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A high-frequency analytical model for double-barrier resonant tunneling is formulated. In
evaluating the device frequency response, a dc voltage is applied to bias the double barrier into
the resonant-tunneling regime, and a small-amplitude ac modulation is then added. The ac
modulation causes transmission sidebands, in addition to the direct transmission peak when an
electron traverses the double barrier. Analytical expressions for the first-order sidebands are
derived. Using a Breit-signer expansion of the sidebands in the neighborhood of a resonance,
the small-signal ac current response is evaluated in closed form. The device frequency charac-
teristic is discussed, and a quantum inductance is confirmed, which arises from the resonance
lifetime. An analytical model is useful in understanding the device physics and in applications.

I. INTRODUCTION

High-frequency device applications are doubtless the
major driving forces for studying heterojunction double-
barrier resonant-tunneling (RT) devices. Experiments
ranging from detectors up to 2.5 THz (Ref. 1) and
quantum-well oscillators up to 420 GHz (Refs. 2—5) to
fabrications of RT transistors as well as experimental
studies of equivalent circuits employing Al Gaq As-
GaAs structures have been carried out. Important
studies in understanding physical processes have been
reported. g ~~ Calculations of tunneling currents under
both dc and ac voltages have been undertaken. Sev-
eral authors have carried out self-consistent analyses of
dc current-voltage (I V) character-istics. s Theoreti-
cal considerations of device frequency limits have been
addressed in a number of papers. In most previ-
ous works, the device intrinsic response is assumed to be
related to the tunneling time, and hence the frequency
limit is proportional to the inverse of this time. Frensley
has used an alternative approach in which the Wigner
function distributions of the time-dependent quantum-
mechanical system have been solved numerically. Yet
another approach using the Kubo formula to calculate
the frequency dependence has been presented. 2

In this paper we formulate an analytical model for
high-frequency double-barrier RT devices. A numerical
technique and general properties of scattering matrices
have been given by Coon and Liu 4 which are exten-
sions of the standard scattering model. The merit of
the present work is that it can be evaluated in a closed a,n-

alytica/ form, and the physical picture is therefore clear.
Such a model is extremely useful in understanding the
device high-frequency characteristics, and extremely de-
sirable in experiments such as those performed by Brown,
Sollner, and co-workers. 2

Our model is shown schematically in Fig. 1. A double-
barrier structure is biased with both dc and ac volt-
ages resulting in potential energies across the double
barrier Vd, and U, cosmic, respectively. The potentials
are linearly distributed across the double barrier from
Vd, ——V, = 0 in the emitter to constant values —Vd, and
—V, in the collector. Since we have chosen the emitter
band edge as the energy reference, we have added explic-
itly the minus signs so that Ud, and U, are non-negative.
These potentials do not include the possible potential dis-
tributions in the emitter accumulation layer and the col-
lector depletion region. To consider the small signal ac
response we keep the amplitude of the ac potential (V, )
small. We neglect the electrostatic charge eAect in the
quantum well. The electron direct tunneling with-
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FIG. 1. Double-barrier potential profile under a dc bias
and a small amplitude ac modulation. The resonant state is
labeled by E~.
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out emission or absorption of energy from the ac field is
characterized by the direct transmission amplitude (tp).
The first-order transmission sidebands represent, an in-
cident electron absorbing (t+i) or emitting (t i) an ac
modulation quantum (h~) emerging with a higher (+h~)
or a lower (—hu) energy. Arrows in Fig. I indicate an
electron (e) incident from the left (the emitter), the di-
rect transmission (tp) and the two first-order sidebands

(t'ai) to the right (the collector), and the reflections to
the left. We neglect higher-order terms, e.g. , t, he second-
order sidebands ty2 and so on. The first-order transmis-
sion sidebands have been used in discussing the tunneling
traversal time for a single barrier. 25

We hope to derive an analytical expression for the first-
order sidebands similar to the Breit-Wigner form for the
direct tunneling:

where E~ is the resonance energy and I is the resonance
width, since it is known that an analytical tunneling cur-
rent expression can be obtained for the dc case using the
Breit, -Wigner form. Intuitively, one might expect that
the sidebands ty~ should have resonance Breit-Wigner
line shapes but peaked at E~ and ER~ hu, respectively,

iI' iI'
tyy OC ~ ~ jE —E~ + i I' E —E~ + h~ + i I' (2)

because ty~ are associated with absorption and emission
assisted tunneling processes involving an ac modulation
quantum hcu. We will see later in Sec. II that t'ai indeed
have the features displayed in Eq. (2).

The paper is organized in the following way. Section II
gives the analytical results of the transmission ampli-
tudes for the first-order sidebands (t'ai). For complete-
ness, some details "' in arriving at the starting point
of the the present paper are reviewed in Appendix A.
Because of the lengthy algebra the derivations for the
transmission amplitudes are given in Appendixes B and
C. Section III presents the details of the calculated cur-
rent response and this section contains the main results of
this paper. Section IV discusses the eKciency of photon
emission into the ac field which is relevant to the oscilla-
tor experiments. Finally, Sec. V gives the concluding
remarks.

