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Quasi-parity-conserving octahedral model for (H,Be) and (D,Be) tunneling complexes in silicon

Emilio Artacho and L. M. Falicov
Department of Physics, University of California, Berkeley, California 94720

(Received 17 December 1990)

A six-site (octahedral) tunneling model is presented for the (H,Be) and (D,Be) acceptor complexes
in silicon. Parity has been found to be, in the approximation used to describe these systems, a con-
served quantity. With parity conservation, the model yields spectra that fit the available experimen-
tal data with accuracy similar to the previously proposed four-site (tetrahedral) model, but which do
not exhibit the unexplained discrepancies —present in the tetrahedral model —between the tunnel-

ing frequencies of the complexes and the rotational frequencies of the corresponding diatomic mole-
cules.

I. INTRODUCTION

Hydrogen-beryllium and deuterium-beryllium acceptor
complexes in silicon have been experimentally identified
as tunneling systems by Muro and co-workers. ' Their
infrared and far-infrared spectra are essentially explained
by the theory of Hailer and co-workers that considers
the diatomic complex as a hindered rotator. This picture
is equivalent to assuming, for the specific case under con-
sideration here, that the proton or deuteron is delocalized
and tunneling between equivalent, low-symmetry posi-
tions about the substitutionally located Be atom. In their
specific model, Hailer, Joos, and Falicov used the
minimal set of equivalent positions, i.e., four tetrahedral
sites around the Be atom, corresponding to either the
bonding or the antibonding directions of the silicon struc-
ture. Based on this geometry, they developed a model in
which the local tetrahedral environment was character-
ized by the Td point. group, a group which does not in-
clude i.nversion symmetry.

Peale, Muro, and Sievers fitted the parameters of this
theory to explain their experimental results. The data
were satisfactorily reproduced with parameters which
were all in an acceptable range of values. There was,
however, a fundamental inconsistency in the model as it
stood. The parameters include electronic- and nuclear-
energy matrix elements, which can be extracted from the
optical data. From the obtained parameters it was
found that excited levels of the acceptors (H, Be) and
(D,Be) in silicon exist in pairs separated by a tunneling
energy with values 38.8 cm ' for (H, Be) and 16.2 cm
for (D,Be). However, for the freely rotating (H-Be)
molecule, the energy separations between the J =0 andJ= 1 rotational levels are 21.1 cm ' for (H, Be) and 11.6
cm ' for (D,Be), if it is assumed that the bond length of
the defect in Si is the same as in the free neutral mole-
cule (r =1.333 A). These values for energy separations
of rotational levels are less than the observed separation
of the tunneling levels, although the free rotation should
be the upper limit: the tunneling (hindered rotation) be-
comes more rapid for molecules constrained by the crys-
tal potential (i.e., a less hindered, freer rotator).

There have been several calculations ' of total energies

for a variety of configurations of hydrogen-impurity pairs
in elemental semiconductors. Denteneer, Van de Walle,
and Pantelides found that the bonding direction
(tetrahedral configuration) contains always an energy
zero-gradient point [labeled BM (bond minimum)] for the
hydrogen locations in all complexes in both Si and Ge.
They also find a second set of energy zero-gradient points
(labeled C in Ref. 8) located along the six equivalent cubic
(100) directions. For the particular case under con-
sideration here —(H, Be) in silicon —Denteneer, Van de
Walle, and Pantelides found that the global energy mini-
ma occur for the hydrogen (either H or D) at C, located
at a distance of approximately 1.50 A from the Be center
along the (100) directions; the Be atom relaxes approxi-
mately 0.14 A from the original Si site, away from the hy-
drogen. The ( 111) type, bonding-direction BM zero-
gradient points are saddle-point singularities with energy
0.1 eV above the energy of the C minima. They also find
that the possible tunneling paths' between the C minima
do not involve the BM saddle points, for which the tun-
neling barrier would be much too high. The tunneling
path goes through the antibonding directions and has a
barrier height estimated to be 0.4 eV. These numbers are
consistent with the possibility of the hydrogen atom tun-
neling among the six diA'erent C equivalent positions and
avoiding the four (tetrahedral) BM sites altogether.

