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Annihilation rates for a positron interacting with two unpaired-spin electrons in a dense environ-
ment have been calculated in terms of parameters having the physical meaning of electron-positron
contact densities. The influence on annihilation rates of an external magnetic field has been explicit-
ly taken into account. The results of the theory have been fitted to recent experimental data show-
ing the formation in some polymers of a positron bound state with “anomalous” spin characteris-

tics.

I. INTRODUCTION

In the study of positron annihilation in condensed
matter, modifications of lifetime spectra and of momen-
tum distributions depending on an applied magnetic field
demonstrate the interaction of a positron with an elec-
tron ensemble having nonzero magnetic moment, and are
generally taken as the evidence for the existence of a
bound state of the positron with an electron (see exam-
ples in Refs. 1 and 2 ). The basis of this assumption is the
extension to condensed matter of well known properties
of positronium (Ps) in vacuum or in a dilute medium; the
effect of the magnetic field on Ps is to mix singlet and
triplet spin states, thereby producing the increase of
probability of two-quantum annihilation, which is a for-
bidden mode for pure triplet states (for reviews on Ps, see
for instance Refs. 3 and 4). In fact, predictions based on
a straightforward extension of the theory® of the magnet-
ic effect on unperturbed Ps to e t-e ~ bound states in a
dense environment®® often given satisfactory agreement
with experiment. In these cases, the theoretical curves
can be fitted to experimental data by adjusting a parame-
ter proportional to the effective unpaired-spin electron
density at the positron position (here called internal con-
tact density). For this reason, measurements of magnetic
effects on annihilation are not only helpful for identifying
positron-electron bound systems, but also probe the inter-
nal structure of these systems (a systematic discussion on
this subject can be found in Ref. 7).

Recently, however, a series of experiments revealed the
existence of cases where the Ps scheme is inadequate.’ ™13
This is certainly not a surprise. A positron in a dense
medium interacts with many indistinguishable mobile
electrons in an external fixed field; under these condi-
tions, the spin alignment of the annihilating pair can be
defined, and is a conserved observable, only in restricted
cases,’ i.e., when (a) no other electron with unpaired spin
is in the proximity of the pair, (b) spin coupling to the
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field seen by the pair in motion is negligible, and (c) the
relative motion of the two particles bound in the pair is
described by a wave function with s character (no spin-
orbit interaction). Condition (c) is not severe: since only
s states contribute to annihilation, the very fact that the
effects of internal annihilation of the pair can be observed
ensures that the internal pair wave function has at least
partial s character; thus, the effect of the spin-spin in-
teraction, typical of s states, is always present and is like-
ly to be dominant over spin-orbit terms (for instance, the
energy splitting between different spin states in the posi-
tronium 2p state is ony 5% of the hyperfine splitting, i.e.,
the spin-spin contribution, in the 1s state.!* On the con-
trary, effects connected to a violation of conditions (a)
and (b) need to be evaluated with reference to specific sit-
uations.

Unfortunately, a first-principles approach to a compli-
cated many-body system, as a positron in a dense envi-
ronment actually is, remains intractable in this case. We
are thus left with treatments based on simplified models.
Along this direction, in a previous work!> we have
presented an approximate treatment dealing with viola-
tions of condition (b); here, we address violations of con-
dition (a) by discussing the case of a positron interacting
at the same time with two unpaired electrons and, possi-
bly, with a dense environment in a closed-shell
configuration. There are founded arguments against the
stability of the simplest example of a system of this class,
i.e., an excited state of the negative positronium ion (Ps™)
in vacuum,!®!” but, on the other hand, it is easy to imag-
ine more practical situations. Here are a few examples:
(1) free electrons coming from the positron excitation
spur are trapped in neighboring sites in the medium (e.g.,
on the same polymer molecule) and, in turn, trap the pos-
itron (see Fig. 1, borrowed from Ref. 18); (2) positronium
formed in a liquid medium reacts by forming an additive
complex with a paramagnetic solute; (3) an energetic pos-
itron excites a neutral atom or molecule by promoting an
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FIG. 1. Positron bound to two unpaired-spin electrons
trapped in adjacent sites on a polymer chain. The cusps of the
positron density do not need to be equal (from Ref. 15).

trapped electrons

electron from a filled to an unoccupied shell, and sticks to
it, thus forming a positive complex; (4) an energetic posi-
tron in an insulating crystal promotes an electron from
the valence to the conduction band, and forms with it,
and with the hole left in the valence band, a more or less
mobile positron-exciton complex.® A somewhat different
situation occurs when the positron is bound to one elec-
tron only, and the interaction with a second unpaired
electron can be described as a collision. Collisions with
possibility of spin exchange are included in the Mills
theory of Ps magnetic quenching,'” but neither this
theory nor any of the existing treatments of magnetic
quenching (see references in Ref. 19) applies to bound
states of a positron with two unpaired electrons. The
problem is solved, under some restrictive hypotheses, in
the present work.