II. RESONANT TRANSMISSION
AMPLITUDES

We use a coherent scattering approach which extends
the standard model for the dc case. The incident
plane wave in the emitter region is

ikz —iEt jh
in —e )

that the energy reference and the potential ground are at
the band edge of the emitter as shown in Fig. 1. We as-
sume that the eA'ective mass is constant throughout the
structure. One can view this simplification as a model
which enables us to derive the following analytical result.
A position-dependent eA'ective mass destroys the simple
one-dimensional nature of the problem, i.e. , dimensions
perpendicular to the current can no longer be incorpo-
rated by simply including a proper density of states. In
a constant potential region and in the presence of a con-
stant amplitude ac modulation, one can still find a plane-
wave solution to the time-dependent Schrodinger equa-
tion, which we use as bases. The transmitted wave in
the collector side (including up to first-order sidebands)
1s

/g ikoz ~ g ik+y z —i4)t

~t ik I z+i~tq —iBt/5 U ) (4)

where U' = exp[iV sin(ut) jhu] is a phase factor due to
the constant amplitude ac modulation, ~ ~ the z = 0
plane has been moved to the heterointerface between
the collector contact and the collector barrier, ko and
kg~ are wave vectors for energies E and E + hu in the
collector region. The mathematical details in arriving
at Eq. (4) have been given before, i4 i5 and for com-
pleteness we briefly review the important steps in Ap-
pendix A. Note that the potential energy in the collector
is —Vd, —V,

cosset.

The wave function in Eq. (4) can be
easily verified to satisfy the time-dependent Schrodinger
equation with a constant amplitude ac potential. In fact,
each individual term together with e ' /" U is a plane-
wave solution to the time-dependent Schrodinger equa-
tion. We consider the case where only the emitter elec-
trons contribute to the tunneling current since this is the
case relevant to most of the practical devices. Electrons
from the collector cannot be neglected when, e.g. , the
resonant energy is low such that E~ ( E~. Physically,
Eqs. (3) and (4) describe a multichannel scattering state
with plane wave incident from the emitter, and direct
tunneling and first-order sidebands outgoing plane waves
in the collector (see Fig. I). We have omitted writing
down the rejected waves back to the emitter explicitly.

Within the first, -order approximation, where to is the
same as for the case of V, = 0 and ty~ is proportional to
the first order in V „the transmission amplitudes can be
evaluated analytically. The Breit-Wigner form for to is
well known and the derivation is given in Appendix B for
completeness and for detail that will be used in deriving
t'ai. In the neighborhood of a resonance, the transmis-
sion coeKcient defined as the ratio of the transmitted
and the incident currents, and the phase (Pp) of tp are
given by

where k is the wave vector related to the energy by
E = h k j2m, m is the effective mass, the tunneling
direction is chosen as the z coordinate, and the z = 0
plane is chosen to coincide with the heterointerface be-
tween the emitter contact and the emit ter barrier. Note

p2
p ~ p, max

(@

Pp Ppp + tan (6)
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where the on-resonance transmission coeKcient To

4T~To/(T~ + To), T~yc is the transmission coefficient
for the emitter or collector barrier evaluated at the reso-
nance energy, and PQQ has a weak (nonresonant) energy
dependence. It is interesting to point out that To I
vanishes when E~ coincides with the emitter band edge
because in this case the incident electron kinetic energy
approaches zero so that T~ ~ 0. This, for some de-
vices where the bottom of the emitter Fermi sea is at
the band edge (e.g. , in the case where the accumulation
effect is negligible for a heavily doped emitter), leads to
an unfavorable increase in the magnitude of the negative
differential resistance (NDR) because the NDR region
corresponds to the resonant state approaching the bot-
tom of the emitter Fermi sea and To „decreases with
increasing bias. This will degrade the steepness of the
NDR region which was neglected in our early model.
However, when the bottom of the emitter Fermi sea is
at a finite energy (e.g. , in the case where the accumula-
tion leads to quasi-one-dimensional states in the emitter
for a lightly doped emitter or with an undoped buffer
layer inserted before the double barrier), TQ „changes
slowly with E~ and within the voltage range where RT
occurs To m „can be taken as a constant. In this case,
the magnitude of the NDR directly reAects the size of the
resonance width I'.

The first-order absorption and emission processes can
also be expressed analytically in a similar way. We give
the details of the derivation of t'ai in Appendix C and
the result is

ER

ER

FIG. 2. Two favored energies (left, E = ER and right,
E = EIi —hu) for the absorption transmission sideband t+r.

III. RESONANT TUNNELINC CURRENTS

In this section we use the expressions given in Sec. II
to discuss the small signal ac current response. Because
the expressions in Sec. II are valid only in the neigh-
borhood of a resonance, the currents that we calculate
in this section are associated with a resonance, i.e. , we
consider only resonant tunneling currents. The single
electron tunneling current

is evaluated in the collector side using Eq. (4) and setting
a=0:

absorption can occur anywhere in the well or the barriers.
The analytical formalism was compared with numerical
results using the method given by Coon and Liu and
by Liu, and a good agreement was found.

(V
i ~

l TQ, max
g2h~

r'[(E —E eh~/2)'+I']
[(E—E~)2 + I'2] [(E —EIr + hcu)2 + I 2]

