PHYSICAL REVIEW B

VOLUME 43, NUMBER 15

15 MAY 1991-II

Breakdown of quantized conductance in point contacts calculated using realistic potentials
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Ionized donors in a heterostructure generate a random potential with long-ranged fluctuations.
We have used realistic self-consistent potentials to study its effect on the quantized conductance of
point contacts, and find that transport in confined and unconfined geometries probe complementary
aspects of the random potential. Thus quantization breaks down when the length of the point con-
tact exceeds ;— pm, an order of magnitude less than the mean free path in the bulk. The characteris-

tics reflect the detailed configuration of impurities near the point contact.

The quantized conductance®? of narrow constrictions
or “quantum point contacts” in a two-dimensional elec-
tron gas (2D EG) requires the low scattering rates
achieved in heterostructures. A point contact behaves as
a quasi-one-dimensional system and its conductance, in
units of (2e%/#), is given by the number of occupied
transverse subbands.’> This can be controlled by the gate
voltage. The transport mean free path in a heterostruc-
ture at low temperature, where it is limited by ionized im-
purity scattering, is typically many um and the obvious
inference is that the random potential must be very weak.
It is therefore surprising to find* that the quantization of
conductance breaks down in point contacts longer than
+um—an order of magnitude less than the mean free
path. Must we invoke a different mechanism like
electron-electron scattering, or is ionized impurity
scattering still responsible? If so, it is clear that a point
contact and an unpatterned 2D EG respond very
differently to the random potential from the ionized im-
purities.

This raises the broader theoretical question: what as-
pects of the random potential are probed by different
transport experiments? The natural first choice for a
model is a sum of short-ranged potentials. This can be
justified for three-dimensional metals, where screening is
good and scattering is nearly isotropic. Different mea-
sures of disorder, such as the total and the transport
scattering rates, are nearly identical, so the randomness
can be characterized simply by a strength. However, the
real random potential in a 2D EG from ionized donors is
entirely different, because screening is poor and the
donors are out of the plane. The impurity potentials are
long ranged and overlap strongly in space, generating a
random potential whose correlation length is long (=0.2
um) on the scale of the Fermi wavelength A(~=0.05 um),
and much larger than the spacing between donors (=0.01
um).> The ratio between Ap and the correlation length
explains the long mean free path of an unconfined 2D
EG. However, other measures of disorder such as the
width of Landau levels in a high magnetic field yield very
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different scattering rates in such a potential.®

Here we show that the geometry of a transport experi-
ment determines which features of the random potential
are probed. In particular, the long-ranged nature of the
potential is crucial in explaining the breakdown of the
quantized conductance. This conclusion is based on cal-
culations of the conductance of point contacts using real-
istic self-consistent potentials. We find that the conduc-
tance can be well quantized in short point contacts (0.2
pum), but scattering by the random potential destroys
quantization in longer devices (0.6 um) that exceed the
correlation length. Even the 0.2 um devices show evi-
dence of the random potential, with large variations from
device to device due to the specific configuration of
donors near the active region. There are resonances in
some samples, where the random potential produces a
well under the point contact.

We have previously described a numerical technique to
study the random potential caused by the ionized donors
in patterned heterostructures,” and have used the same
semiclassical model to calculate the self-consistent poten-
tial for quantum point contacts. It includes the gates,
which produce the guiding potential, and the randomly
positioned ionized donors in the doped layer of the het-
erostructure, which provide the dominant scattering
mechanism at low temperature. The main features of the
model are as follows.’

(i) Donors are distributed at random in a §-doped layer
and are fully ionized. We ignore other impurities, paral-
lel conduction, DX centers, and possible correlation be-
tween the positions of donors.

(ii) Electrons are treated as a strictly two-dimensional
gas whose density is given by a local, semiclassical
Thomas-Fermi approximation.

(iii) The chemical potential is perfectly pinned on the
surface.