In Sec. IT we develop the mathematical formalism ena-
bling us to calculate the annihilation rates of the eight
possible states of lowest energy in the presence of a static
magnetic field. We obtain numerical results in some
exemplificative cases (Sec. III), and compare predictions
based on our model with the experimental data given by
Bisi et al.’? (Sec. IV).

II. FORMALIZATION OF THE PROBLEM

We attack the problem of calculating the annihilation
rates for the system ‘‘positron+two unpaired
electrons+environment” by looking for the eigenvalues
of a suitable Hamiltonian formed by real terms, which ac-
count for energy contributions due to spin-spin and spin-
magnetic field interactions, as well as by imaginary terms,
which account for different annihilation channels. We do
not include spin-orbit terms in the Hamiltonian; this is a
crucial simplification, as it enables us to separate spatial
and spin variables and to diagonalize the Hamiltonian by
taking into account only the spin-dependent part of the
eigenfunctions. As far as it goes, a justification for this
approximation comes from the considerations made in
Sec. I on the smallness of spin-orbit terms when annihila-
tion is observable.

We thus assume a Hamiltonian H given by the sum of
the following terms:

(i) A “positional” term H, accounting for the kinetic
energy and for the electrostatic interaction between
mobile particles and between each one of these and the
environment; we do not include in H, the Coulomb terms
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giving energy splitting between eigenstates of even or odd
symmetry under electron position exchange, but we in-
troduce afterwards an “exchange” term to correct for
this [see point (vi) below]; we assume that the only eigen-
states of H, energetically accessible to the system corre-
spond to the lowest eigenvalue (taken as the ground level
for the energy scale).

(ii) A term H, accounting for the spin interaction be-
tween the positron and one of the unpaired-spin electrons
(labeled as electron a), and for the annihilation with this
electron:

A

2, +1 .

H, =87088(rp -r,)

5,1 A
2 "

a

+ (1)

In this equation, the & function takes into account the
quasi-contact character of the interaction, the factor
8ma} is the reciprocal of the electron-positron contact
density in Ps, 2, is the operator that interchanges the
spin states of the positron and of electron a, A, is the
hyperfine splitting in Ps , A, and A, are the triplet and
singlet annihilation rates for Ps. [An equivalent expres-
sion of H,, reminiscent of the Fermi contact operator,
can be written in terms of the dot product of the Pauli
spin matrices o. Note that 3, =(0,-0,+1)/2];

(iii) A term H,, similar to H,, to account for spin-
dependent interactions of the positron with a second un-
paired electron (electron b).

(iv) A term H ¢ accounting for annihilation with
the 2N electrons forming the closed-shell environment:

Hpick~oﬂ”: - iﬁ)‘pick-oﬁ'/z . @)

(v) A term H,, accounting for the interaction of the
external magnetic field B with the spin magnetic mo-
ments:

H,, ZyBB(aaZ-i-abz—apz) , (3)
where the o’s are Pauli spin operators along the direction
of B.

(vi) A term accounting for the energy separation A,
between singlet and triplet states of the electron pair,
which combines the Coulomb effects that we have not in-
cluded in H, with that of the magnetic interaction be-
tween electron spins; due to the Pauli principle, which
couples spatial eigenfunctions with spin eigenfunctions of
reversed electron exchange symmetry, this term can be
expressed as function of the electron spin exchange
operator = in the form

H,=A(1—-3,)/2 . @)

The effect of the terms listed above is to remove the 8-
fold spin degeneracy of each level of the spatial Hamil-
tonian H,. In order to find the spectrum of the octet cor-
responding to the ground level of H,, we express the
complete Hamiltonian in matrix form by taking as a basis
a complete set of space and spin eigenfunctions, belong-
ing to the eigenvalue E,=0 of H,. The Pauli principle
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dictates that the chosen eigenfunctions need to be an-
tisymmetrical for the exchange of any pair of electrons.
We shall assume that this condition is implicitly satisfied
as far as it concerns the 2N electrons occupying closed-
shell orbitals,® while we take it explicitly into account
for the electron-a —electron-b pair by choosing the fol-
lowing basis:

§1=®  Xoola,blalp),
§=P . Xoola,b)B(p) ,
&E=d_x(a,b)alp) ,
&,=P_x11(a,b)B(p) ,
&s=®_xyola,blalp) ,
Ee=P_X10la,0)B(p) ,
E,=D_x,-1(a,b)alp) ,
Es=D_x;-1(a,b)B(p) .