'

ehkQ

equi+—Im[ikQtQ(t+ie' '+ t*,e ' ')I
+itQ(k+it+ie ' '+ k it ie' ')], (10)

i E —EIr, E —E~ + hu)/2
yi Q + tan —tan

q E —E~+h~+tan '

where /+i Q QQQ and p i Q —QQQ+m. As we will see in
Sec. III, the information about the phases of the trans-
mission amplitudes is important when one considers the
ac current which arises from bilinear terms like tot~& as
the leading order. The analytical result for Ty~ given in
Eq. (7) is valid for V, /hu ( 1 because of the expan-
sion that we have made (see Appendix C), and hence it
is naturally suited for evaluating the device small sig-
nal response. Equation (7) displays a double peaked
structure with transmission enhanced at E = E~ and
E = E~ g hu. Physically, this is easy to understand be-
cause tyy describes one photon assisted resonant tunnel-
ing. Figure 2 shows the two favored absorption processes
(t+i) for incident energies ER and Err —hu, respectively.
The two processes both have the resonant state as the
intermediate state and hence they are enhanced in com-
parison with processes at other energies. The upward
arrows span both well and barriers indicating that the

where Im[ .] means taking the imaginary part and terms
bilinear in t'ai are omitted. Since h kQ/2m = E + Vd,
and h k~2i/2m = E+Vd, +hu, and Vd, is normally much
larger than hcu, ko kgb is a good approximation. Note
that E is referenced with respect to the emit ter band
edge. Equation (10) becomes

gdC + /AC y

jd, —= (ehko/m)(tQ),

j = (2ehkQ/m) Re[tQ(t+ie' '+ t' ie ' )],

where Re[ ] means taking the real part. Because the
first term in Eq. (10) gives rise to the usual dc tunneling
current, and the rest is the leading-order ac current re-
sponse, we have separated j into jd, +j . Classically (in
the low-frequency limit), the ac current response should
reduce to the differential conductance multiplied by the
ac voltage as we will see later. In general, the ac current
response would have an arbitrary phase relationship with
respect to the applied potential V~ cosset.

To investigate to what extent currents in the emit-
ter and the collector are conserved, we use the follow-

ing continuity equation derived from the time-dependent
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Schrodinger equation:
Z = (I/4~') dk(kF —k ) j

&(R) j(C") —e
DB

(12)

.(x) .(c)
jdc jdc

where j~ ~+~ is the instantaneous current density in the
emitter or collector, j(+) is the j given in Eqs. (9)—(11)
for an electron incident from the emitter, the integration
on the right-hand side is over the double-barrier (DB)
region. To calculate j& &, we must include the reflected
waves described by the reflection amplitudes ro, ry~, and
so on. The first-order reflection sideband amplitudes

(iyi) are proportional to V, /h~, and analytical expres-
sions for ry~ can be obtained using a similar derivation
given in Appendix C. Using the time-dependent wave

function tj;„+g„s in the emitter, we can separate the

current j~+~ into incident j;„and refIected j„& parts.
The incident current is independent of time, while similar
to j( ) in Eq. (11) the reflected current has both time-
independent (dc) and time-dependent (ac) parts. From
Eq. (12), we have

= ( 2/2 2h ) dE (EF —E) j/k,

em
Jd, ——

3 TO, max
2vr2h

EF p2
dE(EF E)

(16)
which, after integration, becomes

where k~ is the emitter Fermi wave vector related to
the Fermi energy by EF = h kF2/2m and k (the wave
vector in the emitter) in j/k will be combined with j
[given in Eq. (11)] to give the transmission coeKcient,
e.g. , Tp = (kp/k)!tp! . Note that we consider cases where
the collector side does not contribute to the tunneling
current, i.e. , the bias voltage is large enough to oflset
emitter and collector Fermi seas (EF & Vd, ). Further-
more we neglect many-body Fermion efrects which pro-
vide no corrections up to the first order. The complete
formalism has been given by Coon and Liu. Substi-
tuting Eq. (11) into (15) and using Eq. (5), the dc part
in Eq. (11) results in

j(R) j(c) qBC BC
g

(14) Jdc = em i EF —ER
sTp „I' (EF —ER) tan

27rz h

where QDB = e IDB @*/ dz is the charge in the double-
barrier region. Equation (13) shows that the dc part of
the current is conserved, i.e. , position independent. This
is true in general even when all orders of sidebands are
included, 4 is whereas the first-order ac (sinusoidal) part
of the current would be difI'erent when evaluated at an
arbitrary z coordinate. The difrerence in the instanta-
neous ac currents between two points is related to the
increase of charge in the region defined by the two points
as given quantitatively by Eq. (14). We assume that the
emitter and the collector layers are heavily doped, there-
fore the current evaluated at z = 0 in the collector is
the instantaneous current in the external circuit at the
collector lead (and this is the current we will concentrate
on in the following calculations). If, on the other hand, a
lightly doped or an undoped bufFer is employed in the col-
lector, we must evaluate the current at a position where
the heavily doped contact layer starts (z ) 0), and an

extra phase delay is found in the ac current, which is as-

sociated with the delay of electrons propagating across
the buffer layer, as proposed by Sollner et al.s

Integrating over the emitter Fermi sea we obtain the
total current density at z = 0 and zero temperature,

I

r, (EF —E„)'yr'
+2 +I2 (17)

where ER is related to the bias by ER = ERp —V«/2
(for a symmetric structure) and ERp is ER at zero bias.
This expression is identical to that for the case where
only a dc voltage is applied. We ignore charge redis-
tribution efFects 6 for simplicity. In reality a non-
negligible fraction of the applied voltage is distributed in
the emitter accumulation layer and in the collector de-
pletion region. In the narrow resonance limit (I' « ER
and I « EF —ER), Eq. (17) gives a triangular-shaped
I-V characteristic:

Jd — Tp, r(EF ER)0(ER)o(EF ER)2%I'
(18)

where 8( ) is the usual unity step function.
Substituting tp and t'ai in Sec. II [Eqs. (5)—(8)] into

the (time-dependent) ac part of the current in Eq. (11),
we get

ehk V r(E —ER+ bc'/2) + I' 5
m h~ l (E —ER+&~)'+r' J

Tp
r i E —ER+ bc'/2 i E —ER+ h~b

cos! ~)+tan '
!—tan

l r r
r(E —ER —h~/2)z+ I'i '~

l (E-E —~ )'+r' ~

r , E —ER —h~/2 i E —ER —h(u
cos! ~t —tan

l r +tan '
I' (19)

