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It is shown that quadrupolar perturbed nuclear magnetic resonance (NMR) is a powerful method
to investigate the quadrupolar glasses Na(CN) Cll „and Na„K, ,CN. In both systems at the
sodium and chlorine sites, distributions of electric-field-gradient tensors occur which are restricted
by the fact that the average structure of the systems under investigation is cubic. Correspondingly,
inhomogeneous distributions of NMR lines result, which for I = —' nuclear-spin systems consist of
inhomogeneously broadened central lines and broad distributions of satellite lines. Measurements
of these frequency distributions and their dependences on the composition, the orientation, and the
temperature of the samples are presented. The widths of the electric-field-gradient-tensor distribu-
tions are related in a general quadrupolar glass model to the quadrupolar Edwards-Anderson order
parameter qEA. As a consequence, the temperature dependence of q« is derived, reflecting the ran-
dom orientational freeze-out of the CN quadrupoles with decreasing temperature. By interpreting
the results in terms of theoretical models, it is shown that in the mixed cyanides we deal with a
smearing of a collective quadrupolar glass transition by weak random fields and not with a pure
random-field-type freezing or a pure random-bond-type glass transition. The results are compared
to those obtained from other experimental methods. In particular, the critical elastic behavior of
these systems is discussed in a general context.

I. INTRODUCTION

Several insulating mixed systems containing molecular
groups show a glassy behavior at low temperatures over a
certain range of composition. Well-known examples
which have been thoroughly investigated by various ex-
perimental methods in recent years are the dipolar glasses
Rb (NH4), H2POz (RADP) (Refs. l and 2) and
KTa03.Li (Ref. 3) and the quadrupolar glasses of the
types M(CN)„X, „(Refs. 4—7) and M M', CN, s

where X is a halide ion and M and M' denote alkali-metal
ions. The great interest which has been devoted particu-
larly to the latter systems is caused by the fact that they
show, in certain concentration ranges, a great variety of
structural phase transitions, whereas for other concentra-
tion ranges they are considered as model systems for qua-
drupolar (or "orientational") glasses. These difFerent
features are brought about by the dumbbell-shaped CN
ions forming elastic quadrupoles, whose strain-mediated
interactions determine the anomalous static and dynamic
properties.

Quadrupolar glasses' ' may form a conceptual link
between spin glasses' —where, for certain models, exact
solutions' ' exist demonstrating a phase transition to
another thermodynamic state —and conventional glasses
which are much less understood and whose behavior is

generally believed' ' to be dominated by metastable
states. The quadrupolar glasses of the type discussed
here are characterized by a random orientational freeze-
out of the molecular quadrupoles, i.e., the dumbbell-
shaped CN groups in the mixed cyanides, ' without
any head-tail (i.e., dipolar) ordering. This is to be com-
pared with the random head-tail freeze-out of the Ising
spins in a classical spin glass. In both cases, the freeze-
out is driven by randomly frustrated competing interac-
tions. The quadrupolar glass, however, is more subtle
and more complex. In spin glasses the competing in-
teractions are individually deterministic, i.e., each indivi-
dual interaction demands a unique —ferromagnetic or
antiferromagnetic —ordering of the spins it connects. In
quadrupolar glasses, on the other hand, the interactions
are not equally definite and permit a greater variety of
choices. Thus, the pattern of orientations which the axes
of the CN dumbbells take at low temperatures is princi-
pally, i.e. , even in an ideal mixed system, not uniquely
determined and rejects the inhuence of frustration and
disorder on the transition to the glass state. Another im-
portant feature is the dominating coupling of the orienta-
tional degrees of freedom of the CN molecules to elastic
lattice waves' ' giving rise to an enormous softening of
the elastic shear modulus c44 (Refs. 7 and 25 —29)
reAecting —at least in certain concentration ranges —the
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collective properties of the transition to the glass state.
Moreover, the substitutional disorder results in local ran-
dom strain fields at the sites of the CN molecules. Analo-
gous effects are unimportant in magnetic spin glasses.

As model systems for quadrupolar glasses, we studied
the mixed alkali cyanides Na(CN) Cli (Refs. 7, 24, and
30) and Na, K, ,CN. ' ' ' The Na(CN), C1, (Ref. 30)
system [see Fig. 1(a)] shows, for high CN concentrations,
ferroelastic phase transitions from an orientation ally
disordered cubic phase to rhombohedral or orthorhom-
bic phases where the CN groups are orientationally or-
dered but can still perform 180' head-tail Aips. Below a
critical concentration x„no such macroscopic phase
transitions exist and the system remains, on the aver-
age, cubic down to lowest temperatures. Nevertheless, an
orientational freezing of the CN quadrupoles occurs, re-
sulting in a quadrupolar glass state. In the Na K& CN
system [see Fig. 1(b)], the structural phase transitions are
observed only for compositions close to those of the pure
compounds NaCN and KCN, ' which undergo an iden-
tical sequence of structural phases with, of course,
different transition temperatures. For 0.1 &x 50.85, the
phase transition is suppressed and a quadrupolar glass
state occurs.

It will be shown that quadrupolar perturbed nuclear
magnetic resonance (NMR) is a powerful and sensitive
experimental tool for investigating the glass transitions in
these systems. Predominantly, the Na nucleus and, in
some cases, the Cl nucleus were investigated. Both nu-
clei have the spin I =

—,
' and therefore the interaction be-

tween the electric-field-gradient (EFG) tensor at the nu-
cleus and the quadrupole moment of the nucleus results
in a—in some cases, considerable —perturbation of the
Zeeman levels of the nuclear spin system. It is well
known that, as a consequence, in first-order perturbation
calculation, the spectrum of the NMR lines at any nu-
cleus consists of an unshifted central line
(m =

—,'~m = —
—,') at the Larmor frequency vI and two

satellite lines (m =+—,'~m =+—,') shifted from vI by the
same amount to higher and lower frequencies. In
second-order perturbation calculation, all lines are shift-

ed in the way that the distance of the satellites is still a
pure first-order effect. It is one of the purposes of this
contribution to present experimental results concerning
the distributions of both central and satellite lines in the
mixed cyanides Na(CN) Cli and Na Ki „CN and
their dependences on parameters as, e.g. , the composition
(degree of disorder), the orientation, and the temperature
of the samples.

In spite of many investigations, ' the nature of the
observed random orientational freeze-out in the mixed
cyanides is still not clear. One of the main questions is
whether there is a true collective transition driven by ran-
domly frustrated competing interactions occurring at a
nonzero transition temperature T~ or just a strong
random-field-type single-ion freezing with the local ran-
dom fields determining the alignment of the orientational
degrees of freedom. ' The solution of this question is
complicated by the fact that the Edwards-Anderson or-
der parameter qzA characterizing the spin glass as well as
the quadrupolar glass state has no macroscopic conjugate
field and is therefore hard to measure directly. We will
show that quadrupolar perturbed NMR renders it possi-
ble to determine the Edwards-Anderson order parameter
qF~ and, thus, can contribute to resolve this problem.

