity including spin fluctuations, gs„, becomes

gc( )
X '(,~)

1 —J~g '(q, co)g f(q, co)
(3.1)

where J = V /Eo. Taking the imaginary part of the sus-

The temperature dependence of the f-electron suscep-
tibility appears to account reasonably well for the ob-
served relaxation rate but not for the observed anisotropy
and we will now try to improve the preceding model. We
need to consider how the NMR on the c sites is related to
yf. We note that, if we simply use the mean-field suscep-
tibility for c, g', we neither get the correct temperature
dependence nor the enhancement for T~O. We need to
include the fluctuations in the boson propagators. To or-
der 1/N this does not produce a simple relation between
y' and g and we need to go at least to order 1/N where
spin Auctuations begin to play a role. In the mean-field
approximation we have replaced the amplitude and phase
of the boson propagator, p(k, co) and A, (k, co), respectively,
by their average values. Following Doniach' we neglect
the Auctuations of the phase and consider only the in-
teraction

II, = g V5p(k —k')cjt fq +H. c.
k, k'

We also approximate the boson propagator

We have neglected Imp ' compared with J y 'Imp
which implies ( Jpam */m ) ))1. We note that if the sys-
tem has ferromagnetic fluctuations, i.e.,

j'(0,0)jf(0,0) )g'(2k~, O)gf(2k~, O),

then, in neglecting the q dependence of the denominator,
we are overestimating 1/T, T, while in the opposite case
of antiferromagnetic fluctuations

y '(0, 0)g f(0,0) &g '(2k~, O)g f(2k~, O),

we underestimate 1/T, T.
We find that 1/T, T as measured on the c sites is

indeed related to the susceptibility of the f sites. If we
look at the order of magnitude of the experimental value
of 1/T, T for CeRu2Si2 compared with that for LaRu2Si2,
we find that the former is enhanced by a factor
—50—100, which can be compared with a mass enhance-
ment also —50—100. The enhancement is not then near-
ly as large as it would be if NMR were performed at the f
sites. If we have J porn*/I —1, then the above model
correctly accounts for the observed enhancement. Using
the results calculated at finite temperature, we can plot
1/(J,sT, ) for diff'erent values of J,s=J pam*/m, where
it is convenient to treat J,~ as an independent parameter.
The results are shown in Fig. 2. From (3.2), the case
J,~=O corresponds to the case studied in Sec. II. For
small J,z, we find a broad maximum at about T~, which
corresponds approximately to the experimental situation.
As J,z increases, the maximum becomes more pro-
nounced and moves to lower T.

We again consider the problem of the magnetic aniso-
tropy arising from the crystal-field eff'ects. In this case,
we can no longer use the "spin-N" approach used above
where it is assumed that the conduction electrons have
the same spin as the f electrons. This approach would
imply that the factors a' ~ occurring in the expression
for the f-electron susceptibility (2.14), also occur in that
for the c-electron susceptibility. This would produce a
large anisotropy in g' which is not realistic. It is impor-
tant then to consider the real case where the c electrons
have spin +—,'. Following Zou and Anderson, the hy-
bridization term is given by

e&p Spy
k, o.,j,m

[V (k)e ' cz f~ +H. c. ] . (3.3)

g+q y

FIG. 5. The ladder diagram contributing to g ' „, (q, co).

The hybridization matrix element is of the form

(k ) = V'0 Y3 (k ) ( 3lm —o, —,
' o

~
—,
' m ),

where Y3 (k) is the spherical harmonic for l =3 and
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1/2

(3lm o—, ,'. cr—~—', m ) =(4~)'„z 7 —4om

(3.4)

where n =0, I, and 2 runs over the three f-electron dou-
blets. The expression for y' now involves

S"(q)= g a' c (k)c (k+q),
k, a, g'

(3.&)

where a' .= (a ~]M'~o'). The ladder summation becomes
more complicated as the interaction now depends on k
and the terms cannot, in general, be factorized to give the
Stoner susceptibility. If, however, we assume the c-
electron Green function does not depend sensitively on
the direction of k, we can average over direction and sum
the diagrams shown in Fig. 6 and obtain

