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The effect of the longitudinal variation of the lattice potential is investigated numerically for the
case of electron channeling in the low-energy regime. Corrections to the energy of the emitted pho-
tons are found to be three dimensional (3D) rather than longitudinal, in character. These 3D effects
are small and of about the same size as the error due to shortcomings in the description of the lat-
tice potential. Coherent bremsstrahlung involves transitions between quantum states that emanate
from the 3D nature of the potential. The corresponding photon energies and intensities are calcu-
lated and compared to available experimental results.

I. INTRODUCTION

Theoretical and experimental work on channeling radi-
ation and coherent bremsstrahlung has been reported by
many authors. ' The more recent theoretical work in-
volves the one- or two-dimensional (2D) Floquet-Bloch
approach (planar or axial channeling), and is, to a large
extent, due to Andersen and his co-workers.

However, these studies of channeling radiation have
used the transverse (or averaged, or projected, or contin-
uum approximation) potential in the theoretical treat-
ment. In an attempt to eliminate this approximation,
Kurizki suggested a scheme that uses the transverse
Floquet-Bloch modes in an iteration procedure intended
to incorporate 3D effects without solving the 3D eigen-
value problem. The present paper is devoted to axial
channeling and investigates the 3D problem, as well as a
reduced eigenvalue problem that adds purely longitudinal
modes to the transverse problem. Large eigenvalue prob-
lems require a substantial numerical effort and we have,
therefore, employed the Lanczos algorithm ' in order to
reduce computer time.

Coherent bremsstrahlung involves a low-intensity type
of radiation that occurs in conjunction with channeling
radiation but at higher photon energies. Spectra for this
type of radiation have been obtained experimentally and
described theoretically in terms of an essentially classical
collision. Previous theoretical studies ' involve an ad-
mixture of classical and quantum-mechanical concepts
and we have, therefore, relied squarely on quantum
mechanics for the present treatment. The quantum ap-

proach is not suitable for the high-energy regime because
of the prohibitively large numerical effort required. High
energies tend to favor the use of classical techniques. '

II. THEORY

V= g U e'g",
8

(2)

where the coefficients U contain the structure factor for
the lattice, and the Doyle-Turner coefticients' for the
atomic potential. The standard Floquet-Bloch solution is
written as

ikxy C (g x
g

g

Combining these equations and projecting with respect to
the basis yields the following eigenvalue problem:

g [(k, —k
~~

Dg )5 —2ym U —
~ jC =0,

D =k~+2k g+g

If spin-dependent effects are neglected, one may take
the linearized Klein-cordon equation for the electron in
the crystal potential as a starting point
(c =I= 1, k, =E, m, E, =ym—):

(V +k, —2ymV)/=0.

The lattice potential can be expanded in a three-
dimensional Fourier series in terms of the reciprocal-
lattice vectors g,
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The channeling axis is taken as the reference direction in
k space. Since we are primarily concerned with photon
energies, we introduce the energy difference E (the quad-
ratic term is a relativistic correction and can often be
neglected; E =E,—pm ):

Transverse
Silicon (eV)

Transverse+ longitudinal 3D

TABLE I. Photon energies in the forward direction for 4-
MeV electrons along the ( 110) direction.

g [(2ymE+E Ds—)5ss —2ymU s ]Ca.=0 . (5)
5947
6023
6585

5947
6023
6585

5940
6016
6577

A reduced eigenvalue problem is obtained by requiring g
and g' to be either purely transverse or purely longitudi-
nal, with respect to the channeling axis. The photon en-
ergy is given by the relation

AE
1 —

/3 cos9

where hE and 0 denote the transition energy and the po-
lar angle of emission, respectively.

III. CHANNELING RADIATION

In order to study the axial, and essentially transverse,
channeling problem, Eq. (5) was implemented numerical-
ly using the Lanczos algorithm. ' First, however, we
would like to comment on the relationship between the
iterative approach suggested by Kurizki, and the com-
plete eigenvalue problem. We note that the iteration in-
volves the solution of a dense linear system which re-
quires a numerical effort comparable to that needed for
an eigenvalue problem of the same size. This approach,
therefore, implies a tradeoff between numerical effort,
complexity of implementation, and approximation error.
Numerical experiments indicate that the eigenvalue prob-
lem is sensitive to modification of matrix elements far
from the main diagonal. Since the proposed iteration
procedure involves partitioning of the problem into a
transverse and a nontransverse part, with off-diagonal
cross terms, it is unclear whether the iteration actually
converges well enough for accurate eigenvalue calcula-
tions.

The transverse problem is a special case of Eq. (5).
Figure 1 shows the transverse potential and the trans-
verse energy levels for 4-MeV electrons along the (110)
direction in silicon. The potential does not have the pro-
nounced double well of the corresponding axis in dia-
mond. The well is rather deep, however, thus requiring a
large number of basis functions and the reduction in nu-
merical effort provided by the Lanczos algorithm is,
therefore, welcome. The splitting of the 2p state is
moderate for this case, since the "molecular character"
of the closest axes is less pronounced than in, for exam-
ple, diamond. The "short-range" Doyle- Turner (DT)
coefficients used in Fig. 1 were found to give a slightly
larger splitting than the conventional DT coefficients.
We have calculated the energy levels to five digits. The
accuracy of the Doyle-Turner description of the poten-
tial"' may not warrant this precision but these numbers
also serve as a reference for the convergence rate of the
eigenvalue problem.