The paper is organized as follows: In Sec. II some ex-
perimental details are briefIy described. In Sec. III the
distributions of EFG s and NMR frequencies in an aver-
age cubic structure will be discussed in a general context.
Section IV will be devoted to the presentation of the re-
sults of our NMR measurements in the systems
Na(CN)„C1, , and Na„K, ,CN. In Sec. V, a theoreti-
cal model for quadrupolar glasses will be developed.
Starting from the definition of order parameters, the
Edwards-Anderson order parameter q&A will be related
to the measured second moment of the EFG tensor distri-
butions rejecting the degree of orientational freezing of
the CN ions. In Sec. VI, the temperature dependence of
qF& will be derived from the measured temperature
dependences of the EFG distributions and related to the
predictions of theoretical models. Finally (Sec. VII), the
results are compared to those obtained from other experi-
mental methods discussing, in particular, the relation to
the elastic behavior.

Na (CN) xC11-x axK1-XCN
II. EXPERIMENTAL DETAILS
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FIG. 1. Schematic representation of the phase diagrams of
{a) the Na{CN)„C1& „system {rh =- rhombohedra1, ortho -=or-
thorhombic; after Ref. 7) and {b) the Na K, „CN system {after
Ref. 8; for more particulars see Ref. 10).

In our experiments, single crystals of Na(CN) Cl,
and Na„K, „CN were used, which were grown from the
melt. Details of the crystal-growth procedure are de-
scribed in Ref. 34. For the case of the Na(CN) Cli
system, the concentration x, given in the following, refers
to the composition of the sample under investigation
determined by the methods described previously. For
the case of the Na K, CN system, x refers to the com-
position of the melt. It was shown recently by space-
resolving Brillouin-scattering studies of the elastic shear
stiffness c4& (Refs. 34 and 35) that, as a general conse-
quence of the crystal-growth technique, significant spatial
concentration gradients of about 2%/cm exist in every
direction of the samples. As in our NMR experiments,
samples with rather big volumes of about 1 cm are used,
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we principally measure an integral over an inhornogene-
ous sample. Since the concentration variations in every
sample are small compared to the concentration
differences between different samples and because of the
limited measuring accuracy and resolution, this effect is
unimportant in the present context.

We employed a Bruker CXP 300 NMR pulse spec-
trometer operating with a superconducting magnet with
a static magnetic field of 7.046 T. In addition, using a
conventional electromagnet, shapes of the Na central
lines were measured at static magnetic fields of 0.488 and
1.772 T. The shapes of the Na and Cl central lines
were obtained both from the free induction decay (FID)
and from the echo following a 90'-w-90' pulse sequence.
Because of their considerable widths, the distributions of
the Na satellites were determined by applying a hole-
burning technique: the durations of the pulses (usually
about 100 )Ms) of a 90'-r-90' sequence were chosen in such
a way that only a small slice of the spectrum was irradiat-
ed. For any chosen frequency, about 4000 scans had to
be used at a repetition rate of about 0.1 s. The distribu-
tion function of the satellite frequencies is then given by
the frequency dependence of the intensity of the signal
obtained by Fourier transforming the decay of the occur-
ring echo.

III. DISTRIBUTIONS
OF EFG'S AND NMR FREQUENCIES

In pure NaC1, as well as in the high-temperature phase
of pure NaCN, the EFG at the Na nucleus vanishes as a
consequence of cubic symmetry. Mixed systems
Na(CN), Cl) and Na K) CN, which do not undergo
a phase transition, stay cubic down to lowest tempera-
tures. The local surroundings of the Na and Cl nuclei
in these systems, however, in general, deviate from the
cubic symmetry and thus an EFG occurs. Due to the dis-
tribution of local surroundings, a distribution of EFG s is
expected, leading to an inhomogeneous broadening of the
central line and a wide spread of satellite transitions.
This fact is schematically depicted in Fig. 2.

In the following, the restrictions will be formulated
which are imposed on the distribution functions of the
EFG components and, consequently, of the NMR fre-
quencies by the fact that the average crystal structure is
cubic. The results to be presented may be considered as
extensions of those of Refs. 24 and 36.

In a Cartesian laboratory reference frame (x,y, z) with
the static magnetic field 80 directed along the z axis, the
first-order shift v,'" of the satellites and the second-order
shift v'; ' of the central line, respectively, at a nucleus
(spin I =—', ) located at site i are given by

=+—V(&) — + i

2

v(2) —
I

)
( Vi V

i )2+( Vi )2
12vi 4

—2[( V.', )'+( Vy', )']I .

Here, V' „=8 V/Bx Bx„denotes the EFG at the site of

Distrabutxon of~ ~

central 1 xnes

Fr equency (er b. un&&e)

FIG. 2. Schematic representation of the NMR frequency dis-

tributions of I=
z nuclei caused by EFG distributions. Solid

lines and dotted lines indicate schematically the line spectra of
two nuclei with diferent EFG's.

Due to the average cubic structure, the distribution func-
tions for the individual main diagonal elements are iden-
tical:

p(V..)=p(Vbb)=p(V„) . (4)

These distribution functions are related to those in (3) in
the usual way by

p(V )= Jp(V, Vie)dVpir, a&P . (5)

A relation analogous to (4) holds for the distribution
functions for the off-diagonal elements:

p(V,b)=p(V„)=p(Vb, ) .

Contrary to the main diagonal elements, there exists no a
priori restriction for the off-diagonal elements at each in-
dividual site. Thus, the off-diagonal elements are as-
sumed to be independently distributed. As a conse-
quence, relations of the type

the nucleus, K = eg /h and eg is the electric quadrupole
moment of the nucleus. Thus, first-order effects probe
one component of the EFG tensor, whereas the second-
order shift of the central line is a quadratic effect general-
ly determined by several EFG tensor elements.

At each nuclear site, the EFG tensor elements may be
expressed in a reference frame whose Cartesian axes a, b, c
are directed along the cubic axes of the average cubic
structure. Because of the disorder in the system, these
elements V &, where n and P= a., b, c, are distributed ac-
cording to some distribution functions. As a consequence
of the validity of the Laplace condition
V„+V&&+ V„=O for each individual EFG, it suffices to
consider, for the main diagonal elements, the combined
distribution function p( V„, Vbb) which, because of the
average cubic structure, obeys the relation

p(V.. Vbb)=p(Vbb V-)=p(V- V-) .
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[V p]„=f V pp(V p)dV p,
the relations hold:

I: V.'. ].,=I:Vbb].,=[V', ].,

(8b)

[V.'b].,=I:Vi', ].,=[V'.]- .

Accordingly, [ . ],„ is an ensemble (disorder) average
Thus, for an average cubic structure, two independent
second moments of the EFG components, [ V„]„and
[V,b],„, exist. Both quantities are a measure for the
mean deviation from the cubic symmetry.

p ( V,b, V„)=p ( V.b )p ( V„)
hold. Because of the average cubic structure, the distri-
bution functions in Eqs. (4) and (6) are even functions of
the respective variables. Consequently, their first mo-
ments, defined as usual by

[V pj„=f V lip(V p)dV p,
vanish, i.e., the mean EFG- vanishes. For the second mo-
ments, defined as usual by

The distribution of NMR resonance frequencies is thus
given by

I ( v) = fp ( V„,Vbb )p ( V,b )p ( Vb, )p ( V„)

X5[v—v'( V~, , Vbb, p~b, Vb„V„,Q)]

X d V„dVbbd V,bd Vb, d V„,
where v' has to be identified with v"' or v' ' in Eqs. (1)
and (2) for first- and second-order shifts, respectively, and
0 denotes, in the most general case, two angles specifying
the orientation of the sample. The distribution given in
(11)can only be evaluated analytically in few cases. Some
of them will be discussed in the following.