The conductance of electrons through the self-
consistent potential is then found quantum mechanically.
Perfect leads, in which no scattering occurs, are attached
to the system by extending the potential profile at the left
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and right edges outward to infinity. The Green’s func-
tion for an electron is then calculated recursively.® This
method is applicable to any random potential, and is
equivalent to solving the Schrodinger equation using
finite differences. The conductance G was found from the
transmission matrix 7 using G =(2e2/h)Tr(tt7). The cal-
culation was performed for zero temperature.

We modeled the devices of Timp et al.,* which had
the following layers: metallic patterned gate; undoped
cap of GaAs, 6 nm thick; undoped Al; ;Ga; ;As, 24 nm
thick; 8-doped layer with NI()ZD)=4>< 10'® m™2; undoped
spacer of Aly;Gaj ;As, 42 nm thick; undoped substrate
of GaAs.

Si in Al,_,Ga, As does not behave as an ideal donor
and only a fraction ionizes, so the full value of doping
N3P would give an excessively large electron density.
The doping was therefore reduced to 2.5X 10 m~2 in
the simulation. This gave around 3 X 10> m ™2 electrons
when the gate is unbiased, comparable with the experi-
mental value of 2.75X 10'> m ™2, We simulated both pat-
terns of point contacts: each has a gap g=0.3 um be-
tween the gates, with lengths /=0.2 and 0.6 um. The cal-
culations were performed with several configurations of
the discrete, random impurities. For comparison, we also
considered smooth potentials obtained by replacing the

FIG. 1. Gate pattern on surface and density of electrons in
2D EG for point contacts with g=0.3 um, and /=0.2 and 0.6
um. Contours start from zero and are 4.2X 10" m 2 apart, cor-
responding to an energy spacing of 1.5 meV. All cases corre-
spond to two transverse subbands being occupied in the neck of
the point contact. The effect of the random potential for the
0.2-um gate is seen by comparing (a), in which there are no ran-
dom donors and the contours are smooth, with (b) in which the
impurity potential is present. The 0.6-um gate in (c) exceeds the
correlation length of the random potential, and there are fluc-
tuations within the point contact. (d) Shows a potential well in
the channel which contains a resonance.
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discrete impurities with a sheet of uniform charge densi-
ty.

Contour maps of typical electron densities are shown
in Fig. 1. These can also be viewed as potential-energy
plots showing only the contours below the Fermi energy.
Figure 1(a) shows the 0.2-um-long gate with a smooth po-
tential. The point contact has an ideal saddle point, and
transport should be described well by the adiabatic ap-
proximation.® Figure 1(b) shows a realistic case including
the random potential. The saddle point is shifted by the
impurities but is not greatly distorted. In contrast, Fig.
1(c) shows the 0.6-um point contact, which is longer than
the correlation length of the random potential. There are
now fluctuations within the point contact, which are like-
ly to cause scattering. The potential gets rougher as the
channel is squeezed further and the density of electrons is
reduced, as seen before in wires.’

The calculated conductances G as a function of gate
voltage V, are plotted in Fig. 2. In Fig. 2(a), for the 0.2-
um gate, curve A shows the good quantization of the
smooth system. The rounded guiding potential [Fig. 1(a)]
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FIG. 2. Conductance G as a function of gate voltage ¥, for
(a) the 0.2-um gate and (b) the 0.6-um gate. Curves are offset
for clarity. Curve A4 in each case shows the clean quantized
steps found in a smooth system. The other curves are for
different impurity configurations, showing a variety of charac-
teristics. For the 0.2-um gate the conductance can be well
quantized, with six good steps shown in curve B. Curves C and
D show structure due to resonances in the channel. The break-
down in quantization in a longer point contact is shown by
curves B—D in (b), with one plateau at best. Curve 4 in (a) is
for the sample illustrated in Fig. 1(a); B in (a) corresponds to
Fig. 1(b); B in (b) to Fig. 1(c); and D in (a) to Fig. 1(d).
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prevents “organ-pipe” resonances'® from developing.
Curve B shows that G can remain well quantized even in
the presence of the random potential, although the steps
between plateaus are broadened. Another sample, not
shown here, also shows good quantization. Curves C and
D, for two other configurations, are poorly quantized
with structure due to the random potential which will be
discussed below. For the 0.6-um point contact in Fig.
2(b) the smooth potential shows better quantization than
the shorter point contact because tunneling through the
saddle point is reduced (curve A). Including the random
potential reverses this, and quantization is much poorer
than in the shorter point contact (curves B —D). No sam-
ple shows more than one good plateau because of back-
scattering by the random potential in the point contact.
In most cases there is almost no remnant of the steps, in
agreement with experiment.*