The symbols used in Eq. (5) have the following meaning:

(a) ®, and ®_ are ground-state eigenfunctions of H;
the symmetry under coordinate exchange between a and
b is even for @, and odd for ®_.

(b) x jm(a,b) is an eigenfunction of the modulus and of
the z component of the electron spin operator for the a-b
pair, corresponding to the total spin quantum number j
and to the azimuthal quantum number m.

(i) Hy=0,
atf Ky
Kiv ™ 0 0 5
0 K++“J2“B 0 0
0 0 Ky 0
s 0 0 B
- — K_
Gi) H,=- il
1 == K_ 4 K__
2 0 0 -
2 7 va ¥
K—+
0 — 0 0
) Y
K-+
0 0 0
v !
0 0 0 0
(iii) H,=H, ,
pick-off

(iV) Hpioop= —ifi diag(1,1,1,1,1,1,1,1) ,

(v) H, =pgBdiag(—1,1,1,3,—1,1,—3,—1) ,

(vi) H. =A, diag(1,1,0,0,0,0,0,0) .
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(c) al(p) and B(p) are the spin eigenfunctions for the
positron alone.

For obtaining concise expressions for the Hamiltonian
matrices, it is convenient to adopt the following compact
notation:

a=2 [Ahf~im,/2 ,
B=Ay—ifi(A, +1,)/2 ,
‘J/:Ahf_lh(xz_)\.s)/z .

We also define the “symmetrized” electron-positron con-
tact densities as follows:

Ky =8mad{( D, |8(r,—1,)|P.), 9
k__=8mag{(P®_|8(r,—1,)|P_), (10)
K+,=87Ta(3)<d>+|8(rp—ra)|<1>_> , (11
k_y=8mad{(P_|8(r,—1,)|P,) . (12)

In the next section we shall discuss how the symmetrized
contact densities are related to the contact densities
defined in Refs. 7 and 18. Here we limit ourselves to not-
ing that, due to the electron indistinguishability, the
value of «, ,k__,k,;_,k_, would not change using
8(r,—r,) instead of 8(r,—r,) in Egs. (9)-(12). The
second point to be noted is that we are free to assume
Ky_=k_, since ®,P_ can be taken real without loss
of generality.
Using the above notation, one obtains

(13)

Ky _
0 0 0
7Y
Ky _ Ky
0 2 Vo aY
0 0 0
- 0 0
v2 . (14)
ﬁﬁ 0 0 ’
2
atp K——
0 =3 a0
0 - B 0
V3 Y K__
0 0 0 K__a
(15)
(16)
(17)
(18)



12 718

In the above equations, diag(a,b,c,. . .) indicates a diago-
nal matrix with elements (a,b,c...). The sum of the
terms from (i) to (vi) gives the complete Hamiltonian H
for the functional space associated with the ground state
of H,. If the proper values are assigned to the various
parameters, the eight complex eigenvalues €; of H can be
determined by using a numerical procedure. The annihi-
lation rates are then simply given by the relationship

A;=—21Im(g;)/% . (19)
Several examples of numerical calculations are presented
below.

III. NUMERICAL CALCULATIONS

The aim of this section is to demonstrate how the for-
malism developed in the previous section can be adapted
to different physical situations, and to show the effect of
the different parameters of H on the annihilation rates. It
is important, at this point, to have a clear idea of the
values to be assigned to the symmetrized contact densi-
ties. This is easy for the simple situation occurring when
the two electrons of the system are confined in nonover-
lapping space regions A4 and B, as qualitatively shown in
Fig. 1. In this case, we do not need to worry about elec-
tron indistinguishability. We may describe the system
with a wave function ¥, where the labels a and b are as-
signed to the electrons according to the region where
they are found. We then obtain the contact density of the
positron with each one of these electrons according to the
definition given in Refs. 7 and 18, i.e.,

K, =8mag{W¥|8(r, —r1,)|¥) (20)
and

Ky =8mag(W|8(r, —r,)|¥) . 21)