In our NMR experiments, the crystal is rotated around
one of the axes a, b, c of the average cubic structure.
Thus, the static magnetic field Bp lies in a plane orthogo-
nal to that axis, e.g. , the a axis, and the crystal orienta-
tion can be specified by the angle y between the direction
of Bp and one crystallographic axis, e.g. , the b axis, being
orthogonal to the rotation axis. The following discussion
is therefore restricted to this case. In the laboratory
reference frame, the symmetric EFG tensor can then be
expressed as

r V„ V,bcosp+ V, sing

( V „)= V,bcosg+ V„sing Vbbcos p+ V„sin p+ Vb, sin2@

V bsl gn+ V cosp z ( V Vbb )sin2@+ Vb. cos2@

—V,b sine@+ V„coscp

—,'( V„—Vbb )»n2q + V„cos2g

Vbbsin y+ V„cos y —
Vb, sin2y

(12)

of this distribution can now be calculated without further
restrictions. Taking into account (1), (12), and the aver-
age cubic structure —then, e.g., (9), (10), and

2I. V..Vbb].,= —
I. V.'. ].,

hold —M z" ( p ) is given by

KM~~" (y) =
I [ V„],„[1——', sin (2@)]

+ [ V,b ],„sin (2y) j . (13)

Thus, from a measurement of the orientational depen-
dence of the second moment of this distribution, the
second moments [V„]„and [ V,b],„of the distributions
of the main diagonal and of the oft'-diagonal elements, re-
spectively, of the EFG tensors at the sites of the nuclei
are obtained. [According to (1), the distribution function
of the satellites is symmetric, i.e., the first moment M'&"
of this distribution vanishes. ]

The shapes of the distributions of the satellite frequen-
cies measured for most cases in the mixed cyanides justi-
fy, for any crystal orientation just specified, the assump-

First of all, the distribution of satellite lines will be in-
vestigated. For any crystal orientation just specified, the
second moment

M(1) —[(v( i i)2]

tion of a Gaussian distribution function for the satellite
lines

2
I'"(v)=[2vrM~2" (p)] '~ exp —,(14)

2M', "(q )

with M2" (y) from Eq. (13). Gaussian distributions of
this type have been derived already by Cohen and Reif,
who calculated the frequency distributions for the satel-
lite lines and the central line in an imperfect cubic crystal
assuming that the distribution of defects is completely
random and that each nucleus is perturbed by a sufhcient
number of sites. Thus, the occurrence of Gaussian distri-
butions for the satellites is a consequence of the central-
limit theorem.

Note the general validity of Eq. (13) for M~2" (y). Its
applicability is not restricted to the case of Gaussian dis-
tributions. Thus, it can, in principle also be applied to
the more general case observed in some mixed alkali
cyanides at low temperatures where deviations from the
Gaussian laws become important. The practical deter-
mination of the second moment from the experimental
data is simple for Gaussian distributions, whereas it is
rather dificult for distributions of arbitrary shape.

With respect to (14), (normalized) Gaussian distribu-
tions for the di6'erent EFG components may be reason-
ably assumed:
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v'3
p(V, Vbb)=

V' + Vbb+ V a Vbb

I 2
(15a)

[ V' ] =—'( V', + V„+V„)

1

2~a
(V )= exp

2V„
2a

(15b)

and

2V,b
(15c)

2c

V =a [ V ] = and because of 5

lf b
b /3. The quadratic form occurri g

f E . (15a) can be written in diagponent o q. a ia
nsforming to the variables „bb

Takmg mto account p
easil roved. Equationsof condition (3) can be easi y p

be directly derived by substituting in
e

' '
ndin eneral expressionsThe derivation of correspon ing ge

ed.1 lines is rather complicate .for the distribution of central lin e .
Substituting (12) in (2) and assuming again an average cu-
bic structure, the first moment

1p(V )= exp
&2~c

I(&)(~ )
—

[v(&) ]

i.e, the shift, of the central line can be cacalculated for the~ ~

crystal orientation specified above

M(2)
[ [ V2 ] [ 1 9 sjn2(2(p) ]P 4 g aa av

+[V ],[ —,'sin (2y) —1]] . (16)

lculation of the second moment M2M")( ) ofA general ca cu a ion
in to 12) and (2) re-he central line distribution according to an

anal tical relationship. Since its
o the resent case is restric epractical applicability to e p

and moreover, yb theh 1 ited experimental accuracy
fact that the dipolar linewidth has to bbe taken into ac-
e

'
h data this analytical expression iscount on evaluating t e ata, i

not resented here.
f theThe calculation o e

p
f th frequency distribution o

r in to (11) constitutes another morecentral line acco di g
lem. S ecial results or v arecomplicated prob em. p

llowin cases: i or a
EFG and 80~~[100], an analytical expression o s or

or v) 0, an integral is derived, (ii) for
V ' =0 and a crystal orientation speci e y

er et al. used (15a) to calculate, according to

'
ed alkali cyanides, the latter case [ V,»,„—is

Ths means th'trealized to a good appa roxim ation. i
= V = V„=O, i.e., the principal axes o t e

alon the directions of the axeseach nucleus are directed a ong e

era e cubic structure. Therefore,
'

pin articular, t e

s onding NMR frequency dis-all orientations. The corresponding
). H wetributions are well known (pow pder s ectrum . ere,

only want to note that, for this case,

[ V' ] =—'( Vi) + V22+ V3» .

V =4 V ],. Therefore, as expect-ty
both the distribution of satellite lines an

s i o (16) do not depend on the crystalshift of the central line
orientation.

arin the present case of an EFGswo w e o p g p
ic structure to that of t ein an average cubic s
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IV. EXPERIMENTAL RESULTS
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FIG. 5. Dependence of the second moment M&" of the
Gaussian 'Na satellite distribution for a Nap 7Kp 3CN crystal
on the crystal orientation as measured at alBp, vL =79.4 MHz,
and T= 300 K. The curve shows a fit according to Eq. {13)with
(IC /4)[ V„],„=0.227 MHz and (K /4)[ V,b],„=0.011 MHz2.
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FIG. 4. Distributions of Na satellite lines for a
Nap, Kp 3CN crystal at vL =79.4 MHz and T=280 K at the
crystal orientations (a) Boise[110] and (b) 80~~[100]. Note that the
frequency scales differ by a factor of 2. The curves are fits to
Gaussian distributions with the second moments {a)
Mz" =0.095 MHz and {b) M2('' =0.25 MHz

Note that the results in Figs. 4 and 5 do not correspond
to exactly the same fit parameters because Mz" depends
on the temperature (see below) and the measuring tem-
peratures differ by about 20 K. The fit parameters for
Nap 57Kp 43CN are

K
[ V„],„=0.398 MHz

As expected for an average cubic structure, the spectra
in Fig. 3 show a mirror symmetry with respect to the
crystal orientation g=45 . In particular, identical spec-
tra are obtained for Bp parallel to the cubic directions.
For these particular orientations, the spectra are highly
asymmetric: Within the limits of experimental accuracy,
only second-order shifts to higher frequencies occur. For
other orientations, the spectra are less asymmetric. Fig-
ure 4 demonstrates that, at ambient temperature, the dis-
tributions of the satellite lines can be well represented by
Gaussian laws whose widths depend on the crystal orien-
tation. The frequency scales in Fig. 4 have been chosen
in such a way that, for a crystal which fulfi11s the condi-
tion [V,b]„=0, the distribution functions in Figs. 4(a)
and 4(b) should apparently coincide [compare to (13),
(14)]. This is obviously not the case. The diff'erence,
however, is small.