We have seen resonances within the channel of the
shorter device. Curve D in Fig. 2(a) shows sharp peaks in
G(V,) below the onset of the first and second plateaus.
The density of electrons is plotted in Fig. 1(d) for
V,=—1.53 V, and shows a clear double barrier in the
point contact.!! This is produced by a well in the random
potential, in contrast to devices where a patterned gate
has been used deliberately to produce a “quantum dot.”'?
The resonance broadens and disrupts the higher plateaus:
resonant tunneling turns into resonant backscattering,
which has been explained using a coupled-mode analysis
by Laughton et al.'*> Somewhat similar resonances have
been seen in calculations with short-ranged attractive po-
tentials.!*!® Features in the potential can be explored ex-
perimentally by scanning the point contact with a
differential bias.®

Several effects are introduced if the temperature is
raised above zero: (i) the density of electrons changes; (ii)
the distribution function broadens; and (iii) inelastic
scattering starts. We do not expect (i) to be important as
we are only interested in temperatures below 4.2 K, and
(iii) is very difficult to treat realistically. We have es-
timated the effect of (ii), a broadened distribution func-
tion, to see if this alone can explain the experimental ob-
servation that the quantized steps disappear above 1 K.
The conductance as a function of energy G (E) must be
averaged over the derivative of the Fermi function
(—0f/0E). We used G(Ep) as an estimate of G(E),
where E is the Fermi energy of electrons at the nar-
rowest point of the point contact and depends on V,.
The results for one of the 0.2-um samples [curve D of
Fig. 2(a)] are shown in Fig. 3. A small increase in tem-
perature (0.5 K) smooths the fine detail of the resonant
structure. More detail is lost as the temperature in-
creases, but the plateaus become better defined; experi-
mentally they are best near 0.5 K.! The plateaus them-
selves disappear due to thermal smearing when the sub-
band spacing becomes comparable to 4k T, and there is
no trace of them at 4.2 K in this device. Although there
must be some inelastic scattering at this temperature, it
need not play a major role in the disappearance of the
quantized conductance: thermal broadening alone seems
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FIG. 3. G(V,) for a 0.2-um device [curve D, Fig. 2(a)] and a
range of temperatures. Details of the resonance are lost by
thermal smearing as the temperature is raised to 0.5 K, but the
quality of the plateaus improves. The quantized steps lose
definition at higher temperatures and vanish by 4.2 K.

to be sufficient.

A general comparison of our results with experimental
data suggests that we overestimate the size of the fluctua-
tions by a small factor. Our treatment of the donors is al-
most certainly responsible. The first problem is the as-
sumption that all donors are ionized. We pointed out
earlier that this leads to a much higher density of elec-
trons than that seen experimentally. Also, thermal cy-
cling of devices to room temperature produces different
conductance characteristics when the measurements are
repeated at low temperature,'” which is thought to be due
to a redistribution of ionized donors. Secondly, there
may be correlation between the positions of ionized
donors, although the donors as a whole are placed at ran-
dom.'® We intend to include these effects and the “back-
ground” impurities in our model.

We have shown that the mobility of a uniform 2D EG
and the quality of quantization in a point contact reflect
complementary aspects of the random potential. The
long range of fluctuations in a doped heterostructure ex-
plains why quantization breaks down in point contacts
longer than Jum, while the “bulk” mean free path is
many pum. The active region of 0.2 um point contacts is
comparable with the correlation length of the random po-
tential, leading to large variations between nominally
identical devices even if they are fabricated perfectly.
These variable characteristics set a fundamental physical
limitation on the performance of ultrasmall devices based
on doped heterostructures.
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