Using the following

cos(n + p + y) = cos n cos p cos p —cos n sin p sin p —sin n cos p sin p —sin n sin p cos p,

cos[tan (y/z)] = z/gz + y, sin[tan (y/z)] = y/gz + y,



12 542 H. C. I.IU 43

and after some algebraic manipulations, Eq. (19) becomes

/AC
ehk V~, f (E —EIr + her/2)(E —EIr + hcu) + I'2

(E —ER+ h~)'+ r'
(E E—~ —h~ /2)(E E—~ —h~) + r2 i

! cos~t
(E —ER —h~)2 + I'2 )

1 1
+(1h(u/2) !q(E —ER+ h~)'+ I' (E —E„—h~)2+ r2) ! sinut (2o)

Before carrying out the integration over the emitter
Fermi sea for the ac part of the current, we first look at
the Taylor series expansion in terms of hu and keep the
leading-order term in h~. From Eq. (20), we get

ehk t E —ER
(E —E~)~ + I'2

j ' V, cosset —h~r '
! V sin&et

From the above equation the total current is trivially
obtained:

BJd, so 1 OJd,

(23)

where the erst term corresponds to the classical low-
frequency expression, while the second represents the
leading order high-frequency correction. In the narrow

I

2h~r(E —E )
[(E E )2 + r2]2

Terms neglected are of the form O((hcu) ~)U, cos ~t,
O((hu)s) V, sin mt, and so on, where 0( ) has the stan-
dard meaning as in calculus. We note that

E —ER 1 OTp OTp

(E —E~)2+ I'2 2 OEJr clVd,
'

E —E„r' a (1 aTp
'[(E —E„)2+r2]2 2 a(r2) ir2 av„

then Eq. (21) becomes

I

resonance limit I' « E&, using Eq. (18), Eq. (23) re-
duces easily to

BJd,J~ [V cos cut + (h&/2r) V sin wt]O
0Vd,

[1+(h~/2I') ] i V, cos(ut —n)Q,
dc

(24)

where 0—:O(ER)O(E~ —E~) and n = tan i(hu/2r).
Note that in this limiting case OJd, /OVd, is a constant
within the potential range defined by the two 0 func-
tions. One can see that for h~ &( I' the classical cur-
rent response is obtained. A phase delay of o. relative
to the applied ac potential is expected consistent with
experiments. " The physical reason for the phase de-
lay is easy to understand. Notice that h/21' is the res-
onant lifetime 7, and therefore the delay is associated
with the finite lifetime of the resonance. As proposed
by Brown, Parker, and Sollner, one can incorporate the
phase delay eAect into the device equivalent circuit by
adding a "quantum" inductance Ig~ in series with the
device differential conductance G = rl Jd, /DUd, . Then we
have uLqwG = hu/2I', i.e. , Lqw ——r/G

The total ac current response can be also evaluated
when Eq. (20) is substituted into (15). One obtains a
long algebraic expression after the integration over the
emitter Fermi sea. VVe separate the current response into
the following form:

J = yR, (V,/e) cos ut + yr (V, /e) sin ~t, (25)

where yR, and yi are the real and the imaginary parts
of the device admittance, respectively. The form of the
above definition is a consequence of the form of the ap-
plied ac potential that we chose. The admittance is found
to be

yn, = (e m/2' h )Tp 12 2 3 r 4rh~! tan ' + tan
4h~(4r2+ h ~~)

i Ey —EIr —hw i E~+ h~b—4r(E —z„—r~P} (ta~-' I' + tan !
1 )

(E —E„)'+r'
+2hu) (E~ —E~) ln

R+
(Ey —ER —h~) + I'2

[h~(E~ —E~ —h~—) —2I' ] ln
E~ + h(u 2 + r ~

[h~(E~ —E~ + hu)—) + 2I' ] ln
(E~ —ER+ hcu)~+ 1~

E~ —hu 2+r~ (26)
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yt
—(e m/2x h )Tp I'

2h~(4r2+ h u)2)

EF —ER g ERl
x —4I' tan + tanI' ry

+r(E~ —E~ + hcu/2) ln
(E —E + h~)'+ r'

(27)
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Figure 3 plots (a) a dc I Vand -dI/dV Ucha-racter-
istics using Eq. (17), (b), (c), and (d) the device ad-
mittances for h~ = I'/2, I', and '21, respectively. We
have adopted an arbitrary unit system in which we set
E~ = 1, E~o = 2, and I' = &&. For example, we omit the

factor (em/2~2h )Tp „I' in Eq. (17) and plot the rest
in the above unit system. From Fig. 3 the real part of the
admittance follows the dI/dV Vcurve-for low frequen-
cies hen ( I', and in fact it is identical to dI/dV Vin the-
lirnit hu (& I' as we have shown explicitly in Eq. (23).
The imaginary part has the general shape of dI/dV for
low frequencies but increases with h~ roughly linearly.
This behavior is intuitively expected from Eq. (23). The
real part and the shape of the imaginary part of the de-

vice admittance deviate from the dc dI/dV Vcurve i-n

high frequencies hu ) I'. Physically this is because for
hu ) I' the time scale involved in RT is relatively long
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FIG. 3. (a) dc current-voltage (I V) and dI/dV Vcha-r--
acteristics; (b), (c), and (d) Real and imaginary parts of the
device admittance for hu = I'/2, I', and 21", respectively.