In order to check the validity of (13) and (14) for the
present case, we measured the orientational dependence
of Mz" for Na K, „CN crystals with the concentrations
x =0.70 and 0.57 at ambient temperature. The result for
Nap 7Kp 3CN is presented in Fig. 5. A fit according to
Eq. (13) yields the values

K
[ V„]„=0.227 MHz

K
[ V,b ],„=0.011 MHz

and

K
4 [ V,b],„=0.006 MHz

For both systems, the second moments of the distribu-
tions of the off-diagonal elements are small compared to
those of the main diagonal elements. The corresponding
ratios [ V,z ]„/[V„]„are0.048 and 0.015, respectively.
Thus, at each sodium site in the cubic crystal reference
frame, the off-diagonal elements of the EFG tensors are
small at ambient temperature. This result is equivalent to
the fact that, at any sodium site, the principal axes of the
EFG are essentially directed along the axes a, b, c of the
average cubic structure.

A further confirmation of this statement is provided by
the shapes of the central line (Fig. 3): If the crystal is
orientated in a way that one crystal axis is parallel to the
static magnetic field Bp, the observed line shapes suggest
that, in this orientation, the second-order shifts v' ' in (2)
are positive for all nuclei. This is just equivalent to the
statement [V,b ]„=0.

Similar results were derived previously for the system
Na(CN)„C11, where x =0.65 is near the critical con-
centration x, . These data were evaluated on the as-
sumption that [V,b ],„=0, which was derived from a be-
havior of the Na central line similar to that given for
the present case in Fig. 3. A closer inspection of the pre-
vious satellite distributions for y=0 and 45' renders it
possible to estimate for T =270 K,
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and

4 [ V„],„=0.015 MHz

K
4 [ V, b ],„=0.0009 MHz

Both quantities are small compared to the corresponding
ones determined above for the Na„K, „CN system. The
ratios [ V,b ],„I[V„],„, however, are of the same order of
magnitude.

Clearly, Eq. (13) (see Fig. 5) provides a much more ac-
curate determination of the second moments of the EFG
distributions than an inspection of the shape of the cen-
tral line used previously for the case of the
Na(CN)„C1, „system. For this reason, we did not quan-
titatively analyze the central line spectra presented in
Fig. 3 for the Na„K, CN system.

Since [ V„],„and [ V,„],„measure the mean deviations
from cubic symmetry according to (13), this statement
holds for the second moment Mz", too. It, thus, should
be sensitive to a random orientational freeze-out of the
CN quadrupoles. We therefore measured the tempera-
ture dependence of the second moments of the satellite
distributions. The determination of Mz" is rather simple
as long as the satellite frequency distributions have a
Gaussian shape. This case applies to all temperatures in-
vestigated so far in the Na(CN)„C1, system (above
about 80 K) and to temperatures above about 200 K in
the Na K, „CN system.

In Figs. 6 and 7 we present the temperature depen-
dences of the second moments of the Na satellite distri-
butions in the Na(CN)„C1, „system and the
Na K] „CN system, respectively, in the temperature re-

gion where the distributions are Gaussian. In addition,
in Fig. 6, second moment data of the Cl central lines in
the Na(CN), C1, „system are shown. The widths of the
distributions increase considerably and continuously on
lowering the temperature. This reflects the drastic and
continuous change of the local environments which, be-
cause of the average cubic structure, can be attributed to
the occurrence of preferential directions for the orienta-
tions of the CN molecules and can be identified with the
establishment of the quadrupolar glass state. For the
Na(CN ) Cl

&
„system, the anomalous temperature

dependence starts at about 200 K, whereas for the other
system it starts at about 400 K. The widths of the satel-
lite frequency distributions are at low temperatures com-
parable to the Na satellite line splitting observed in the
low-temperature phase of pure NaCN. In the
Na„K& CN system in the concentration range under in-
vestigation, the Na satellite distributions are at the
same temperature considerably broader than in
Na(CN)Q 65C1Q 35 (i.e., x =x, ). Moreover, a characteristic
concentration dependence is observed for the
Na„KI CN system indicating the broadest distribution
to occur at x =0.5. This contrasts to the behavior of the
Na(CN), C1, system (Fig. 6) where a monotonic depen-
dence of the distribution width of the Cl central line on
x is observed. TI measurements, ' ' moreover, confirm
that, in this temperature range, the fast motion regime is
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FIG. 6. Temperature dependences of the second moments

M2 of the Na satellite distributions and the 'Cl central lines
in the Na(CN)„Cl, „system for Bo~~[110]. (The "Cl second
moments were estimated from the full width at half-height. )
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FIG. 7. Temperature dependences of the second moments
M2" of the 'Na satellite distributions in the Na Ki CN sys-
tem for B&&~~[110], for the temperature region where Ciaussian
distributions are present.

realized, i.e., the observed increase of the distribution
widths should be ascribed to an orientational freeze-out
of the CN ions and not to a mere motional-narrowing
effect.

On lowering the temperature, in the Na„KI „CN sys-

tem, characteristic shoulders occur in the spectra. This
effect can be observed for the satellite distribution (Fig. 8)
as well as for the central line (Fig. 9). Figure 10 shows
for another concentration x =0.57 how the spectra of the

Na satellite lines gradually broaden and the shoulders
emerge on lowering the temperature. Obviously, the as-
sumptions on which the central limit theorem is based
are no longer fulfilled and the preferential orientations of
the CN quadrupoles show up directly in the measured
spectra. In the Na(CN)o b~CIQ 35 system even at low tem-

peratures no such shoulders could be detected. As long
as an exact microscopic theory for the satellite spectra in
the temperature regime where the shoulders occur is not
available, the second moment cannot be reliably deter-
mined from the experimental data because the high- and
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neighboring Na site has, with symmetry arguments, its
principal axes parallel to the cubic axes. This, then, also
holds for a sum of such contributions. If, on the other
hand, other preferred orientations for the CN quadru-
poles are assumed, in contradiction with the experiments,
arbitrary orientations of the EFG principal axes are ex-
pected.

Results derived for the probability distributions of the
orientations of the CN molecules in different mixed alkali
cyanides by different experimental methods seem to sup-
port our supposition concerning the preferred orienta-
tions of the CN dumbbells: In pure NaCN (Ref. 40)
(single-crystal neutron diffraction) and in the very diluted
case NaC1:CN (Ref. 41) (investigation of the birefringence
and Kerr effect), the CN dumbbells have their maximum
orientational probability along the [100] directions. Pure
KCN (Ref. 40) and KC1:CN, ' on the contrary, show
maximum probability for the CN molecules along the
[111]directions. Single-crystal neutron-diffraction stud-
ies in K(CN)„Br, „(Ref. 42) yielded favored alignments
of the CN molecules along the [100] directions with de-
creasing temperature. Particularly in K(CN)Q 53Bro 47,
for temperatures T ~ 140 K, the CN ions are aligned with
highest probability along [100]; at higher temperatures
the maximum probability for the CN orientations is
along [111]. Recent single-crystal ' N NMR studies
in the same system K(CN)„Br, , show, for x =0.50 and
0.20 at low temperatures, preferred alignment along [100]
directions. According to this work, the orientation distri-
bution function has its maximum along [100] directions,
is intermediate in [110] directions, and is nearly zero
along [111]axes. Both experimental results disagree with
molecular-dynamics simulations that find strong [111]
preferential alignment. For the Na„K

&
CN system

with x =0.81, 0.56, and 0.11 single-crystal neutron-
diffraction studies' give —even at ambient
temperature —the most probable orientation of the CN
ions again along the [100] directions. Especially, for
x =0.81 and 0.56, the probability for deviations from
these orientations is rather small. With decreasing tem-
perature, the preference of the [100] directions is even
enhanced. '

Thus, the central assumption that the CN ions are
oriented parallel to the cubic directions obviously ex-
plains the symmetry properties of the EFG. It should be
stressed, however, that it is in convict with the assump-
tions introduced usually to account for the considerable
softening of the elastic shear modulus c44. A detailed dis-
cussion of the problems related to this topic will be given
below in Sec. VI.

