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Exciton binding energy in GaAs/Al„Gat As multiple quantum wells
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We have used a variational three-dimensional trial envelope function to calculate the exciton
binding energy in GaAs/Al Ga& „As multiple quantum wells. In all the limiting cases that the
barrier width d„~~ or d& ~0, and the well width dz ~ ~ or dz ~0, the calculated binding ener-

gy approaches the respective correct value. From the computed binding energies in several experi-
mentally studied samples, we have discovered the systematic dependence of the exciton binding en-

ergy on the well width and the barrier width.

The fabrication of high-quality semiconductor hetero-
structures and multiple quantum wells (MQW's) allows
the study of the quantum size effect' in the physical
properties of these systems, which are quite different
from those of the corresponding bulk materials. The sub-
band formation strongly inAuences the exciton effects,
which dominate the optical absorption and the photo-
luminescence spectra of both single GaAs/Al Ga, As
quantum wells and GaAs/Al Ga

&
As MQW's. 3

Even at room temperature the sharp exciton lines can be
detected in the absorption spectra of GaAs/Al Ga& As
MQW's, but can hardly be observed in bulk GaAs sam-
ples. In connection with the possible applications to in-
tegrated optics, such materials have been recently inves-
tigated extensively.

Both the variational method " and the perturbation
theory' have been commonly used to study the exciton
in MQW's, besides the k-space approach of Broido
et al. ' and the self-consistent numerical scheme pro-
posed by Wu. ' In this Brief Report we will use a varia-
tional three-dimensional envelope function to obtain the
exciton binding energy EI, in GaAs/Al Ga

&
„As

MQW's. The computed Eb approaches the correct limit-
ing binding energy of an exciton in a single quantum
well. ' ' Our calculation also reveals a systematic depen-
dence of the exciton binding energy on the well width and
the barrier width.

We will first outline the relevant theoretical analysis
and computation scheme for excitons in a MQW, the de-
tails of which can be found in the literature. ' ' ' In the
effective-mass approximation, we need to solve the
Schrodinger equation along the z axis which is perpendic-
ular to the interfaces. The corresponding Hamiltonian is

H~= [m~(z~)] [mc(z~)] [m~(z~)] + V~(z~),p
2 dz dZ

where 2ct+p= —1, with g=e for a conduction electron
and g=h for a (light or heavy) valence hole. V, (z, ) and
Vh(zh ) are square-well-barrier array type potentials illus-

trated in Fig. 1 of Ref. 17. The spatial-dependent
effective mass m&(z&) has the correct bulk value of the
barrier material and the well material. Except for the
matching parameter p and the band offset Q which ap-
pears in V&(z&), all material parameters needed to solve
(1) are available from existing experimental data. While
the early calculation' suggested a value Q -0.9, the
commonly accepted value now' is Q -0.6—0.65, which is
also the conclusion of our recent tight-binding calcula-
tion. The procedure of deriving the eigenstates of (1)
and the dependence of the subband structure on the
values of P were investigated earlier with a numerical
computation. ' In the present work, a similar numerical
check on the exciton ground state indicates that the bind-
ing energy of the exciton is insensitive to the values of p
in the region of —1(p(0. Therefore, in the rest of this
paper we set P= —1 and Q =0.65.

When the Coulomb interaction between the electron
and the hole is taken into account, the Hamiltonian of an
exciton in a MQW has the form

H =H, +H~ +H,~,
where

2

2p 0x Bp

e2

e/r, —r, /

(3)

In the above equations, r, = (x„y„z,) and r&

=(xt„yh, zh) are the positions of a conduction electron
and a valence hole, respectively. p is the reduced mass of
the electron-hole pair, and (x,y) = (x, —xt, ,y, —

yt, ) label
their relative position in the z-y plane. e is the static
dielectric constant, and for the bulk Al GaI As alloy,
e(x)=13.18—3.12x. ' Since we are interested in the re-
gion of small x &0.4, it is reasonable to use the averaged
value &E(0)e(x) for the GaAs/Al Ga& „As MQW. In
certain cases' one simply uses e= 13.18.

Let g, (z, ) and gh(zh ) be, respectively, the normalized
eigenstates of H, and H&. The trial wave function for the
exciton ground state can be expressed as
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zh ) P (z ) Ph(zh )V (r (4)

where r'=(x, y) is a two-dimensional vector in the x-y
plane. The exciton envelope wave function y(r', z„zh) is
approximated by a three-dimensional hydro genic-type
wave function'

where C3 is the normalization constant. The y and the
Bohr radius k are variational parameters to be deter-
mined from minimizing the total energy & H &

I

'P3D(r» h )

=C3(1+ylz, —zhl )XexpI —[r' +(z, —zh) ]' /AI,

=&VlHl%'&. The binding energy of an exciton in its
ground state is then given by

E,= (&—q IHI~& &—y, qhlH, +H, lq, qh &) . (6)