FIG. 4. (a) and (b) Real and imaginary parts of the device
admittance vs ur in the negative and the positive diR'erential
resistance regions, respectively.
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compared with the frequency of the applied ac voltage
and the electrons can no longer follow the instantaneous
change of the potential as a function of time. Figure 4
plots the device admittance versus frequency for (a) a dc
bias voltage of 4.0 which corresponds to a dc bias point in
the NDR region, and for (b) a bias of 2.8 which is in the
positive resistance region of the I V[s-ee Fig. 3(a)]. The
horizontal axis is scaled by I'/h. The behavior shown in

Fig. 4 is very similar to previous reported results using
numerical calculations.

IV. PHOTON EMISSION EFFICIENCY

In this section we consider the net number of photons
emitted into the ac field by counting the difFerence be-
tween the number of electrons which undergo the t
(emission) process and the number for i+i process. Con-
sider the following current difference:

Aj = j i —j+i ——(ehk/m)(T i —T+i), (28)

which represents the net current (not directly observable)
associated with photon emission. I et us first consider the
Taylor series expansion of the leading term of the quan-
tity AT = T i —T+i with respect to hu using Eq. (7):

AT = (V /2h~) To
2h~(E —E~)

R +
= —(V2, /2hcu) (OTo

/OVAL,

) —O((her) ').

—O((f ~)')

AP = —0.5(V /e)
' —O((h~)').

Vg, e
(29)

It is clear that only in the NDR region where
OJd /BVd ( 0 can there be a net photon output. Equa-
tion (29) represents a low-frequency expansion.

For arbitrary frequencies, we use the full expression
[Eq. (7)] and substitute Eq. (28) into (15). The integra-
tion over the Fermi sea leads to an expression similar to
Eqs. (26) and (27). Figure 5 shows the net power versus

Substituting the above into Eq. (28) then (15) we get the
total current difference A J. Multiplying KJ by hu/e we

get the net photon power AP (joules per unit time per
unit area):

w for the device parameters as in Fig. 3 using the same
arbitrary unit system, and for a fixed V~ and an applied
dc bias of 4.0 which is in the NDR region. Note that the
emission that we consider here originates from the RT
structure itself, and other considerations must be made
if a RT oscillator is connected to an antenna.

V. CONCLUDINC REMARKS

To conclude, we have presented an analytical model
for high-frequency resonant tunneling. A scattering the-
ory approach has been used, and analytical results for
transmission coefIicients and tunneling current have been
derived. The ac tunneling current shows a phase delay
relative to the applied voltage due to the finite lifetime of
the resonant state, and starts to deviate from the classical
result when h~ approaches I'. Our model is valid so long
as the applied electromagnetic field can be described by
a voltage. For higher frequencies where the wavelength
of the electromagnetic field in the material is compara-
ble or smaller than the geometrical size of the device,
a full quantum-mechanical description should be em-
ployed. Electromagnetic waves in the double-barrier re-
gion should be described by photon fields. A perturbative
approach has been given for single-barrier tunneling. o

The same formalisms could be used for a double-barrier
structure in the presence of a photon field. Our model
can be also used together with the results calculated in-
cluding self-consistency between the Schrodinger equa-
tion and the Poisson equation for the static case
because the inputs to our model are characteristic param-
eters like the resonance width, the on-resonance trans-
mission, the resonance energy, and the Fermi energy in
the emitter. This makes the model useful in practical de-
vices. Further theoretical work includes (a) searching for
an analytical result for the second-order sidebands which
will enable us to calculate the rectification (dc detection)
coefIicient, the second harmonic coeflicient, and so on;
(b) incorporating charge effects on the potential profile
which will have device intrinsic capacitive efFects included
in the model; and (c) including scattering effects such as
by impurities in the double barrier, interface roughness,
and phonons.
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APPENDIX A: REVIEW
OF THE BASIC APPROACH

Angufar Frequency ~

FIG. 5. Net power output emitted into the ac field vs
frequency when a device is biased in the negative difFerential
resistance region.

We briefIy review a method 5 which can be used to
solve a general potential profile in the presence of both dc
and ac voltages, and, in the process, the form of the wave
function in Eq. (4) will be justified. The approach that we
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ikz —iRt/h —i(e, /hu) }sin cut
~ ——e ) (A2)

where E —vd, = h k2/2m. The above describes a plane
wave with energy E and wave vector k. We then con-
struct a general solution with energy components E+nhu
(n = 0, +1,+2, . . .):

(A3)

where E+ nhcu —vd, = h k2/2m. Note that within a
constant, potential region there are no mixings between
plane waves with diA'erent energies, and mixings (radia-
tive transitions) occur at an ac potential step (and are de-
scribed by the following transfer matrix). This physically
is equivalent to transitions induced by a spatially varying
(linear in our case) time-dependent (costi in our case)
potential. If the solution in the next constant potential
region is written as g' = P„(c„Qadi +d„g ~1 ), we require
a general transfer matrix M so that (e, d) = M(a, b)
where a = (. . . , a2, ai, ao, a 1, a 2, . . .), similarly for b, c,
and d, and the superscript T means transposing the row
matrix. Assuming the simplest boundary conditions, g
and cIQ/Bz continuous, we find ~

use here is as follows: given an arbitrary potential profile,
one can always approximate to an arbitrary accuracy the
actual profile by a series of steps, i.e., divide the space
into regions with constant potentials. The problem then
reduces to (a) finding a general solution for a spatially
constant potential vd, + v cos~t where vd, and v, are
constants; and (b) matching solutions in adjacent regions
with different values of vd, and v, .