As for the alkali cyanide halide mixed systems, pro-
nounced effects of phase transitions on the NMR line dis-
tributions are expected for the Na K& CN mixed sys-
tems which still undergo a phase transition. Correspond-
ing results are presented in Figs. 11 and 12. According to
Fig. 11, the width of the Na central line (in the system
x =0.92) is, above T„comparatively small and shows a
weak temperature dependence. Below T„a steep in-
crease occurs and a saturation plateau is reached. For
the sample showing a transition to the glass state
(x =0.70), on the other hand, a continuous increase of

CO
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FIG. 11. Temperature dependence of the width of the 'Na
central line (at half-height) in Na„K& „CN for (a) x =0.92 and
(b) x =0.70 and the crystal orientation Bo(([110].

the distribution width occurs at decreasing temperature.
The values obtained for the linewidth at low tempera-
tures exceed those obtained for x =0.92, thus indicating
that the mean deviations from the local cubic symmetry
of a Na nucleus are larger in the former system. This
effect is expected because the sodium-potassium disorder
will presumably have the most pronounced local effect
near x =0.5. Thus, Fig. 11 demonstrates that the behav-
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FIG. 12. Distributions of the Na satellite lines for a
Nao 95KO o5CN crystal at T =246 K (just below T, ). The crystal
orientations (a) Ho~~[110] and (b) Bo~~[100] are specified accord-
ing to the high-temperature phase cubic reference frame. The
lines indicate the frequencies and relative intensities of the "Na
satellite lines observed in a multidomain sample of pure NaCN
just below the phase transition (Ref. 39).
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ior of systems which show no phase transition differs
qualitatively from that of systems which still undergo a
phase transition. The data, however, should not be over-
interpreted because only a semiquantitative measure for
the linewidth is given, which, e.g. , does not account for
shoulders.

According to Fig. 12, distinct centers of intensity show
up in wide distributions of satellite lines. As expected, in
both orientations the centers of intensity occur at fre-
quencies where, for a multidomain sample of pure NaCN
at the same orientation in the low-temperature phase, the
satellite lines occur. Moreover, the intensities concen-
trated in the distributions near these centers of intensity
closely resemble the intensities of the Na satellite lines
of pure NaCN measured in the low-temperature phase at
a rnultidornain sample in the orientations indicated.

V. THEORETICAL MODEL

A. Definition of order parameters

5 5

J, Y, Y, —g g f, Y;
i j a, a'=1

(17)

Here the Y, are the five orientational coordinates at site
i The f;. represent the random strain fields at site i and
the coupling constants J,-"' account for both the direct
and the lattice-mediated' ' CN-CN quadrupole in-
teractions. The lattice coordinates have already been el-
iminated from the Hamiltonian (17).

Following the model of Sherrington-Kirkpatrick' for
magnetic spin glasses, the random interactions (or ran-
dom bonds) J, . and the random strain fields f; are as-
sumed to be independently distributed according to
Gaussian probability densities:

P(Ji)=
2mJ

1/2
(Ji

—Jo /N)~
exp 2J2/+

1/2

&(f;)=
2m.A

exp[ —f; /(2b, )], (19)

The CN dumbbell represents an elastic quadrupole
which can be described by a symmetric traceless Carte-
sian quadrupole tensor of rank 2 and dimension 3. With
regard to the orientational freeze-out at low temperatures
in the Inixed cyanides, it will be convenient to replace the
five independent components of the quadrupole tensor by
the five orientational coordinates Y (a=1,2, . . . , 5), the
symmetry-adapted spherical harmonics of angular-
momentum quantum number 1=2. For u = 1 and 2, the
Y have E symmetry and are proportional to 3z —1 and
x —y, whereas for a =3, 4, and 5, they have T2 sym-
metry and are proportional to xy, yz, and zx, respective-
ly. [Here we used Cartesian coordinates; u=(x, y, z) is
the unit vector along the C—N bond. ]

The Hamiltonian for a set of elastic quadrupoles with
randomly quenched and frustrated pairwise interactions'
can be expressed now for the mixed cyanides' ' in
terms of these symmetry-adapted spherical harmonics Y
as

with Jo, J, and 6 being concentration dependent, and N
the number of quadrupoles. Extending the concepts for
magnetic spin glasses to quadrupolar glasses, the quadru-
polar Edwards-Anderson order parameter qF~ is defined
here' ' as

VEa=

+VAN

(20)

(21)

where ( . ) represents the thermal average, while
[ ],„again denotes the disorder average, i.e., here the
simultaneous average over random bonds and random
fields. Equation (21) implies that q is self-averaging, i.e.,
the two types of averaging in (21) are fully equivalent.

In the high-temperature phase of the pure cyanides at
each CN site, ( Y; ) =0 (a=1,2, . . . , 5) due to the fast
reorientational motions of the CN dumbbells averaging
out the molecular anisotropy. Thus, [( Y; )],„=0 and

q =[{Y; ) ],„=0. For a given domain in the ortho-
rhombic phase of both the pure and the mixed cyanides,
[( Y; ) ]„%0for one Y of Tzs symmetry. ' The mono-
clinic and rhombohedral phases, on the other hand, are
characterized ' by the condensation of two, respectively,
three [( Y; ) ],„WO (a=3 4, 5). In the quadrupolar glass
phase, [( Y; )],„=0 (a=1,2, . . . , 5); the quadrupolar
Edwards-Anderson order parameter q~~, however, is
nonzero.

The probability distribution functions 6 of the mean
local orientational coordinates ( Y; ) are defined as

G (p )=—g&(p —(Y; ))=[&(p —(Y; ))],„.
I

(22)

The first moment of this distribution G (p ) equals
[ ( Y;. ) ]„,which vanishes in the quadrupolar glass phase.
The second moment is just the order parameter

q = p6 p dp (23)

In the quadrupolar glass phase of the mixed cyanides,
the structure is cubic on the average down to lowest tem-
peratures. Due to this symmetry, q1 =

q2 and
q3=q&=q5; i.e., only two different order parameters are
involved.

B. Relation between q«and the second moment M &"

As we have seen, according to Eq. (13), the second mo-
ment Mz" of the Na satellite distributions is a linear
combination of [ V„]„and [ V,b ],„. These EFG tensor
components occurring at different nuclei in the mixed
cyanides can, in principle, now be related to the ordering
of the CN quadrupoles or, equivalently, to the functions
Y describing the orientations of the dumbbells. Before
discussing the "nonlocal case" realized for the Na nu-
clei, we will start with the "local case" realized for the
' N nuclei located in the CN dumbbell.