The subband Bloch states g, (z, ) and ph(zh ) and sub-
band structures of GaAs/Al, Ga, As MQW's with
x (0.4 were derived in our ear1ier work. ' Knowing
these Bloch states, Eb is readily calculated. Let d ~ be the
barrier width and d~ the well width, and so d =dz+d~
the lattice constant of the MQW. When (2)—(5) are sub-
stituted into (6), the exciton binding energy Eh(A, ,y) as a
function of the variational parameters A, and g can be ex-
pressed as

Eb(~ X)=—&e,(z, Wh(zh)%3D(r' z, zh)lH, (z, )+Hh(zh)+H h(r' z, zh)le, (z, )eh(zh)93D(r' z, zh) &

+ & q, (z, )y h( zh)lH, (z, )+Hh(zh )lq, (z, )qh(zh ) &

= —lim g f" dz, f dzh G (k,y;z„zh )
(g—1)d (u —1)d

7

where G(A, ,y;z„zh ) is a complicated function of the positions of electron and hole along the z axis.
Before going further to calculate Eh ( A. ,y ), it is important to point out the intrinsic deficiency of the use of the two-

dimensional exciton envelope wave function

y2D(r') = C2 exp( r'/1, ),—
where C2 is a normalization constant. When it is used in (6) the exciton binding energy is reduced to

Eh (A ) = —lim g f dz, l @,(z, ) l f dzh lych (zh ) l & yzD(r') lHh (r', z„zh ) lyzD(r') &

N~ oo (g —1)d (v —1)d
q, v=1

(9)

We notice that yzD(r') does not depend on z, and zh. Therefore the matrix element &yzD(r')lH, h(r', z„zh)ly2D(r') &

decreases with increasing lz, —
zh l. When z, and zh are in dift'erent quantum wells, the corresponding matrix element

has a very small value. If we neglect such small quantities, (9) can be well approximated as

Eh (A ) = —lim N f dz, f dzh l g, (z, )gh (zh ) l & y2D(r') lH, h (r', z„zh ) l@2D(r') & (l0)
N~oo . 0 0

Since both p, (z, ) and gh(zh ) are normalized to unity, we
have

f dz, lf, (z, )l'= f dzhlgh(zh)l'= —.
d

Hence the exciton binding energy Eh (A, ) is inversely
proportional to X, and approaches zero as X increases to
infinity.

The analytical conclusion that Eh (A, )~0 as N~ oo

has been confirmed by a numerical calculation. Further-
more, if we use the original formulation of Jiang s pertur-
bation calculation' of the exciton binding energy, we
reach the same conclusion that the exciton binding ener-
gy vanishes as X~~. These results are the consequence
of unphysical choices of the envelope wave function for
an exciton in a MQW, which make the exciton delocalize
along the z axis.

Now we return to (7) to calculate the exciton binding
energy Eh(l. ,g). When the well width ds is much larger
than the Bohr radius A,p, then the exciton stays in a single
well and its physical properties are the same as those of a

free exciton in a pure GaAs bulk sample. If d& is compa-
rable to or less than A,p, the exciton cannot be confined in
a single well unless the barrier width dz is so large that
d g +dg ))kp. Finally, if d z +dz is about a few times
the Bohr radius A,p, then the exciton extends over more
than a single well. Therefore, to calculate Eh(l, ,y) from
(7), the value of N must be sufficiently large in order to
ensure a convergent result. Furthermore, since the com-
putation of Eh(l. ,y) involves numerical integration over
z, and zh, we have taken precautions against the possible
numerical inaccuracy which may appear when the
domain of integration becomes much larger than the
MQW lattice constant d =d„+dz.

The effective mass of the conduction-band electron at
the I valley is isotropic and has been determined experi-
mentally ' as m, (x)=(0.067+0.083x)mo (same value for
both the density-of-states and the conductivity electron
mass). However, since the light- and heavy-hole bands in
bulk Al Gai As with x (0.38 are degenerate, the
effective masses of the valence-band holes are anisotropic.
For a given alloy concentration x, the longitudinal (along



12 628 BRIEF REPORTS 43

the z axis) heavy- and light-hole effective masses mhh, (x)
and m, „,(x) are used to solve (1), while the computation
of the reduced mass p(x) in (3) needs the transverse
(parallel to the interfaces) heavy- and light-hole effective
masses m„„,(x) and m, „,(x). These anisotropic effective
masses can hardly be measured by experiments, which
usually give an averaged value over the longitudinal and
the transverse masses. In our calculation we will deter-
mine the hole effective masses from the band-structure
parameters.

