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Interaction of quasiparticles in the —,
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The interaction of quasiparticles in the —, state is determined by exact calculations using systems
with up to nine electrons. Within the hierarchical scheme proposed by Halperin, which is based on
quasiparticles obeying fractional statistics, we use these results to estimate the energies and gaps of
the polarized and unpolarized

~
states and of the polarized and partially polarized —„states. Our

results conArm the ability of the hierarchical scheme to provide accurate quantitative estimates for
the fractional states issuing from the —,

' state.

INTRODUCTION

The fractional quantum Hall states at —,
' and —,

' are ad-
mitted to be well understood within the Laughlin theory
as incompressible Auids with fractionally charged excita-
tions. ' Building on this idea, it has been proposed to
describe other observed fractional states within a
hierarchical scheme ' (HS) in which higher-order frac-
tional states result from the condensation of quasiparti-
cles of the "parent" state into an incompressible Quid.
Various studies have shown that the HS predicts reliably
the quantum numbers of fractional states. It is of
great interest to find out if, beyond this, the HS is really
fit to provide accurate quantitative predictions for ener-
gies and gaps, or if an alternative theory is needed (cf.,
e.g. , Ref. 8).

At the first level of hierarchy, the energy of the
"daughter" states of the vo=1/m state which appear at
filling factor v, = 1/(m —1/p, ) with m odd and p, even
can be expressed as

6 ( v, ) = ( 1+1/2mp, ) 6'( vo) +E,+ /p, + Vl /p, .

Here @(v) is the energy per electron, E,+ is the proper en-

ergy of a single quasiparticle, and 'M is the interactionPl

energy per quasiparticle of the quasiparticle system con-
densed into an incompressible Quid state. Here and in
the following, the subscripts 0 and 1 refer to the level of
hierarchy. The energy 6'( —,

'
) and the proper energy E,+ of

the quasiparticle of the —,
' state have been accurately

determined. ' ' ' " So, the problem consists in the com-
putation of the interaction energy 'M of the dense quasi-

Pl
particle (anyon) system.

Halperin proposed a formulation of the HS (Ref. 4)
based on quasiparticles with fractiona1 statistics which al-
lows us to estimate the interaction energy Vl of the

Pl
quasiparticle system. Using this formulation, the energy
of the —', state has been estimated ' ' by treating quasi-
particles as point charges leading to 8(—', )= —0.424. '

Throughout this paper energy will be measured in units
e /elo where lo =(fic/eB)'~ is the magnetic length and e
is the dielectric constant. On an absolute scale, this esti-

mate may seem to be in reasonable agreement with the
extrapolation of diagonalizations for small systems
6( —,')= —0.433. However, the relevant energy scale, as
discussed in Ref. 4, is given by the difference of these
results from the classical plasma value

B~t„,( —,')= —0.4429. ' This difference comes from the
confinement of electrons in the lowest Landau level. We
now clearly see that the hierarchical result for the —', state
overestimates these quantum effects by a factor of 2. A
further worry is the fact that fractional states with well-
defined gaps at all filling fractions v=p/q at arbitrary
large odd q are predicted, which is in convict with experi-
ment.

However, previous investigations" have shown that
the charge density of the quasiparticle is not at all point-
like, but actually ring shaped, suggesting an important
internal structure which affects the interaction of quasi-
particles at short distance.

In this paper, we use the fractional statistics represen-
tation of quasiparticles to derive estimates for ground-
state energy and gaps of fractional states at first hierarch-
ical level. An accurate treatment of the quasiparticle in-
teraction leads for the first time to estimates which are
consistent with extrapolations of diagonalization results
and states at filling fractions not observed in experiment
are found to be gapless.