By varying the energy of the incident electron, we have
verified that the Lindhard continuum approximation is
good down to approximately 10 keV. ' Since traditional
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FIG. 1. Transverse potential and transverse energy levels for
4-MeV electrons along the (110) direction in silicon. 737 basis
functions and a two-dimensional, mean-square, thermal dis-

0
placement of 0.11 A were used in the calculations. Half the
double well is shown in order to obtain sufficient resolution.

applications lie well above this limit, one could imagine
that the 3D problem could be simplified by reducing the
set of basis functions (rather than by attempting to solve
the eigenvalue problem approximately). The question of
whether a reduced set of basis functions can describe the
details of channeling radiation is, thus, before us. Table I
gives the photon energies for the transverse, reduced (i.e.,
transverse+longitudinal), and 3D case for 4-MeV elec-
trons along the (110) direction in silicon. No correction
for refraction has been made. We notice that the reduced
formulation gives no shift at all. The reduced ansatz can
be viewed as a "(2+1)-dimensional" solution where the
one-dimensional part describes high-energy electrons
traveling across lattice planes. Such an electron is essen-
tially free and the effect of the "longitudinal lattice
planes" is, therefore, negligible. As we can see in Table I,
the 3D correction is rather small and seems to be at the
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same level of approximation as the charge concentration
effects ' described by more elaborate lattice potentials.
The estimates given in Table I are based on calculations
including up to 1100 basis functions. We have also made
a brief investigation of positron channeling and found
that the 3D effects are even smaller for that case. The
conventional transverse potential is, therefore, perfectly
adequate for the case of channeling radiation as long as
the most intricate details of the lattice potential are disre-
garded. The material presented in this section is also
applicable to the low-energy type of coherent bremsstrah-
lung that stems from transitions between unbound trans-
verse states. A recent review of the various corrections
and approximations of channeling theory can be found in
Refs. 14 and 15. An interesting new approach based on
the optical potential and including spin-dependent effects
has been proposed by Nitta. ' Quantitative results for
this technique have not yet been published.

IV. COHERENT BRKMSSTRAHLUNG

The energies for photon emission due to the longitudi-
nal variation of the potential have been calculated from a
classical point of departure. ' Assuming that a collision
results in a transfer of momentum corresponding to the
longitudinal projection of the sum of a reciprocal-lattice
vector and the phonon crystal momentum, one obtains
the following formula for the photon energy:

A' c[2k, (Gi~+K~~ )
—(Gii+Kii) ]

2@me+2k'(Gii +Xi' —k;cos8)

occurs if the 5 distribution in Eq. (8) is replaced by a
smoother function corresponding to a hazier situation in
k space. This is not a population and does not add up ex-
actly to unity when summed over all states. It serves as
an indicator that links reciprocal-lattice vectors G to
quantum states n and makes it possible to interpret the
eigenvalue spectrum. If a sharp relation were enforced in
momentum space, then only some essentially transverse
states at the lower end of the spectrum would be popu-
lated and the only possible transitions would be those
corresponding to channeling radiation. This is illustrated
in Fig. 2 where the expression in Eq. (10) is given as a
function of n (the index enumerating the eigenstates).
The bottom curve pertains to Eq. (9) and shows that only
the lowest (transverse) state is populated when the angle
of incidence equals zero. The other curves correspond to
reciprocal-lattice vectors of increasing magnitude. The
peaks or bumps on the lines (energies given in the graph)
can be interpreted as states that are likely to be involved
in transitions. Curves for which Ci has no longitudinal
projection have been marked out and we notice that the
corresponding energy levels are those involved in chan-
neling radiation. The redistribution of population im-
plied in this approach has been discussed in detail for the
transverse problem. ' The presence of an interface in the
longitudinal direction reduces the importance of the 3D

Gii and E
~~

denote the projections of the reciprocal-lattice
vector and the phonon crystal momentum, respectively.
The dispersion relation for the phonon' indicates that
the phonon energy (=0. 1 eV) can be neglected in this
context. k; is the wave number of the incoming electron
and 0 denotes the emission angle.

If one instead tries to compute the photon energies
quantum mechanically, one confronts the problem of
identifying the energy levels [emanating from Eq. (5)]
that correspond to plausible transitions in crystal
momentum space. We have tried to do this by means of
Fourier transforms of the eigenstates. ' Such an overlap
integral can be written as
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The population is given by the expression
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FIG. 2. Schematic illustration of the overlap integral of a
plane wave and eigenstate n as a function of state index n and
with the reciprocal-lattice vector G as a parameter; 100-keV
electrons along the ( 100) direction in diamond.
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suits, these calculations may require the use of up to 500
basis functions. We have, once again, disregarded the
change in relativistic mass, partly because the effect is
marginal but mainly because of the more fundamental ap-
proximations (zero-phon on collisions, "pseudopopula-
tion" of states, etc. ) underpinning the entire approach.
Despite the questionable accuracy of the straightforward
quantum-mechanical approach, it still appears to suffice
for the analysis of experimental data. ' ' One may con-
clude that an accurate quantum-mechanical treatment of

this type of coherent bremsstrahlung ought to include
phonons.
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