The physical meaning of the electron-positron contact
density, and its importance in determining annihilation
rates, has been thoroughly discussed in Refs. 7 and 18.
The relationships with the less familiar “symmetrized”
contact densities can be found by observing that

1
<I>+———‘/- (1+X)¥ (22)
and
L _
Q_—‘/E(l XV, (23)

where X indicates the operator that exchanges electron
coordinates bringing electron a into region B and vice
versa. By combining Egs. (9)-(12) with (20)-(23), and
taking into account that an equivalent way of writing «,
is

kp =8ma(X¥|8(r, —1,)|X¥) , (24)

one obtains
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Ky =3k, tuy)Fuy , (25)
K—*:%(Ka—}—Kb)—Kab N (26)
and
Ky_=K_i =3k, —Kp) . 27

Here «,, is defined by
Kap =8ma (W|8(r, —1,)|X¥) . (28)

The physical meaning of «,, is that of a “‘mixed” contact
density, related to the overlap of two different electrons
in the position occupied by the positron. In the situation
we are discussing now (electrons confined in nonoverlap-
ping regions) «,, is zero. The general case with «,, 70
will be treated below, but we want to begin here with
more familiar situations.

A free Ps atom in vacuum can be framed in our formal-
ism, if one includes in the system a second unpaired elec-
tron very far from the atom, acting as an inert spectator.
In this case, the contact density is k, =1 for the electron
in the atom and «, =0 for the dummy electron. We then
assume A, =0, A,k op=0 (no exchange interaction be-
tween electron a and electron b, no pick-off annihilation),
and keep the magnetic field as a variable. The result of
the numerical calculation of the annihilation rates, re-
ported in Fig. 2(a), is essentially coinciding with the out-
come of the Halpern theory, apart from the obvious
difference of a doubling of the degeneracy, due to the in-
clusion in our model of the dummy electron with two
possible spin orientations. It can be shown that the
difference between our calculation and that of Halpern is
of second order in the ratio #(A,+A,)/2A,,=3X1073,
and comes from different approximations in the quantum
mechanical treatment of a system with finite lifetime (on
this point, see also Mills!®).

Let us now imagine that the Ps atom is inside a medi-
um giving pick-off annihilation. We can account for this
new annihilation channel by taking A .og70 in our
Hamiltonian. The result of the numerical calculation
with that of the annihilation rates versus magnetic field
with Ajicr o =0.2A; are shown in Fig. 2(b). This is identi-
cal to Fig. 1(a) but for a rigid upward shift of all annihila-
tion rates by 0.2A,.

However, the interaction of the Ps atom with a medi-
um does not give only pick-off annihilation, but also a
distortion of the wave function of the bound electron-
positron pair. This means that the contact density «, is
no longer 1. In Fig. 2(c) we have reduced «, to 0.5; this is
a case representing the so-called “relaxed Ps”, often in-
voked for the interpretation of the ‘“normal” magnetic
effect on annihilation in condensed media. The result of
reducing «, is to decrease the annihilation rate
differences and to increase the sensitivity to the magnetic
field. Actually, Fig. 2(c) could be made identical to Fig.
2(b) by rescaling the horizontal axis by the factor «, and
the vertical axis by the factor 1/k,. We have also con-
sidered the case of a “‘compressed Ps” with «, =2 [Fig.
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2(d)], hypothetically possible in a medium where the par-
ticles respond to the mutual attraction with effective
masses larger than the bare electron mass.

For the situations included in Fig. 2, our model is un-
necessarily complicated. The modifications to the Hal-
pern scheme discussed in Ref. 7 would be sufficient for
obtaining essentially the same results with much less la-
bor. The need for the new formalism presented in this
paper arises if we want to take into account the possibili-
ty that the positron touches a second unpaired electron
(k,70), and that there is an exchange interaction be-
tween the first and second electron (A_,70).

In order to illustrate with an example the consequences
of the contact of the positron with the second electron,
let us assume that k, =0.1, and leave for the moment all
other parameters the same as in the five cases of Fig. 2.
One has now eight states, with three distinct annihilation
rates at B =0 and seven at B0 (the lowest rate, which is
not affected by the external field, refers to the two states
with total spin £3/2 along the field direction). The
graphs of the annihilation rates versus magnetic field are
reported in Fig. 3 side by side with the corresponding
cases of Fig. 2; in spite of the greater complication of Fig.