(3.6)

nn'

where g„,. ~ is defined in terms of G„, the Fourier
transform of ((f„;f„)). It is easily seen that
G' =G' and G„=G, and it is therefore clear that
the only place where the direction of h plays a role is in
the terms a ~ which, for the spin —,

' considered here, are
isotropic. We note that this is independent of the ap-
proximation in which we have averaged over direction
for the hybridization matrix elements. It appears then
that the relaxation rate does not reAect the magnetic an-
isotropy of the f electrons. The only anisotropy comes
from the anisotropy of the hyperfine constants. To ob-
tain Ai, &

we need to know the relation between the
Knight shift and the susceptibility which we consider in
the next section.

Finally, we compute the half-width I of the neutron-

is the Clebsch-Gordan coeKcient for spin-orbit-coupled
states with j =

—,
' and 3 =3.

For simplicity we consider the case where the crystal-
field levels are eigenstates of p, . It is convenient to define
linear combinations off and f which hybridize with
the conduction electrons of a given spin,

1
no p 2 ]/p ( ma&m —mlTf —m )&(V+V)

scattering quasielastic line using (2.22), but with g re-
placed by gsF

gf( )
X ~( ~)

I —J'X'($~)x (9 ~)
(3.7)

IV. THE KNIGHT SHIFT

When we then apply an external magnetic field, the
spin susceptibility of the conduction electrons produces a
small magnetic field at the nucleus which adds to the ap-
plied field. It is this that gives rise to the "Knight shift. "
The Knight shift can be calculated as

(0)l')Xk,
k

(4. l)

where uk (0) is the conduction-electron wave function
evaluated at the nucleus and gk =mk/h, where mk is the
magnetic moment for a particular k state. Since yk is

strongly peaked at the Fermi level, we can, in general,
factorize this expression to obtain

~hf( l~k(0)~ )FSXXk ~hf( ~~k(0) )FSX
k

(4.2)

where the conduction-electron wave function is now
averaged over the Fermi surface (FS). It has been ar-
gued' that, for the heavy-fermion compounds, K will not
be enhanced since g-m*/m, but the c-electron weight
at the Fermi surface is —m /m ' giving K —1. The in-

The results are shown in Fig. 4 for different values of J,z.
For low temperatures, the behavior is approximately in-
dependent of J,~, but as the temperature increases, 1" in-
creases more rapidly for the larger values of J,z. This
smaller tendency to saturation appears to be in better
agreement with experimental data given by neutron
scattering in cerium Kondo compounds.

In conclusion, the consideration of the relaxation at
the non-f sites does not greatly modify the temperature
dependence of the relaxation rate and the quasielastic
linewidth, but it drastically changes the anisotropy of the
relaxation rate which disappears completely in the
present model. This appears to be in qualitative agree-
ment with experiment, since the observed anisotropy of
1/T, in CeRu2Si2 is much smaller than that observed in
the magnetic susceptibility.

V„(~)

G'

k V~ ~ ~~ ~ e +y ~ ~ ~ ~

Gfc

w~p ~p& gbp Bp&g

k+q V„..(~+~) tl'

FIG-. 6. The ladder diagram contributing to g ' (q, co).

~~
k+q V

FIG. 7. The ladder diagram contributing to y~ (q, co) to or-
der J.
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elusion of spin fluctuations would appear not to alter this
argument as we may expect simply to replace g by ysF in
(4.2). In fact, we shall show that this is false and by in-
cluding spin fluctuations we find the expected enhance-

ment. The error arises from the fact that we have two
quasiparticle bands and the c-electron weight is not the
same in the two bands. To first order in J we have terms
arising from the diagrams shown in Fig. 7. This gives us