For a ' N nucleus (I = 1) located in the ith CN
dumbbell, the spectrum of the NMR lines consists, in
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first-order perturbation calculation, of two satellite lines
(m =+1~m =0) shifted from the unperturbed Larmor
frequency vL by the same amount v';" to higher and
lower frequencies. In analogy to Eq.(1), vI

~ is also, in
this case, proportional to the EFG component V,', at the
site of the ' N nucleus. In analogy to the considerations
in Sec. III, for the second moment Mz" of the ' N satel-
lite lines distribution equation (13) holds where the pre-
factor —,

' has to be replaced by —,', .
The term "local case" refers to the fact that the EFG

at the ' N nucleus is predominantly determined by the
electronic configuration of the CN molecule. Thus, the
EFG components V'„ in the cubic crystal reference
frame (m, n =a, b, c) at a ' N nucleus located in a certain
CN molecule are completely determined by the orienta-
tions & Y; ) of this dumbbell, i.e.,

Vi y A mn
&

ya ) (24)

This relation holds as long as the system is in the fast-
motion regime. Accordingly, we have to calculate the
second moments of the EFG tensor components in Eq.
(24):

[(Vi )2] y [AmnAmn& ya)& ya')]
a, a

(25)

It follows that

[V „]„=+A "q (27)

with A "=(A; ") . Thus, the second moment of the
' N satellite distribution is a linear combination of the or-
der parameters q

For the Na as well as the Cl and K nuclei, we deal
with the "nonlocal case" because they are located at posi-
tions other than in the CN quadrupole. Therefore, the
EFG components V' „(cubic crystal reference frame) at a
given nucleus are (in principle) determined by the orien-
tations of all CN quadrupoles in the crystal

Vi y y 8 imn
& I a ),

J a
(28)

Here, the fast-motion case is again supposed. The second
moment of the EFG tensor components can again be cal-
culated:

j,j' a, a'
(29)

It may be assumed that the coe%cients B'- " are indepen-
dent of the site index i, and thus BJ" " are no random
variables. Neglecting correlations between the different
CN ions, the remaining average reduces to' '

(30)

Since the coeKcients 3, "are independent of the site in-
dex i and the crystal structure is cubic on the average, the
remaining average is simply'

(26)

[V'„],„=+8 "q (31)

where 8 "=g~(81™"), and, again, the second moment
of the satellite distribution is a linear combination of the
order parameters q

All above considerations are valid if the local Auctua-
tions of the quadrupoles are fast compared to the rigid
lattice quadrupolar splittings. In the slow-motion re-
gime, the additional broadening due to the slowing down
of these fluctuations has to be taken into account. Conse-
quently, the order parameter qzz will saturate when the
slow-motion regime is reached.

As already mentioned, due to the average cubic struc-
ture, only the two order parameters qi and q3 are in-
volved in the mixed cyanides. It has been shown in Sec.
IV that the above result [ V, i, ],„=0strongly suggests that
we assume that the CN dumbbells are aligned along the
cubic [100] directions. Consequently, the order parame-
ter q3, which measures deviations of the orientations of
the CN dumbbells from the [100] directions, is small
compared to q&. Thus, the data will be interpreted in the
following on the assumption that q3 can be neglected and
only one order parameter q, ~qFA is dominating in the
mixed cyanides.

VI. DETERMINATION OF THE
QUADRUPOI. AR ORDER PARAMETER qpp,

According to Eqs. (13) and (31) and the fact that
qi qz~, an experimental determination of the tempera-
ture dependence of the second moment Mz" of the satel-
lite distributions yields the temperature dependence of
qF~. The shape of the qF~(T) curves should then allow a
discrimination between a random-field-type single-ion
freezing and a collective glass transition. Consequently,
the Na second moment data can be analyzed by

NaM(1) —A +8q&&( T) (32)

For the second moments Mz' ' of the central lines, no cor-
responding exact relations are available. Nevertheless,
the Cl central line second moment data can be expand-
ed for small qF~, i.e., sufficiently high temperatures, as

35 'M( '=A'+8'q (T) (33)

Here A, 3 ' describe the direct quadrupolar effect of stat-
ic substitutional disorder and the residual dipolar width,
whereas B, B' describe the effect of the orientational
freeze-out. Accordingly, the results presented in Figs. 6
and 7 directly reAect the temperature dependences of the
quadrupolar Edwards-Anderson order parameter qF~ in
the various systems.

Since a calculation of qF& for the presented quadrupo-
lar glass model does not exist and since a continuous re-
orientation model, ' ' a three-site model, ' and even a
two-site model give qualitatively similar results in the
high-temperature region, we tried as a first attempt to fit
qF~(T) with the random-bond —random-field Ising mod-

1.48 —50

Consequently, &= —g J;,S,S, —g (f;+E)S; .
l, J

(34)
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Here S =+1 is the pseudospin variable and E is a uni-
form external field. The random interactions J; and the
random fields f, are distributed according to Eqs. (18)
and (19).

The normalized order parameters p =[(S;)]„and
qE~=[(S, ) ],„are then determined by the coupled self-
consistent equations:

p =(2m. )
' Jdz exp( —z /2)

XtanhtP[J(q +b/J )'~ z

1.0

0.6

(K) 4/ J
76 006
50 006
23 008

+Jop+E]],
qE~=(2m. )

'~ Jdz exp( —z /2)

Xtanh IP[J(qE~+b, /J )'~ z

(35a)
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FICx. 13. Comparison between the temperature dependences
of the quadrupolar Edwards-Anderson order parameter qEA
determined from the 'Na satellite distribution s second moment
M2" data (Fig. 6) for the Na(CN)o 65C1035 system (circles) and
the predictions of the theoretical models. Curves a, b, and c:
Pure random-field models (J =0) with 6' /k&=25, 75, and
200 K, respectively. Curve d: Pure random-bond model (5=0)
with J/k& = 140 K. Curve e: Fit to the random-
bond —random-field model with J/k& = 140 K and 6/J =0.03.

+Jop+E]], (35b)

where p= 1/(kz T) and, by analogy to Eqs. (18) and (19),
J is the variance of the random interactions and 6 the
variance of the random fields. The glass phase is charac-
terized by the solution p =0 and qEA&0. For b, =J =0,
Eqs. (35) reduce to the well-known molecular-field rela-
tion p = tanh[p( Jap +E) ] and qE~ =p .

Our data in Figs. 6 and 7 were fitted with the aid of
(32) and (33) to Eq. (35b). The results obtained for the
quadrupolar Edwards-Anderson order parameter qE~(T)
are presented in Figs. 13 and 14.

No satisfactory fit could be obtained for the pure
random-field-type single-ion freezing model (i.e., J =0)
for any value of the random strain field variance 6 (Fig.
13, curves a, b, and c). Here all interactions between the
CN quadrupoles are neglected and the CN ions reorient
in temperature-independent potentials. We note that all

FIG. 14. Temperature dependences of the quadrupolar
Edwards-Anderson order parameters determined from the Na
satellite distribution's second moment M2" data (Fig. 7) for the
Na, K& CN system. The curves are the fits to the random-
bond —random-field model with the parameters indicated.

models mentioned above give rise to the same high-
temperature tail qE~ ~ 6/T but cannot account for both
the tail and the observed curvature of the qE& versus T
plot.