If the above picture is correct, a reanalysis of the tun-
neling model is needed. It is important to see whether
the hindered rotator with energy minima at the six C
sites can explain the experimental data. The present con-
tribution contains this analysis and the results obtained
are not only compatible with experiment, but they also
eliminate the inconsistency with the molecular data quot-
ed above.

II. CALCULATION AND RESULTS

The symmetry of the octahedral complex center—
shown in Fig. 1—requires careful discussion. " The oc-
tahedron defined by the six equivalent configurations of
the Be atom with the hydrogens along (100) directions
is invariant under the operations of the 0& group. The
presence of the Si nearest and more distant neighbors
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FIG. 1. The geometry of the complex in the octahedral
configuration. The Be-atom position is the hatched circle; the
hydrogen six tunneling positions are the black circles and the Si
nearest neighbors are shown as open circles.

reduces that symmetry to the well-known Td symmetry
of all atomic sites in the diamond structure. It should be
remembered that 0& contains the inversion operation,
whereas Td does not. In fact the group 0& can be ex-
pressed as the direct-product group of Td with the inver-
sion group. The irreducible representations of OI, are
therefore twice as many as those of Td, and can be la-
beled by I,—,with the I,. indicating the irreducible repre-
sentations of Td, and the + superscript indicating the
properties under inversion.

It should also be remembered that even though the
point group operations in the diamond lattice at the
atomic sites, a (0,0, 0) and a( —,', —,', —,'), do not include the
inversion, the space group of the diamond lattice contains
the inversion at points in the middle of the Si—Si bonds,
a( —,', —,', —,'), and at the center of the octahedral holes,
a ( —,', —,', —,'), and therefore the Bloch states are labeled by a
+ index that denotes parity about these centers. These
parity labels are of no releuance for the present purposes
and should be ignored altogether.

The top of the valence band in Si and G-e, however, is
formed exelusiUely by functions which have p-like sym-
metry about the individual atoms. These functions are,
to a first approximation, of negative parity about each
atom, even though that parity character is broken away
from the center, as the nearest neighbors are approached.
Therefore, if (i) the electronic wave function of the center
is described exclusively by the product of a smooth en-
velope and a linear combination of the six spinors from
the top of the valence band; and (ii) crystal-field correc-
tions arising from neighboring Si atoms are neglected;
then parity in the total wave function, with respect to the
center of the complex, is a good quantum number.

Put in different terms, 0I, symmetry is imposed by the
model on the system to a very good degree of approxima-
tion, even though the true symmetry is only Td. The
quasi-parity-conservation imposes new selection rules,
which make some of the otherwise-allowed transitions
now forbidden (in reality only very weakly allowed), and
reduces the number of possible optical lines.

Following Ref. 3, the Hamiltonian of the complex for
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where t is the hydrogen (H or D) tunneling matrix ele-
ment between nearest-neighbor octahedral configura-
tions. The effect of tunneling between second-nearest-
neighbor configurations may be neglected. Diagonaliza-
tion of this matrix yields three energy levels: a I &+ sing-
let, with nuclear energy Ez —4t; a I 5 triplet, with energy
E~; and a I 3+ doublet, with energy Ez+2t. The singlet
and the doublet have even parity; the triplet is odd. In
the free-rotator limit the I &+ singlet arises from J =0
state; the I 5 triplet comes from the J =1 states; the I 3+

doublet is derived from two states from the J =2 quintet
which, under the 0& symmetry split off to a lower energy,
leaving behind a much higher (and inaccessible) I 5 trip-
let

J=2~I 3+I 5+ .

It should be noted that positive values of t correspond to
the same ordering of levels as in the rigid rotator, i.e.,

E(J=0) &E(J=1)&E(J =2)
or

E(1,+) &E(I, ) &E(I,+),
whereas negative values yield the reverse ordering; as
seen below the experimental data are consistent with pos-
itive t.