The degenerate light- and heavy-hole subbands in bulk
Al Ga, As are calculated from the Luttinger Hamil-
tonian. At k=0 the heavy hole and the light hole are
decoupled, and the anisotropic hole effective masses are
simple functions of the band-structure parameters y&(x)
and yz(x),
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where the + sign is for the heavy holes and the —sign is
for the light holes. The band-structure parameters have
been calculated by Lawaetz as y&(x =0)=7.65 and
yz(x =0)=2.41 for bulk GaAs, and y&(x = 1)=4.04 and
yz(x =1)=0.78 for bulk A1As. With the band-structure
parameters we will first determine from (1 la) and (1 lb)
the effective masses

FIG. 1. Ground-state binding energy of a heavy-hole elec-
tron exciton for two GaAs/Al„z, Gao 75As MQW samples with
fixed barrier width d z = 100 and 300 A, and for one
GaAs/Alo25GaQ75As single-well sample. For all samples the
well width varies from 10 to 400 A. In the region of well width

0
larger than 50 A, the X points and the open-square points coin-
cide, resulting in solid-square points.

mhh, (x =0)=0.353mo, m&h, (x =0)=0.080mo,

mhh, (x =0)=0.099mo, m|h, (x =0)=0. 191mo

for pure GaAs, and

m„„,(x =1)=0.403mo, m,„,(x = 1)=0. 178m o,

mph, (x =1)=0.207mo, mth, (x =1)=0.307mo

for pure A1As. Then, we can use the linear interpolation
to obtain the hole effective masses for the Al„Ga& „As
alloy with 0&x (0.38. However, owing to the condi-
tions Eqs. (1 la) and (lib), we can only linearly interpo-
late the longitudinal (or transverse) hole masses and from
them calculate the transverse (or longitudinal) hole
masses via (1 la) and (1 lb). Both ways produce very simi-
lar exciton binding energies. Because the longitudinal
masses will be used first in deriving the subband structure
from (1), we simply linearly interpolate them as mhh, (x)
=(0.353+0.05x)mo and m&h, (x)=(0.08+0.098x)mo.

We should point out that the above analysis is valid for
k=0 at which the heavy- and light-hole bands are decou-
pled. Since the exciton is not formed at k=O alone but
rather over a range of k space, the resultant mixing of the
heavy and light hole has been ignored in our calculation.

In the following we present our computed EI, of an ex-
citon consisting of a valence heavy hole and a conduction
electron. The binding energy of an exciton which is a
bound state of a valence light hole and a conduction elec-
tron can be similarly calculated. Since a finite length of
Ã superlattice constants must be used for the z-axis in-

tegration in (7), the exciton binding energy so obtained is
expressed as E„&. The nonconverged binding energy
E,„& and the converged binding energy E,„30 of two sets
of GaAs/Alo z5Gao 75As samples are shown in Fig. l.
These samples have two values of the barrier width
dz =100 and 300 A, but with the well width dz varying
from 10 to 400 A. We see clearly that for a given value of
d&, the error E„&—E„30 increases with decreasing d~.
For a given value of dz, the E„30 curve also approaches
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200
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150
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90

150
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0.20
0.28
0.25
0.30
0.25
0.25
0.25
0.30
0.25
0.25
0.25

Eex, 3O

4.96
6.03
5.33
6.15
5.64
5.78
5.80
4.49
5.76
4.43
4.26

Eex, sw

5.15
6.28
5.89
6.83
6.71
7.40
7.91
6.95
8.38
7.40
8.38

hE„
0.19
0.25
0.56
0.68
1.07
1.62
2. 1 1

2.46
2.62
2.97
4.12

dg +dB

585
520
415
350
310
250
216
207
190
175
115

TABLE I. Ground-state binding energy (meV) of an exciton
consisting of a valence-band heavy hole and a conduction-band
electron in various realistic GaAs/AI„Ga, „As MQW samples.
The rows are ordered with decreasing superlattice constant
d =d „+dB in order to demonstrate the trend of

ex Eex, SW Eex, 30
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the binding energy of an exciton in a bulk GaAs as
d~ ~ ~, and the binding energy of an exciton in a bulk
Alo 2gGao 75As as d~ ~0.

We have also calculated the binding energy E„sw
of an exciton in a single quantum well of
GaAs~Alo. 25Gao. 7sAs as a function of the well width d~,
which has been investigated earlier. ' ' E„sw is plotted
in Fig. 1 as the curve with open circles. The results in
Fig. 1 demonstrate correctly the tendency E 3o ~E
as the barrier width dz~~. It is worthwhile to point
out that if we use the band offset Q =0.85 and the set of
material parameter values specified in the paper of
Greene and Bajaj, ' our calculated E,„sw reproduces the
exciton binding-energy curve given in Fig. 1 of Ref. 15.

Finally, we calculated the exciton binding energies of
many MQW samples which were studied experimentally
with optical measurements. ' ' The results are listed
in Table I, with AE„defined as the energy di6'erence
AE,„=E„sw—E„3o The rows in Table I are ordered
with increasing superlattice constant d =d~+d~. It is

important to point out that although the realistic samples
in Table I have various thicknesses (d„and d~) and Al
concentration (x), the energy difference b,E,„ increases
monotonically when the superlattice constant
d =d~+d~ is reduced.

To close this Brief Report, we should mention that for
most samples studied in Fig. 1 and Table I, the eff'ective
Bohr radius ao in the envelope function has its optimal

0
value around 100 to 180 A. Hence, when the superlattice
constant d is comparable to ao, a substantial fraction of
the exciton binding energy is due to the interaction be-
tween the electron in one well and the hole in another
well (especially in an adjacent well). When d =ao, we
found a large contribution of about 3—4 meV from these
interwell terms. In the binding energy E,„s~, there is no
such interwell contribution.
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