SPECIFYING THE QUASIPARTICLE INTERACTION

The interaction between quasiparticles differs in two
ways from the Coulomb repulsion of point charges: (i)
Multipolar corrections originate from the finite size of
quasiparticles. For large quasiparticle separation, these
corrections can be calculated from the charge distribu-
tion of isolated quasiparticles. (ii) At short distance (i.e. ,
comparable to the magnetic length la ), complicated
quantum-mechanical polarization effects occur. For-
tunately, exact calculations using systems with only a few
electrons allow us to investigate the system of two close
quasiparticles. We have performed such calculations
with up to nine electrons confined to the surface of a
sphere.
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We similarly study the quasiparticle involving an elec-
tron with reversed spin, which becomes the lowest quasi-
particle excitation of the —,

' state at low magnetic field. '

Using this kind of excitation in the hierarchical construc-
tion leads to a spin-unpolarized —', state instead of a fully

polarized —', state.
Following Halperin, " the quantum Hall state at filling

factor v=1/(m —1/p, ) consists of a 1/m state of No
electrons plus a system of N, =No/p, quasiparticles in
an incompressible fIluid state described by a pseudo-wave-
function depending on quasiparticle coordinates. Its
square modulus defines the probability distribution of
quasiparticles. In the disk geometry it is given by

(N) ) p, —1/m —
~z~~ /4m' (z„.. . , z~ )= + (z; —z. )

' g e
i &j k=1

where zk =xI, +iy& is the complex coordinate of the kth
quasiparticle measured in units of l0 and where p, must
be an even integer in order to lead to the correct fraction-
al statistics.

We assume that the interaction of quasiparticles can be
approximated by a pair potential V(lz; —z l). This in-
teraction V(R) is defined such that the energy VL of two
quasiparticles in a state with given relative angular
momentum L described by pseudo-wave-function g' 'I

(3)

coincides with the interaction energy of the correspond-
ing microscopic two quasiparticle state [see Eq. (8)]. Ow-
ing to the form (2) of the pseudo-wave-function, in the
bulk limit X1—+ ~, the two-point correlation function of
quasiparticles g (z;,z ) depends only on the relative sepa-
ration R = lz; —zj l

and can be expanded (cf. Ref. 16) as
' 2k —1/m2(1+Cq ) —R /4mg(R)= g r(2k +1—1/m) 4m

e

The coefIicients Ck vanish rapidly for large k and are cal-
culated by fitting Monte Carlo results' for g (R). The in-
teraction energy "9 of the quasiparticle system can then

Pl
be directly expressed in terms of the matrix elements Vl
(cf. Refs. 3 and 5) by

oo (k +—,') I (2k —
—,
'

)
'Mp =4vrmn, g (1+Ck)V~k-

J& =0 m ~ (2k+I)!

where n
&

= [27r(mp& —1)] is the density of quasiparti-
cles. The last term describes the Coulomb interaction of
the quasiparticle system with its compensating back-
ground.

The matrix elements for small L are calculated directly
from microscopic trial wave functions by extrapolating
exact results for small systems of electrons on a sphere.
In order to describe states containing a quasiparticle in-
volving one electron with reversed spin, we use the mi-

(No )+tA= X &
i &n

No 2 L No
(u, u„—v, u„) u, ' u„' (No)0

Qi Uj Ui Qj QnUj Un 0.
jWi jWn

XS; S„ lup ),
where i, j, and n run over 1, . . . , No and where P is the
appropriate Young symmetrizer of symmetry type
[No —2, 2], ' and where L can only take even values for

(N, ) (No )

symmetry reasons. The wave functions ++ &
and +~&'I

are eigenstates of the total spin (g;S; ) . '

Finally, to describe fully polarized systems containing,
respectively, a single quasiparticle or two quasi-
particles with relative angular momentum L, we

(No) (No) (No) 2 (No)
use @+ =8++i or O'L =0 @ii, L where

8=+, ', S,+L,+, and L,+ i.s the raising operator of the

angular momentum of the ith electron. 4+' is in fact
identical to Halperin's trial wave function, in which

(N, )

two electrons are paired. The wave function NL
' de-

scribes an electron system with total angular momentum
(No )

lf f X0 —L. For m = 3 and L =2, 4, and 6, 4L pro-
vides excellent estimates for the ground-state energy at
corresponding quantum number l„„which is obtained by
diagonalization for systems with up to nine electrons.
For the system with quantum number I„,=N0, it turns
out that the ground state is better described by a trial
wave function describing a system with two quasiparti-
cles plus a supplementary neutral excitation consisting of
a quasihole-quasiparticle pair, whose creation costs less
energy than bringing two quasiparticles together by im-
posing L =0.'