The next step is to consider the complete ground-state
manifold: (1) the four electron states derived from the
product of (a) the ls hydrogenic envelope and (b) the four
spinors corresponding to the I ~ Bloch states at the top of
the Si valence band; (2) the nuclear states defined by the
six octahedral C positions; and (3) their dynamic interac-
tions (i.e., the correction to the Born-Oppenheimer ap-
proximation). There are all together 24 states of the com-
bined electronic-nuclear degrees of freedom.

The electronic ground-state manifold of an ordinary

the electronic and nuclear degrees of freedom is ex-
pressed by

H =H, +H~+ V,
where H, describes a hole bound to an ordinary isocoric
hydrogenic acceptor, H~ the dynamics of the internal
(nuclear) degree of freedom of the complex, and V the in-
teraction between both degrees of freedom. The nuclear
dynamics of the complex is described in the Hilbert space
defined by localized nuclear functions centered at the six
equivalent (100) configuration energy minima C. They
are denoted by the symbols I ), with I = 1,2, . . . , 6, for
the functions located at sites along the [100], [100],
[010], [010], [001], and [001] directions, respectively.
With this basis, H& can be written as the 6 X 6 matrix

r
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The matrix elements of the various components of (1)
in this basis are given by (i) the diagonal matrix elements

(Im IH~+H, IIm ) =E~+E„; (2)

(ii) the off-diagonal matrix elements of H~ for I and I'
nearest neighbors

(iii) the matrix elements of V can be expressed in terms of
two reduced matrix elements:

( Im V
~
Im ' ) = Vo C ( I;m, m ' ),

for the same nuclear location I, and

( Im
~
V

~

I'm ' ) = V, D (I,I', m, m ' ),

(4)

for I and I' nearest neighbors.
In the equations above Vo is the central-cell-potential

contribution; V, is a combined electronic-nuclear poten-
tial, which measures the breakdown of the Born-
Oppenheimer approximation. In addition C (I;m, rn')
and D (I,I', m, m ') are generalized Clebsch-Gordan
coeftieients corresponding to the symmetry of the 0&
group, and obtained as in Ref. 3.

The 24X24 matrix can be diagonalized in a straight-
forward way with the use of group-theoretical tech-
niques. It corresponds to the reduction of the direct-
product space

(r,+er3 SI )SI8 I6 $17 e2I 8+$16 $17 $21s

i.e., four doubly degenerate, fully diagonalized eigenval-
ues of symmetries I 6 and I 7, and two sets of 2 X 2 secu-
lar equations which yield four sets of quadruply degen-
erate I 8 states.

The eigenvalues are

E(I 6+)=E~+E„+—,
' Vo+2V, ,

E(I 6 )=E~+E„+2t,
E(I +)=E +E„+2V, ,

E(I 7 )=E~+E„+2t+—,'Vo —
—,
' V, ,

E(I +)=E +E„+—,
' V —V, +[(—,

' V ) +( V, ) ]'

(7a)

(7c)

(7d)

(7e)

E ( I 8 ) =E~+E „t+—,
' VO+ —', V, —

+[(—'V + —,
' Vo) +(2Vi —3t) ]'

acceptor, defined by the first term H, in Eq. (1), is four-
fold degenerate, with energy E„. Its eigenfunctions
transform like the J =

—,
' spin states of a p orbital, i.e., ac-

cording to the I 8 representation of Oh. The correspond-
ing states are denoted by ~m ), with m = —', , —,', —

—,', ——', .
The complete set of the 24 states that cover the ground-
state electronic-nuclear manifold is therefore identified by
~Im ), where

IIm) =II)elm) .