Analogous to the 2 x 2 transfer matrix approach for
the dc case, we first find plane-wave-like solutions to
the time-dependent Schrodinger equation

0$ h c)2@zh: — + (vdc + v@c cas 4) i)'t/J,
t 2m z2

for constant vd, and v . One can easily verify that the
following is a solution:

longer individually conserved. To continue onto the next
potential step, one must first multiply the matrix by
a diagonal propagation matrix M' which is equivalent
to moving the coordinate origin to coincide with the
next potential discontinuity. The diagonal elements of
M' are i. . . e' +&" e' o" e'"-&" . . . e ' +&" e' ) ) ) ) )

'k' d'
e ' —&", . . .), where d' is the length of the region. Mul-
tiplying M' and M together for all the potential steps,
we obtain the transfer matrix to relate constants a and
6 on one side of the structure to c and d on the other
side. Transmission and reflection amplitudes for an
incident electron with energy E are found by setting
a = (. . . , 0, 0, 1, 0, 0, . . .), & = (,r2, ri, ro, r-i, r-2, ),
c = (. . &2, &r &o & —i & —2, . . .), and d = (. . . , 0, 0, 0,
0, 0, . . .). Then a multichannel scattering state consists of
the incident wave [Eq. (3)j, and the scattered (transmit-
ted and reflected) waves. Equation (4) shows the trans-
mitted waves including only up to n = +1 sidebands.

As an example of how the t„and r„are determined,
let us consider a potential discontinuity with an ac step
only, i.e. , ed, ——vd, and v, g v'„and include only the
first-order sidebands. The transfer matrix becomes 6 x 6,
and for E && h~:

( Jp Ji 0
J y J0 Jg

Jo
Jp Jg 0
J—1 JO J1
0 J 1 Jo)

where the Bessel functions are Jp yr(Av, /ha). Trans-
mission and reflection amplitudes for such a simple case
are determined: tp yi Jo yi(Av /Fled) and rp yr --0.
This result will be used in Appendix C. The physical
meaning of quantities tyq here are that they are the ab-
sorption (+1) and emission (—1) matrix elements of one
ac modulation quantum hu for an electron crossing an
ac potential step.

1 &(&)+ (&)-
(&)+

(A4) APPENDIX 8: DERIVATION
OF DIRECT TUNNELING AMP LITUDE

4)+ =
((p)
((-1)
((—~)

)

((1)
((o)

((—1)
1

(A5)

where (q("„—Jp(Ev /hw)(l + k„/k'), Av = v'

v~, and J& is the integer Bessel function. In gen-
eral, the effective mass rn in different regions can be
different, and using physical arguments for the enve-
lape wave function, one requires continuities of @ and
(I/m)c)$/c)z. However, such boundary conditions com-
plicate the one-dimensional model because energies as-
sociated with z, y, and z direction motions are no

t p
——i~etc + t~e(rc r~e )tc + tE e(r c r~e ) t~ +

1 —e rErc (B1)

where e = exp(iqru) ar exp( j iq dip) if there exists an
electric field in the well. A resonance occurs when the

We give two methods to derive the direct tunneling
amplitude t0. First, we briefly review the derivation in a
ray-tracing (Fabry-Perot) scheme. sr Suppose the trans-
mission amplitudes for the emitter barrier and the collec-
tor barrier in the direction of the current flow are t~ and
t~, the reflection amplitudes off the interfaces defining
the quantum well are r~ and r~, respectively, the wave
vector in the well is q, and the well width is to. Summing
over all possible paths, we get
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1 —lrzrcle' = (Tz + Tc)/2 —i0'lz„(E —ER),

where 0' is 08/OE. Then the transmission amplitude is

2t~t~e iF
T +T E —E„+ir' (B4)

where the resonance width I' = (Tz + Tc)/20'lz„. The
transmission coefficient To ——(ko/k)ltol, and the phase
(Po) of to are then

F2
0 om (E E )2

(B5)

, E —ER
4o q~oo + t»

where goo is the phase of tztce The phase .change across
a resonance (i.e. , from E (( ER to E )) ER) amounts
to x which has been pointed out to be true in general by
signer. 3~

The second method that we use to derive the expres-
sion for tp is by the transfer matrix which connects two
independent plane waves from one constant potential re-
gion to another region. We start the matrix matching
from the emitter side to the collector side. The transfer
matrices for the emitter and the collector barriers are

( tz rzrz/tz rz—/tz ~

/tz 1/tz

« "c/tc "c/tjc
—«/tc 1/tc

where the primed quantities are the same as the corre-
sponding unprimed except the electron traveling direc-
tions are reversed, e.g. , t& is the transmission amplitude
for an electron incident from the collector side. Multiply-

phase of the complex quantity e rc;r~ equals an inte-
ger times 2ir, i.e., e rcrz — lrcrzl, and the corre-
sponding energy is E~. The current conservation gives
lrcl'+ (&o/q)ltcl' = »nd lrzl'+ (q/&)ltzl' = 1. We
have used the fact that the magnitudes of reflection am-
plitudes are independent of the incident directions which
can be shown easily from the unitarity relation of the
scattering matrix. ~3 We define the transmission coeffi-
cients as Tz = (q/k)ltzl' »d Tc = (&o/q)ltcl'.
lrzl and lrcl close to unity, we have lrzl —1 —Tz/2
and lrcl 1 —Tc/2 From. Eq. (Bl) we then have the
on-resonance (maximum) transmission coefficient for the
entire structure at E = E~,