The proper energy Y. 1+ of the single quasiparticle is
defined as the bulk limit X0~ &x) of the diA'erence in total

(No) (No)
Coulomb energy between states N+ ' (or 4+ t ) and

{No) (cf. Ref. 9). For the quasiparticle of the polarized
system and of the one involving the spin reversal of an
electron, we obtain, respectively, c,+ =0.076 84+0.000 10
and E =0.0501+0.0005 (cf. also Ref. 15).

The interaction energy V L
"' of two quasiparticles in

a state of relative angular momentum L is defined as

V' "'= lim b,Et (No) —2c, ,
+ .

No

croscopic trial wave function proposed initially in Ref. 9,
which is given on the sphere by

N —2
Qi

QI Uj UiQj
j wi

where the indices i and j run over 1, . . . , N0,
iP,. /2 —iP,. /2u;=cos(g, /2)e ' and U, =sin(0, :/2)e ' are the sgi-

nor coordinates of the ith electron on the sphere, 3 ( o)

is the Laughlin-Jastrow wave function,
l
up ) denotes the

fully polarized spin state, and S; is the lowering opera-
tor which sets the spin of the ith electron antiparallel to
the field. To describe the system containing two quasi-
particles with reversed spin and in a state with relative
angular momentum L, we write
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V (j)
Polarized

V (5) V (MWF)
Reversed spin

V (5) V (MwF)
L L

TABLE I. Interaction energy of two quasiparticles with rela-
tive angular momentum L. VI ' denotes the expectation value
(3) of the multipole expansion of order r for V. VL "' are
results obtained with microscopic wave functions. Numbers in
parentheses denote the standard deviation in unit of the last di-
git.

TABLE II. Ground-state energy per electron and gap of the
polarized (f $) and unpolarized ( f f)

~
states. In the first row

are listed the hierarchical estimates assuming pointlike quasi-
particles, which are obtained using matrix elements V L .
V L

"' denotes the hierarchical estimates using V L
"' for

L 4 and V L
' otherwise. At the bottom, we list the extrapola-

tions of exact diagonalizations. The relevant quantity in the es-
timates for the ground-state energy is given by the dift'erence
from the classical plasma value D,j„,= —0.4429.

0.1318
0.0231
0.0162
0.0132

0.0186
0.0146
0.0123

0.0939(11)
0.01 14{3)
0.0206(9)
0.01 18{16)

0.0211
0.0157
0.0129

0.089(1)
0.019(1)
0.013(2)

V(j)
(MWF)
L

Exact

~gap

—0.4220(2) 0.082(3)
—0.4313(8) 0.073(4)
—0.4335(9) 0.061(15)

—0.4355(3)
—0.4411(15)
—0.4393(6)

~gap

0.082(3)
0.059(4)

Here AEI (Xo) is the difFerence in total Coulomb energy
(No ) (No) (No )

between states NL
' (or N&t"L) and 4 '. Problems as-

sociated with the extrapolation to the bulk limit Xo~ ~
are discussed in Refs. 5 —7.

Exact calculations for the matrix elements VL with
large L are not possible. However, their estimation only
involves the interaction of distant quasiparticles, which is
well approximated by the Coulomb repulsion of rigid
quasiparticle charges. The charge density p(r) of a single
quasiparticle has been obtained from Monte Carlo results

(No) (No)with wave functions N+ t and 4&+ ' (cf. also Refs. 11 and
9). However, this charge density p(r) contains the efT'ect

of the cyclotron motion of the quasiparticle which has to
be removed for the calculation of V. It results from the
convolution of the "intrinsic" charge density p '(r) with

2 /2the form factor of cyclotron motion e ' . The large-
distance behavior of V(R) is then calculated from the
multipole moments of p '(r), which can be, in turn, relat-
ed to the multipole moments of p(r)

Expectation values V iL
' of Eq. (3) are listed in Table I

for small L. Here, X denotes the order at which the mul-
tipole expansion of V(R ) is truncated. In the spin-
polarized system, the polarization eftects of quasiparticles
lead to an important reduction of V2 (50% of the
Coulomb value) and to a significant increase of V4. For
larger L values, pseudopotential coefhcients are largely
influenced by the important quadrupole correction origi-
nating from the ring-shaped density of the quasiparticle.
The agreement of the estimates V 6

"' and V 6
'

confirms the validity of the multipole expansion of V in
the evaluation of matrix elements with L ~ 6. For quasi-
particles involving electrons with reversed spin, a reason-
able agreement is found already for L =2.