The electronic excited hole states, accessible by in-
frared optical excitations, all have a p-like envelope func-
tion. These states have zero electronic amplitude in the
neighborhood of the nuclear sites, and it is reasonable to
take Vo and V& to be in this case negligibly small. In that
case the electronic and the nuclear degrees of freedom
decouple, and this decoupling results in each excited p-
like hole state —with a degeneracy either d = 12 or 6 cor-
responding to the threefold degeneracy of the p-like en-
velope and either the fourfold degeneracy of the I 8, or
the twofold degeneracy of the I 6 symmetry of the Bloch
states at the top of the valence band of silicon—
coexisting with the three dift'erent nuclear levels de-
scribed above. The energies of the excited states and
their degeneracies are'

E,„„„d(N;I"i+) =E~+E„4t-,
dexcited(p 2 &N & i

,„„„d(p—,';N; I",+)=6;
E,„„„d(¹I~ )=Etv+E„

dexcited (p 2
N ~5

d,„„„(p, ;N; I ) =—18;

E,„„„,(¹I,+ ) =E„+E„,+2t,
d,„„„d(p—',;N; I,+ ) =24,
d,„„„(p,';N; I +)=—12.

(8a)

(8b)

(9c)

(10a)

(10b)

(10c)

In the above equations (N; . ) indicates the symmetry
of the nuclear part of the direct-product function, and d
denotes the total degeneracy of the particular level.

III. DISCUSSION AND CONCLUSIONS

The model presented above for all states —ground-
state manifold and optically excited hole states —is re-
stricted to electronic states derived from envelopes with
well-defined spherical symmetry and from silicon p-like
functions (Bloch states at the top of the silicon valence
band), and nuclear states derived from tunneling between
six octahedrally located sites. In this approximation in-
version symmetry —or its mathematically equivalent
symmetry in the Hamiltonian matrices —introduces a
new conserved quantity. Since (i) parity changes during
an optical transition, (ii) the Bloch states are the same for
ground and optically excited states, (iii) the ls and np en-
velopes have opposite parities, and (iv) the nuclear part of
the wave function does not participate in optical transi-
tions, then the symmetry of the nuclear part of aH the ex-
cited states reachable by an optical transition from any
state in the ground-state manifold must be unique. In
other words, from any of the states whose energy is given
by Eq. (7), the accessible states are either those given in
Eqs. (8) and (10) or those states given by Eq. (9), but not
both.

An analysis of the experimental data' shows that, at
su%ciently low temperatures, the infrared lines for both
the p—', and for the p —,

' series exhibit two peaks or replicas
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(equal patterns of peaks) separated by a fixed frequency:
b, =38.8 cm ' for (H, Be), and b, = 16.2 cm ' for (D,Be).
The relative intensity of the lines is temperature indepen-
dent. These facts indicate that that separation is caused
by the structure of the excited states, and not by the
properties of the ground-state manifold. Therefore the
following points apply.

(i) Since two lines rather than one are observed, if the
model with its parity-conservation rule applies then the
final states must correspond to the symmetries (N;I,+)
and (N; I ~+ ), and not to the symmetry (N; I ~ ).

(ii) Equations (8a) and (10a) above then uniquely deter-
mine the value of ~t~, which corresponds to 6.5 cm ' for
(H, Be), and 2.7 cm ' for (D,Be).

(iii) Equations (8)—(10) clearly show that the two ob-
served lines are thus the erst and third nuclear rotational
levels of the complex; the second rotational level is not
accessible because of the quasi-parity selection rule.

(iv) The energy separation between first and second
levels, given again by Eqs. (8) and (9), are now only —', of
the optically observed split tings, i.e., 25.9 cm for
(H, Be), and 10.8 cm ' for (D,Be). These values compare
well, ' within the experimental resolution, with the ob-
served values for the free ions ' of 21.1 cm ' for (H, Be),
and 11.6 cm ' for (D,Be). The model thus solves the in-
consistency mentioned in the Introduction.

Transitions within the ground-state manifold are seen
in the far-infrared measurements of Ref. 1. For the par-
ticular case of (D,Be) the spectra clearly show three peaks
(at 5.9, 9.75, and 12.9 cm '). There are two other small
features between these peaks. The tetrahedral model pre-
dicted five energy levels in the ground-state manifold, and
thus four possible peaks, i.e., transitions from the ground
state to all the other states in the manifold; the interpre-
tation located the unseen fourth peak at about 16 cm
The present octahedral model also predicts four transi-
tions, even though the number of levels in the manifold
has increased from five to eight. Since all the levels have
a well-defined parity and optical transitions have a parity
selection rule, the possible transitions from the ground
state, whatever its symmetry and parity, are only to any
of the four states of opposite parity.