2.5F (d)

FIG. 2. Evolution of annihilation rates under the action of
the applied field with A.,=0, k,, =0 and the following choices
for the internal contact densities (k,,k,) and external contact
density (Apick.of):

(a) Kq= 1’ Kp :0’ )"pick‘oﬂ‘:O;

b) k, =1, K, =0, Apicron=0.24;

(©) k,=0.5, kK, =0, Apicyor=0-2A;

(d) kg =2, k;y =0, Apick.or=0.22,.
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3, the two figures appear to be similar. Of course, this is
only a consequence of the small value of k, chosen in
our examples. With this choice, an approximated
classification of the states according to the spin alignment
of the positron with electron a is still possible, although
this alignment is no more a true constant of motion. This
helps us to regard the effect of the second electron as a
small perturbation. At B =0, this effect is to split the
rate of the original ortho-Ps state in a doublet well
separated from the rate of the original para-Ps state; in
turn, this is increased but not split. The effect of the
magnetic field takes place in two stages, the first one due
to the mixing within the doublet, the second intercon-
necting the two groups of lines. In Fig. 4, we present an
enlargement of Fig. 3 in the low-field region giving a de-
tailed view of the first stage of the magnetic field effect.
Our model can be extended to represent a positron
bound to an exciton, a possibility that was mentioned in
Ref. 6. All we have to do is to take into account that an
electron hole gives a negative contribution to annihila-
tion, and this is simply done by assuming x, <0. In Fig.
5 we present an example with k, =0.5 and x, = —0.1.
Our next step is to include in our model the exchange
interaction between the two unpaired electrons by assum-
ing A.,70. Even in the absence of direct contact of the
positron with the second electron (k, =0), this interac-
tion affects annihilation with electron a via the spin ex-
change process taking place between the two electrons.

>>
{
)T

FIG. 3. Evolution of annihilation rates under the action of
the applied field with the same «k, and Ao Of the correspond-
ing sections a,b,c,d of Fig. 2, and «, =0.1.
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FIG. 4. Enlarged view of the region of Fig. 3 showing details
of the evolution of the lowest annihilation rates.

We show in Fig. 6 the dependence of the annihilation
rates vs A, in the absence of other perturbations (i.e.,
ke =1, Ky =0, Ajckor=0, B =0). In this figure, we have
limited the range of A, to a few meV; in the present con-
text, we are not interested in too large values of A,
which would imply to freeze the electrons in the triplet

0.7 T T T
0.6 E
. os|

0.3

0.2

0.1

ke

o

»H

\
Il

FIG. 5. Annihilation rates vs magnetic field with the choice
K, =0.5, Kp = —0. 1, )\’pick-oﬂ'zo'ZKS‘
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FIG. 6. Annihilation rates vs exchange energy A., without
other perturbations (k, =1, k;, =0, Apick.or=0, B =0).

state, thereby reducing the numbers of available spin
states of the whole system.

The presence of an exchange interaction comparable
with the hyperfine splitting is sufficient to modify the
effect of the magnetic field on the annihilation rates in a
very remarkable way. This is shown in Fig. 7, presenting
the annihilation rates vs B, as calculated for «,=1,
Kp =0, Apick-or =0, Aex =1 meV.

Finally, in our last example, we consider the most gen-
eral situation, including a mixed contact density x,,#O0.
This implies also electron-electron overlap (A, 70) as
well as contact of the positron with both electrons taken
separately (k,70, k,70). Actually, some simple algebra

shows that «,, <1 k,k,. We thus combine all our in-
gredients, making the following choice: k, =0.8, k, =0.4,
Apick-ofi=0-2A;, A, =1 meV. In Fig. 8 we present our re-
sults for the alternative: «,, =0 (broken lines) and 0.04
(continuous lines).

0.8

>’|
o
»

s
0.2} -
e ———
(o)
0.2 " . — 1 i 1
(o} 1 2 3 4

FIG. 7. Annihilation rates vs magnetic field with «,=1,
Ky =0, Apick-or =0, Ay =1 meV.
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FIG. 8. Annihilation rates vs magnetic field with k,=0.8,
Kp=0.4, Ajickor=0.2A;, A,,=1 meV, «,, =0 (broken lines), and
K45 =0.04 (continuous lines).