We therefore turned to the collective model (J %0) in-
volving a glass transition. Also, no fit could be obtained
for the pure collective model with 6=0, i.e., for random
bonds without random fields (Fig. 13, curve d). Since the
obtained qEA values are already nonzero far above the
nominal glass transition temperature T =J/kz, we
clearly do not deal with a classical random-bond-type
glass transition with a sharp T with qE&=0 above T
and qE~WO below T~. Rather, the data indicate a
random-field smearing of the quadrupolar glass transi-
tion, i.e., they require both J and 6 to be nonzero. Here
the random-field variance 6 induces a nonzero value of
qEA already far above Tg.

The agreement (Fig. 13, curve e) is surprisingly good.
For the Na(CN) Cl, „system with x =0.65, we find
T =J/kii = 140 K and a rather small value b, /J =0.03.
The consistency of the results is moreover verified by the
fact that the same qEA values are also obtained from the

Cl data for the same sample. The Cl data for x =0.45
(Fig. 6) can now be fitted with the same value of b, /J
and Tg 146 K This is exactly what is expected if the
system behaves as an ideal solution so that b, ~ x (1—x)
and J ~ [x (1—x)]' . Very good fits can also be ob-
tained for the Na K, CN data (Fig. 14) with the pa-
rameters indicated. As expected, 6 /J is nearly concen-
tration independent, but the value is larger than in the
Na(CN)„C1, „system. Thus, the Na as well as the

Cl quadrupolar perturbed NMR data clearly demon-
strate that we deal in the mixed cyanides with a random-
field smearing of a random-bond-type quadrupolar glass
transition and not with a random-field-type "single-ion"
freezing or a classical spin-glass-like glass transition.



NMR DETERMINATION OF ORDER PARAMETERS IN. . . 12 763

VII. DISCUSSION AND COMPARISON

In this section our NMR results will be discussed in re-
lation to those obtained from other methods. In previous
works, ' it was demonstrated that the widths of the

Na NMR satellite line distributions observed in
Na(CN)p 65Clo 35 i.e., in a system with a concentration
near the critical one, and the widths of the cubic Bragg
peaks show the same temperature dependence. It, there-
fore, can be taken for granted that the Na NMR results
presented here and previously, for the two systems un-
der consideration, give the correct onset of the freezing
process and, moreover, to some extent, quantitatively the
temperature dependence of the Edwards-Anderson order
parameter.

The considerable softening and successive hardening,
which, at least near the critical concentration x„ is ob-
served for the elastic shear stifFness c44, ' seems to
be the most striking property of the mixed alkali
cyanides. It is therefore worthwhile discussing the rela-
tion between the behavior of the distributions of the
NMR frequencies and the elastic stifFness c44 in more de-
tail. For that purpose, we first discuss the current con-
ceptions for describing the anomalous elastic behavior of
the mixed alkali cyanides in a general context. In partic-
ular, we will extend the concepts and results developed by
Fossum et al. to the case of the random-
bond —random-field model discussed previously.

The behavior of c44 in the mixed cyanides has been ex-
plained in theoretical models by a bilinear coupling of the
orientational degrees of freedom of the CN dumbbells to
the translational lattice modes including random
fields. ' ' In this approach, the static elastic shear con-
stant c44 is given by' '

rived on that basis from their c44 data b, /ks =4690 K
for the system NaQ56KQ44CN which fits reasonably to
5/k~ =4570 K derived above for NaQ 57KQ43CN from
the NMR data. For other concentrations, however,
larger diA'erences occur. In addition, a joint fit of the
c44( T) curves was achieved ' by using the high-
temperature expansion above the c44 minimum together
with a phenomenological low-temperature expansion
q EA —1 3

&
T A 2 T below the minimum. The latter

was proposed for random-field systems. ' ' This pro-
cedure seems to be rather questionable since Eq. (36) is
confirmed only for the high-temperature case and, more-
over, the simultaneous application of both approxima-
tions near the minimum of c44 gives rise to considerable
errors. (Note that 3, )0 and A~ (0 hold for Gaussian
distributions of random fields, ' whereas, in Refs. 25 and
28, a positive fit parameter A z was used. )

We now discuss to what extent the random-
bond —random-field Ising model, which we used to fit our
NMR results, can account for the behavior of c44(T). In
a mean-field approach, a Landau expansion of the free
energy generally yields

c„4=c44(1—
y y), (37)

where y is the translation rotation coupling constant and
y is the order-parameter susceptibility. The noncritical
temperature dependence of c44 will be disregarded in the
following considerations because it was shown to be
small.

We have calculated y = ( Bp /BE) z o in the random-
bond —random-field Ising model, using Eqs. (3S) obtaining
for any state with p =0 (glass or disordered state), the fol-
lowing exact relation'

T T(1—q«)—
T —To(1 —

qE )
(36)

k~T —JQ r

qEA
(38)

where c44 is the bare elastic constant. T, is the ferroelas-
tic ordering temperature in the absence of random strains
and TQ is an efFective temperature at which the CN
dumbbells would achieve quadrupolar order in the ab-
sence of bilinear coupling. For the mixed alkali cyanides,
TQ usually is negative and used as a fit parameter. Ac-
cording to (36), the hardening of c44 below the tempera-
ture of the minimum of c44 is due to the increase of qEA.
Note, however, that qE~ infiuences c44 according to (36)
in a complex manner.

Following Michel, ' Eq. (36) is only justified in a high-
temperature expansion for which qEA «1, resulting in

q« =4/(kii T), where, as above, b, is the variance of the
random-field distribution. Many authors (see Refs.
2S —27 and 30 and works cited within) used Eq. (36) in
the high-temperature expansion to fit the temperature
dependences of the c44(T) curves for temperatures above
the c44 minimum in difFerent cyanide mixed systems, thus
getting parameters c4&(x), T, (x), To(x), and b, (x) de-
pending on the concentration x. A problem arises if this
high-temperature expansion is applied to lower tempera-
tures, although the approximation qEA &&1 breaks down
in this temperature range. Nevertheless, Hu et al. de-

—
qEA c44 c44(T)Q

T, c4&
—Toc4&( T)

(39)

is comparatively complex and contains three adjustable
parameters, i.e., c44, T„and TQ. On the other hand the
corresponding relations (32) and (33) between qE~ and
the NMR second moments are linear in qEA and contain
only two parameters. Thus, NMR may be assumed to be
more convenient for determining the temperature depen-
dence of the glass order parameter.

Continuing the discussion of the elastic behavior ac-
cording to (36), the temperature at which the minimum

where qE& is the solution of (35b). Combining (37) and
(38), Eq. (36) is derived with the parameters To=Jo/kii
and T, =TQ+y /kz. Thus, in the frame of this model,
(36) is an exact result for which the glass order parameter
q«can be calculated on the basis of (35b). According to
(38), the elastic behavior is determined not only by the
parameters determining qEA, but also by the additional
parameter JQ which

influences

the elastic behavior
strongly even in temperature regions where q««1.

According to (36), the general relation between the
c44( T) data available from experiment and qE~
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of c44 occurs, is given by the relation

1 —
qEA

T dT
(40)

which means that the tangent at the 1 —
qEA versus T

curve passes through the zero point of the temperature
scale. From Figs. 13 and 14, it becomes obvious that the
temperature for which (40) holds depends sensitively on
the parameters b, and J used in the model [note that JQ
does not occur in (40)]. In particular, it can be shown on
the basis of (35b) that for J =0, i.e., for a pure random-
field model,

qEA

T
d (1 —q,A)

dT

dz z exp( —z l2)cosh (b, '~ zlkz T) (41)
1

T

holds. The right-hand side of this equation is positive for
T )0 and vanishes for T =0. Consequently, a c44
minimum exists for T =0 and, with the aid of (36), it is
concluded that c44(T) continuously increases with in-

creasing T. Such a behavior was not observed for the
mixed alkali cyanides and, consequently, a pure random-
field model is inadequate.