I'&& li i, I'&G/'(&)G/'(&+q)g G/(&')G/ (&'+q)=~ '&& I~i, (0)l'&Fsy~' i, (q) 'X/ (q), (4.3)
k' k

where G/' is the Fourier transform of « fi, , ci, ». The
intraband contribution to g ' is -po leading to a contri-
bution to K which is —1. However, there is an interband
contribution to y ', which is also -po. The c-electron
weight in the upper band is —1 and we obtain a term
Jp~/. These terms are then renormalized by higher-
order spin fluctuations to give

(4.4)

2

—2y k~C
fll

(4.5)

where C/~~ and C, are the Curie constants for the f elec-
trons, as measured parallel to the c axis, and the conduc-
tion electrons, respectively. Taking the value
C/~~=(1. 29pi, ) used by Kitaoka et al. , C, =p~ and the
experimental value of All gives us a calculated value of
1/(T, T)i=1.5 (sec K) ', compared with the experimen-
tal value of 1 (sec K) '. We note that our calculated
value is smaller than that calculated by Kitaoka et al.
They used the f-electron susceptibility directly and the
results diffe~ by a facto~ Cfll/C, .

The Korringa law is approximately the same even when
the NMR experiments are performed at the c sites and
K has the same enhancement as 1/T, T. We can gen-
eralize to the case where we have anisotropy and see that,
unlike the relaxation rate, K does reAect the anisotropy of
the f-electron susceptibility even when NMR experi-
ments are performed on the c sites. Thus, we can obtain
a large anisotropy for K, as for the magnetic susceptibili-
ty. Since the Knight shift is proportional to the hyperfine
coupling constant Ah&, the difference between the ob-
served ants«ropies Kii/Ki 30 and y~i/y, =15 fo«he
Knight shift and the magnetic susceptibility of CeRu2Si2
can be accounted for by taking a value of 2 for the aniso-
tropy of Ah& which, in turn, gives an anisotropy of -2.5
for 1/( T, T), in good agreement with experiment.

Our calculation relates 1/(T, T) and K to g and the
hyperfine constant Ah&. Thus, we now have a way of
computing the theoretical value of 1/( T, T) for CeRuzSiz,
without involving Ah&. We find

V. CONCLUSION

We have seen that the calculated temperature depen-
dence of the f-electron magnetic susceptibility can ac-
count qualitatively for the observed temperature depen-
dence of the relaxation rate in NMR experiments. In or-
der for the f-electron susceptibility to control 1/T, mea-
sured on the non-f sites, it is important to include spin
Auctuations in our theory. In this case, 1/T, is indeed
directly related to g with a new feature, namely a broad
maximum in 1/Ti, also appearing. The model can also
account for the very large enhancement observed in
1 /Ti T as T~0. The Knight shift is also shown to be
enhanced in agreement with experiment where it is seen
that the Korringa relation is approximately correct im-
plying K must have the same enhancement as 1/Ti T. It
is seen that 1/T, T measured along and perpendicular to
the c axis does not reAect the magnetic anisotropy of the
f sites. In contrast, the anisotropy of K is proportional to
that of y. By comparing the anisotropy of E with that of

we can therefore deduce the anisotropy of the
hyperfine constant and hence calculate the anisotropy of
1/(T, T). This procedure has been applied to CeRuzSiz
giving good agreement with experiment. There is, there-
fore no need to account for a further anisotropy in
1/( T, T) coming from the f-electron susceptibility. Fi-
nally, we note that the calculated value of 1/T, T is a fac-
tor 1.5 bigger than that measured experimentally. It is
possible that this rejects the presence of ferromagnetic
correlations. Experimentally, neutron scattering indi-
cates the presence of incommensurate magnetic correla-
tions in zero magnetic field which are destroyed as a field
is turned on. Since NMR experiments are performed in
an applied field, it is possible that this is the correct inter-
pretation of our result. In fact, there appear to be other
shortcomings of the calculation (for example, using the
free-electron approximation) and it is difficult to draw
conclusions from such a small factor. The fact that our
model appears to account so well for the observed experi-
mental results appears to be direct evidence for the im-
portance of spin Auctuations in these systems.
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