We first discuss our results for the polarized and unpo-
larized —', states. In Table II are listed the hierarchical es-
timates of the ground state and of the gap assuming
pointlike quasiparticles (first row) and using a more accu-
rate representation of the interaction at short distance
(second row). These last estimates are in good agreement
with the extrapolation of results of diagonalization,
which are given in the third row. For the polarized state,
taking properly into account the short-range interaction

of quasiparticles improves the agreement for the ground-
state energy by one order of magnitude.

The values for the gap in Table II are inferred from a
neutral excitation consisting of a free pair of particlelike
and holelike excitations of the quasiparticle system,
which leaves the total spin unchanged.

Our results for the energies of the polarized and unpo-
larized —', states can also be used to estimate the value B,
of the magnetic Geld at which, due to the Zeeman term,
the polarized state becomes the ground state. In the situ-
ation of the experiment of Ref. 24, for an electron density
n, =2.3X10" cm and using the values @=12.8 and
g=0.4, we obtain B,=9.1+1.6 T, whereas extrapolations
of diagonalizations lead to a smaller value B,=5.4+1
T. The experimental value is B,=7 T.

We also investigate the state at filling factor v= —,', ,
which results for the choice p &

=4. While injecting quasi-
particles with up spin leads to the polarized state, adding
quasiparticles involving electrons with reversed spin leads
to a partially polarized state with total spin S =iVO/4.
Our estimates for the energies of these states are con-
sistent with results of diagonalizations (see Table III).
Our calculations seem to rule out the existence of a gap in
the polarized —,", state, consistent with results of diagonal-
izations for four and eight electrons where the ground
states occur at I„,=2 and a large number of excited
states are nearby. ' ' On the other hand, the partially
polarized —,', state may have a small finite gap (see Table
III).

V(j)
V (MWF)

L

Exact

—0.4139(4)
—0.4134(3)
—0.4158

~gap

0.0041(2)
-0
~0

—0.4207(4)
—0.4211(4)
—0.4217

Egap

0.0041(2)
0.003{2)

TABLE III. Ground-state energy per electron and gap of the
polarized ( 1 1') and partially polarized ( $ ) —„states given as in

Table II. The classical plasma value is ep„, ,= —0.4256. The
1/No linear extrapolation of exact results for No=4 and 8 for
the polarized state as well as the exact result for No =6 for the
partially polarized state are given for the sake of illustration.
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To summarize our results, in the spin-polarized case,
the interaction of quasiparticles in the —, state differs

strongly from the Coulomb interaction at short separa-
tion. It is characterized by a particularly small pair-state
energy VL for relative angular momentum L=2 while
those for L=O and 4 are large. As a result, the stability
of the quasiparticle Laughlin state (2) with p, =2 is
enhanced, while those with p, 4 are destabilized. This
mechanism explains why at the same time the gap of the
spin polarized —', is large while the polarized —,', state is

likely to be eliminated. On the other hand, the interac-
tion of quasiparticles involving electrons with reversed
spin is not very different from the repulsion of point
charges and allows the existence of both unpolarized —',
and partially polarized —,', states.

In view of our results, the experimental observation of
particularly large gaps for the polarized systems at
v= —', , —', , —', , . . . , (s+ I)/(2s+3), etc. appears to have a
simple explanation within the hierarchical picture.

Indeed, this will result if the interaction between quasi-
particles at level s+1 in the state with p, =2 is again
characterized by strong V o

+" and weak V 2'+" pseudo-
potentials. The ring shape of quasiparticles may be an
indication for this to happen. Such a ring shape has been
observed in numerical calculations ' also at v= —', and —',
and is probably a general feature for the sequence
(s + 1)/(2s +3). This point can be studied by generaliz-
ing our trial wave functions of one- and two-quasiparticle
states to higher hierarchical levels. While analytical eval-
uation of these becomes quite involved due to the frac-
tional statistics term, Monte Carlo calculation poses no
problems.
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