We calculated the temperature dependence of
c44(T)lc44 according to (36) by assuming various param-
eters T, and TQ and calculating qEA from (35b). All these
calculations clearly showed that the overall change of c44
between the minimum and T=O is unreasonably small
(this is not so if the high-temperature expansion of qEA is
used, which, near the minimum of c44, is definitely not
applicable). On the other hand, experiments clearly
demonstrate ' that, in contrast, there is a considerable
increase of c44(T) below the minimum. This seems to in-
dicate that the present approach, in particular Eq. (36), is
not applicable for describing the elastic behavior com-
pletely.

The random-bond —random-field model discussed here
indeed has the following main shortcomings.

(i) It is uniaxial and thus disregards the three-
dimensional character of the glass transition in the mixed
cyanides. In particular, three-dimensional clusters,
which are likely to be of some relevance, are not taken
into consideration.

(ii) Because of (35) and (38), it only accounts for transi-
tions of second order. On the other hand, in the mixed
cyanides, the macroscopic phase transitions are of first
order, whereas the transitions to the glass state are con-
tinuous. Thus, at the critical concentrations, the first-
order character of the phase transitions is lost, which is a
typical feature of a tricritical point.

(iii) In this model, an Almeida-Thouless-type line exists
in the temperature-random-field variance plane separat-
ing the high-temperature ergodic pseudo-spin-glass phase
characterized by a single order parameter q =qEA from
the nonergodic low-temperature phase characterized' by
an order-parameter function. Further investigations of
the dynamic behavior are needed to check on this point.

The first point may be improved by considering a mul-
tiple axes reorientational order-disorder model with cubic

symmetry. In a first approximation, a model where the
CN dumbbells are assumed to reorient quickly between
the cubic directions has previously been considered. '

The central self-consistent relation for the glass order pa-
rameter of that model is a generalization of Eq. (35b).
For the case of Na(CN)Q 65CIQ 35 it could be shown by an
argumentation similar to that given above that both ran-
dom bonds and random fields are necessary for describing
the experimental data. This confirms the above state-
ment that the high-temperature approximation gives rise
to the same temperature dependences in all models.

This model is still incomplete because it does not take
into consideration anything other than the cubic direc-
tions for the orientations of the CN dumbbells. It is
indeed in convict with the usually employed theories ex-
plaining the strong softening of c44 by a bilinear coupling
of the elastic translational lattice modes to the orienta-
tional degrees of freedom of the dumbbells. It is well
known ' that dumbbells with a [100] orientation in a
cubic crystal couple only to A&g+E strains associated
to longitudinal phonons propagating along [100]. Conse-
quently, only the elastic modulus c&& is affected. This
quantity, however, is known to be much less inAuenced
than c44 by the ordering process in the mixed cyanides.
An interaction with transverse phonons, which produce
T2g strains, and to which a shear elastic modulus c44 is
ascribed, requires in cubic crystals orientations of the CN
molecules along the [110]or [111]directions. Thus, the
dumbbells must also possess equilibrium orientations
where they are not oriented along one of the cubic [100]
directions.

For a solution of the second question, generalizations
of Eq. (35) have to be derived, which on a phenomenolog-
ical level describe both first-order and second-order tran-
sitions. It is well known that, for the description of phase
transitions in homogeneous systems, this can be achieved
by considering a phenomenological Landau equation of
state. It can be derived from the Weiss molecular-field
equation, which corresponds to Eq. (35) and which allows
only phase transitions of second order, by introducing
suitable additional terms in the order parameter. A cor-
responding formalism for disordered systems seems not
to exist.

VIII. CONCLUDING REMARKS

We have shown that quadrupolar perturbed NMR can
contribute considerably to an understanding of the qua-
drupolar glass state in the mixed cyanides Na(CN) Cl,
and Na K& CN. At high enough temperatures, the
EFG distributions at the Na nuclei have a Gaussian
shape in both types of systems. The widths of the distri-
butions are narrow at high temperatures, whereas there is
a considerable and continuous broadening with decreas-
ing temperature, which, because the average structure
remains cubic, has to be attributed to the random orien-
tational freeze-out of the CN ions, i.e., to the establish-
ment of the quadrupolar glass state. The qualitative un-
derstanding is the following: At high temperatures, the
CN ions move in nearly cubic potentials regardless of the
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distribution of ions in the respective surroundings. With
decreasing temperature, the local potentials are deformed
by local fields caused by collective CN-CN interactions
("random bonds") as well as by random strain fields,
which are due to the compositional disorder.

In a quantitative approach, the Edwards-Anderson or-
der parameter qEA could be derived from the widths of
the frequency distributions measured by NMR. Compar-
ing to the predictions of theoretical models, it could be
shown that neither pure "random-bond" nor pure
"random-field" models are adequate. On the contrary,
the NMR results can be explained by assuming a smear-
ing of the quadrupolar glass transition by weak random
fields.

The symmetry and orientational dependence of the
Na NMR spectra in the systems mentioned indicate

that, in the entire temperature range investigated, the
EFG at each sodium site is oriented in the way that its
principal axes are directed along the axes of the mean cu-
bic structure. For the Na K

&
CN system, this state-

ment has been proved by inspecting the orientational
dependence of the satellite spectra for x =0.57 and 0.70
at ambient temperature. For the Na(CN)o 6,Clo 35 sys-
tem, it was shown by reevaluating the previous satellite
data for temperatures above about 160 K. For all other
temperatures and concentrations, this statement is de-
rived from the symmetry property of the central line in a
crystal orientation where a cubic axis is parallel to the
static magnetic field. Of course, in the latter case, a
minor accuracy had to be accepted. Therefore, in these
cases, too, investigations on the orientational dependence
of the satellite distributions would be highly desirable.
Despite these shortcomings, we are confident that the
symmetry property of the EFG at the Na site hold for
the systems under investigations.

This symmetry property of the EFG is related to the

possible orientations of the CN dumbbells. We have con-
cluded that the CN molecules are oriented in both types
of crystals with their axes parallel to the directions of the
mean cubic structure. Other assumptions for the orienta-
tions of the dumbbells are in conAict with the symmetry
of the EFG at the sodium site. On the other hand, other
orientations are needed in order to be able to construct a
bilinear coupling between the orientational degrees of
freedom and the translational lattice modes, giving rise to
the anomalous elastic behavior. Evidence for small-angle
misorientations of the CN ions in the ordered orthorhom-
bic phase of pure KCN from the orientations parallel to
the orthorhombic b axis was observed in ' C spin-lattice-
relaxation measurements. Corresponding small-angle
deviations of the CN ions from the [100] directions in the
mixed cyanides, which could explain the elastic behavior,
cannot be excluded from our NMR results. Nevertheless,
the solution of this conAict seems to be an important task
for future investigations.

At low temperatures in the Na spectra measured in
the Na K& „CN system, typical shoulders occur, i.e.,
strong deviations from the Gaussian distributions of
EFG's. Except for the preliminary attempts described in
Ref. 31, we have not carried out calculations to relate
these measured spectra to the orientation distributions of
the CN dumbbells and, in particular, to the glass order
parameter.
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