IV. CONTACT WITH MAGNETIC QUENCHING
EXPERIMENTS

Because we are able to calculate annihilation rates for
any possible interaction among the positron, two elec-
trons and a medium, we can make contact with experi-
ment in the cases that cannot be easily interpreted using
the “relaxed” Ps model. We recall that the experimental
results of Bisi e al.’ show the existence of two stages of
magnetic quenching of the positron lifetimes in several
plastic materials, a behavior that might suggest the pres-
ence of two different Ps-like objects coexisting in the
same sample. However, even combining this hypothesis
with the relaxed Ps model, the above-mentioned authors
did not obtain a fair fit of their data, without forcing the
theory by adjusting a larger number of parameters than
compatible with the model itself (they assumed the
singlet-triplet energy splittings to be independent of the
contact density). The calculations reported in the previ-
ous section suggest, as an alternative explanation for a
magnetic quenching occurring in two stages, the presence
of a second electron located somewhere near a bound
positron-electron pair. We discuss here the compatibility
of this second hypothesis with experiment.

Fortunately, the data of Ref. 9 are expressed in terms
of a purely experimental shape parameter R (the area of
the spectrum between two specified time limits ¢, and ¢,,
divided by the same area measured at B =0), which does
not imply any assumption on the number of components
forming the spectrum. This is an advantage, since it
gives us the possibility of an immediate comparison with
the predictions of our model. No similar opportunity is
provided by the data reported in Refs. 11-13.

The mathematical expression of R for a multicom-
ponent spectrum is

—At
T
R= 2wjle e )B+0
"kjtl__e*}‘jtz ’

)B=0

"7‘;’2

(29)
jwj(e
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where w; indicate the probability that state j is formed.
The sums of Eq. (29) include eight terms, corresponding
to the eight eigenstates of H; the terms corresponding to
eigenstates with the same lifetime are repeated. We thus
assume w; =1 for all j; this is consistent with the experi-
mental arrangement of Ref. 9, which gives no net spin
polarization of the positron flux injected into the sample.
It also implies that the energy differences among the
states, which are of the order of x,A,; and of A,,, are
small in comparison with the formation energy; this is
confirmed a posteriori by the best-fit values reported
below.

We have fitted expression (29) to the experimental data
of Ref. 9 using k,, k;, K,, A, as adjustable parameters
and fixing the pick-off rate at the experimental value for
the long-living component of the spectrum. Figure 9
shows the experimental points of Ref. 9 and our best-fit
curves. The corresponding parameters are given in Table
I. In most cases, the best-fit values of «,, and A_, are less
than 1072 In fact, acceptable fits can be obtained with
Ky, and A, fixed at O in all cases. This indicates that the
interaction between the two electrons is not a very impor-
tant factor.

o
e -
L1

J
L[ 1

0.6 L

1
1 1.5 2 25
B (T)

FIG. 9. Magnetic quenching of positron lifetime spectra in
some polymers. The experimental points are from Ref. 9. The
curves are obtained from our model by leaving k,,k,,K,,, A as
adjustable parameters (best-fit values are given in Table I): (a)
Mylar; (b) Nylon; (c) polystyrene; (d) Terfane; (e) Teflon.
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Some of the k, values reported in Table I are larger
than 1. As explained in the previous section, a contact
density above 1 might indicate effective masses larger
than the bare electron mass, as the result of binding to a
substratum. However, we would take any physical inter-
pretation of the values in Table I with caution, owing to
the following reasons: (i) with the modest statistical qual-
ity of the available experimental data, fairs fits can be ob-
tained even with the constraint «, <1; (ii) we cannot ex-
clude that the experimental data reflect a superposition of
effects due to coexisting positronic complexes of a
different structure.

The important point shown by our calculations is that
the hypothesis of the perturbation of a Ps-like object due
to spin of a second unpaired electron gives all the neces-
sary flexibility for retrieving a two-stage magnetic
quenching curve. The truth can even be more complicat-
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TABLE 1. Internal contact densities, “mixed” contact densi-
ty, and exchange energy, as obtained from the best fit to the ex-
perimental data of Ref. 9.

x?/degrees

Sample K, K Kap Ae (meV)  of freedom
Mylar 195 005 <1072 <1072 0.62
Nylon 081 002 <1072 <1072 0.40
polystyrene 0.92 0.01 <1072 <1072 0.50
Teflon 1.33 0.01 <1072 <1072 0.62
Terfane 1.06 0.05 0.01 <1072 0.90

ed, but the idea of simultaneous spin correlation of the
positron with more than one electron really seems the
easy key to interpret the so-called anomalous magnetic
quenching.
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