4T~T~
To, max =

y
ltolmax (TR + C')

Note that when T~ ——T~, Tp „——1 is rigorous.
We express the denominator in Eq. (Bl) in the follow-

ing way and expand the phase to the first order in the
neighborhood of E~..

ing matrices (B7) and (B8) together with a plane-wave
propagation in the well, we get the total transfer matrix
(M) for the double barrier

tc —rcrc/tc rc/tc 'Il e 0
—rc/tc 1/tc ) 0 e ' )

rz Pz /tz Pz /tz
rz—/tz 1/tz (B9)

The element (M)2q is the inverse of the transmission am-
plitude for an electron incident from the collector. Inter-
changing primed and unprimed quantities, we obtain

t~t~e
tp =

1 —e p~r~
(B10)

which is identical to Eq. (Bl), and hence, a Breit-Wigner
expansion in the neighborhood of the resonance leads to
Eqs. (B5) and (B6).

We stress that the Fabry-Perot derivation for a RT
electron is only analogous to a particle "bouncing back
and forth" in the well because of the wave nature of
the Schrodinger equation. Strictly speaking this does
not mean that the electron motion follows such a path.
As we see from the second derivation that the RT phe-
nomenon only needs the existence of the resonant quasi-
bound state.

APPENDIX C: DERIVATION
OF FIRST-ORDER SIDEBANDS

1 —tzel]2Me ig2tc + tzercerzeigzMe i]2tc
+tzercei]g( —M)e*,(2rze'tc
+tze i/2Me i/2rce "Pze *tc + (C1)

where the reason for the minus sign in (—JH) of the third
term will be given below. After carrying out the summa-
tion, we get

tzei~q~e i&2tc(1 —ee*rzrc)
t+1—

(1 —e2r zrc)(1 —e *2rzr c)
(C2)

The summation can be easily seen diagrammatically.
Figure 6 shows the leading terms for t+~ and the four
terms in Eq. (Cl) correspond to the first two rows in the
figure. If we continue the figure, each row will have two
more terms. Columns can be summed up and the result-
ing expression can be summed up again leading to the

We approximate the spatially linear potential by a se-
ries of steps and then let the number of the steps go to
infinity. We first illustrate our method by considering a
special case where the absorption or emission occurs at
the center of the well. We use the following simplified
notations: symbols with superscripts * have the same
meanings but evaluated at an energy higher or lower by
hw, ~ is the emission (M i) or absorption (M+i) ma-
trix element, and ei~2 = e ~—:e px(iq /i2U) is a phase
term corresponding to propagation halfway across the
well. The possible paths are
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result in Eq. (C2). The matrix element Myi is calcu-
lated using the technique developed early as given
in Appendix A and it is essentially the transmission am-
plitudes through an ac potential step —AU cosmic:

Myi —Jyi( —AV, /h~) = ~AV, /2h~. (C3)

We have expanded the Bessel functions jyi(. . ), there-
fore the above holds for EVa, /hcu « 1. If we reverse
the electron traveling direction, the matrix element M
changes to Mw—hich is the reason for the minus sign
in (—M) of the third term in Eq. (Cl). Equation (C2)
holds for all cases where the emission or absorption occur
at a given position within the teel/ (with an appropriate
change in ei~q, ei 2, e, and e'). Specifically, let z be the
fraction of the we(1 width at which the interaction occurs
0 & z & 1, e.g. , Eqs. (Cl) and (C2) correspond to z = i.
Equation (C2) becomes

t~e~Me i ~t&(1 —ei e~ r&rc) C4
(1 —e2r~rc)(1 —e *2r~r~)

In general, the ac voltage across the gael/ is linearly dis-
tributed which can be approximated to an arbitrary ac-
curacy by a series of steps. Since Eq. (C4) is linear in

and M is proportional to AV „an integration of
Eq. (C4) with respect to z from z = 0 to z = 1 corre-
sponds to distributing the ac voltage linearly across the
well. Note that e e& ey e* = ee'. We then need
to consider only the integrations for terms e e& and
e~ e* which give

1 1 exp(iqto) —exp(iq*to)

i(q q') ur
e e& dz=

(CG)

If we assume that the kinetic energy of the electron in the
well is much larger than h~, i.e., the incident electron en-

ergy referenced to the well band edge is much larger than
hem. The final result in Eq. (C5) can be approximated:

FIG. 6. Diagrammatic representation of possible paths of
the first-order absorption sideband t+q when the absorption
occurs in the well.

T+i ~ 1~+11 To,max

r'[(E —E~ ~ h~/2)'+ r']
[(E—EIt ) + I'][(E —En + h~)' + I ]

'

ER
P~& —Pyi o+ tan

E —ER+h~+ tan

i E —EIt + hcu/2—tan '
I'

(C10)

where y+, o
- goo and y, o

—goo + ~. Xo« that the
above approximation becomes worse when h~ is much
larger than I' because the Breit-Wigner-like expansion
fails far away from the resonance. The phase change for
ty~ from E &( ER to E )) ER is again z.

For the portion of the ac voltage in the barriers, we
illustrate the derivation briefly without going through
the details. Equation (C3) holds in both classically al-
lowed and forbidden regions as long as the electron en-
ergy is well separated from the band edge. Figure 7 shows
schematically the physical processes. For an equal bar-
rier width structure, i.e. , the amounts of the ac potentials
across the emitter and the collector barriers are the same,
the first-order sidebands due to ac potentials in the bar-
riers are

t~tc e *M t~t&eM
1 —e *2r&r & 1 —e2rzrc

e *(1—e r~rc) + e *(1—e *2r&rc)
(1 —e2r~r c )(I —e '2r ~r~)

(C7)

where we have assumed that in the barriers the sepa-
ration between the band edge (barrier height) and the
electron energy is much larger than hu. In the above
equation KV, which appears in M corresponds to the
potential across one barrier. Terms in parentheses in
Eqs. (C2) and (C7) are very similar or identical to the
denominator in Eq. (Bl), and hence we can make a sim-
ilar expansion in the neighborhood of the resonance and
then add the two contributions [Eqs. (C2) and (C7)] to-
gether:

2t~tce JHy, ir(E —E~ 6 h~/2+ iI')
T~ + Tc (E —E~ 6 h~/2 + iI') (E —ER + iI') '

(C8)

where AV in ~ is now the total potential V . The
transmission coeKcients, and the phases (Pyi) of t'ai are
then

exp(iqto) —exp(iq" to)
'I' e&/~e x/2. (C6)

This shows that Eq. (C2) is valid even when the voltage
across the well is linearly distributed, i.e. , for the portion
of the ac voltage in the well the first-order sidebands are
given by Eq. (C2) with AV, in Eq. (C3) corresponding
to the ac potential across the entire well.

FIG. 7. Diagrammatic representation of the first-order
absorption sideband t+ q when the absorption occurs in the
emitter (left part) and collector (right part) barriers.



12 548 H. C. LIU 43

T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald,
C. D. Parker, and D. D. Peck, Appl. Phys. Iett. 43, 588
(1983).
E. R. Brown, T. C. L. G. Sollner, W. D. Goodhue, and C.
D. Parker, Appl. Phys. Lett. 50, 83 (1987).
T. C. L. G. Sollner, E. R. Brown, W. D. Goodhue, and H.
Q. Le, Appl. Phys. Lett. 50, 332 (1987).
E. R. Brown, C. D. Parker, and T. C. L. G. Sollner, Appl.
Phys. Lett. 54, 934 (1989).
E. R. Brown, T. C. L. G. Sollner, C. D. Parker, W. D.
Goodhue, and C. L. Chen, Appl. Phys. Lett. 55, 1777
(1989).
F. Capasso, S. Sen, A. C. Gossard, A. L. Hutchinson, and
J. H. English, IEEE Electron Device Lett. EDL-7, 573
(1986).
M. A. Reed, W. R. Frensley, R. J. Matyi, J. N. Randall,
and A. C. Seabaugh, Appl. Phys. Lett. 54, 1034 (1989).
J. F. Young, B. W. Wood, H. C. Liu, M. Buchanan, D.
Landheer, A. J. SpringThorpe, and P. Mandeville, Appl.
Phys. Lett. 52, 1389 (1988).
V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Phys.
Rev. Lett. 58, 1256 (1987); T. C. L. G. Sollner, ibid. 59,
1622 (1987).
M. Tsuchiya, T. M atsusue, and H. Sakaki, Phys. Rev. Let t, .
59, 2356 (1987).
J. F. Young, B. W. Wood, G. C. Aers, R. L. S. Devine, H.
C. Liu, D. Landheer, M. Buchanan, A. J. SpringThorpe,
and P. Mandeville, Phys. Rev. Lett. 60, 2058 (1988).
R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973).
D. D. Coon and H. C. Liu, Appl. Phys. Lett. 47, 172 (1985).

D. D. Coon and H. C. Liu, J. Appl. Phys. 58, 2230 (1985).
D. D. Coon and H. C. Liu, Solid State Commun. 55, 339
(1985).
H. Ohnishi, T. Inata, S. Muto, N. Yokoyama, and A. Shi-
batomi, Appl. Phys. Lett. 49, 1248 (1986).
M. Cahay, M. McLennan, S. Datta, and M. S. Lundstrom,
Appl. Phys. Lett. 50, 612 (1987).
T. Baba and M. Mizu ta, Jpn. J. Appl. Phys. 28, L1322
(1989).
S. Luryi, Appl. Phys. Lett. 47, 490 (1985).
D. D. Coon and H. C. Liu, Appl. Phys. Lett. 49, 94 (1986).

'S. C. Kan and A. Yariv, l. Appl. Phys. 64, 3098 (1988).
W. R. Frensley, Phys. Rev. Lett. 57, 2853 (1986).
W. R. Frensley, Phys. Rev. 8 36, 1570 (1987); 37, 10379
(1988).
C. Jacoboni and P. J. Price, Solid State Commun. 75, 193
(1990).
M. Buttiker and R. Landauer, Phys. Rev. Lett. 49, 1739
(1983).
H. C. Liu, Appl. Phys. Lett. 52, 483 (1988).
A. Tackeuchi, T. Inata, S. Muto, and E. Miyauchi, Jpn. J.
Appl. Phys. 28, L750 (1989).
W. R. Frensley, Appl. Phys. Lett. 51, 448 (1987).
R. K. Mains and G. I. Haddad, J. Appl. Phys. 64, 3564
(1988).
D. D. Coon and H. C. Liu, Solid State Commun. 54, 275
(1985).
M. Jonson and A. Grincwajg, Appl. Phys. Lett. 51, 1729
(1987).
E. P. Wigner, Phys. Rev. 98, 145 (1955).