A fit of the energy eigenvalues of Eq. (7) to the data
yields the following two possible sets of parameters for
(D,Be): set 1,

~ =2.7 cm Vo= —6.3 cm ', V& =0.85 cm

set 2,

t =2.7 cm ', Vo=5. 9 cm ', V& =0.95 cm

Both sets agree with the experimental observations
well. In both cases the ground state has I 8 symmetry,
which is compatible with the observed splittings of the
level under uniaxial stress. As in the tetrahedral case, a
fourth (unidentified) transition is obtained. It occurs at
different energies for the two sets: 8.3 cm ' for set 1; 8.7
cm ' for set 2. Regardless of the small difference be-
tween the two sets of parameters (0.4 cm '), the
"unidentified" peak falls, for the octahedral model, be-
tween the first two "strong" peaks of the spectrum,
whereas in the tetrahedral model, as mentioned above, its

frequency is higher than the three observed "strong"
peaks.

The infrared experiments also include measurements at
higher temperatures, ' both for the p —,

' and the p —,
' series.

The lower excited states in the ground-state manifold are
thermally populated and infrared absorption from these
states is observed. As in the case of the ground state, two
lines or replicas are observed from the first excited state;
one of them is very weak. Only one is seen corresponding
to the second excited state.

The tetrahedral model, with the parameters needed to
fit the data of Refs. 1 and 2, predicts two lines of compa-
rable magnitude for the ground state, two lines —one
strong and one weak —from the first excited state, and a
single line from the second excited state, in excellent
agreement with experiment. The octahedral model de-
scribed here gives a ground state of total symmetry I 8

[nuclear symmetry of even (+) parity], a first excited
state of symmetry I &+, and a second excited state of sym-
metry I"6+ for set 1 or symmetry I 7+ for set 2. First and
second excited states have therefore odd (

—) nuclear
symmetry parity. Since the Franck-Condon approxima-
tion yields conservation of nuclear parity, the octahedral
model, as shown in Eqs. (8)—(10), predicts a single ab-
sorption line from both thermally populated first and
second excited states. If that is the correct interpreta-
tion, the weak line observed for the first excited state is
misassigned and either belongs to a different series or is
spurious.

Since the symmetry of the ground state is of I z charac-
ter iz both models, they give equally acceptable interpre-
tations for the splitting of optical lines observed under
uniaxial stress.

In conclusion, we note the following points.
(1) The model presented here consists of six equivalent

positions of the tunneling hydrogen, distributed in an oc-
tahedral arrangement (as opposed to four positions in a
tetrahedral arrangement). To a very good approximation
the Hamiltonian describing such a center has an extra in-
version symmetry in the center of mass of the tunneling
system, and the wave functions —nuclear, electronic, and
total —can thus be classified as even (+) or odd (

—).
(2) Although the additional number of sites provide

more possible states, the extra symmetry restricts,
through parity selection rules, the number of possible op-
tical transitions.

(3) Experimental data for both the far (intra-ground-
state 1s-envelope manifold) and mid (ls~np transitions)
infrared can be explained with similar accuracy by either
model.

(4) Both models predict an unobserved extra far-
infrared line but, whereas the tetrahedral model has it at
16 cm ', i.e., higher than the three observed lines at 5.9,
9.75, and 12.9 cm ', the octahedral model predicts it at
approximately 8.5 cm ', between the first and second
lines. If observed, this line can serve to distinguish be-
tween the models.

(5) The tetrahedral model seems to yield a somewhat
better description of the thermally excited absorption
from excited states, but the difference resides in the as-
signment of extremely weak extra lines which may be of
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di6'erent origin.
(6) The octahedral model, on the other hand, resolves

the discrepancy in the frequencies of the nuclear tunnel-
ing of the (H, Be) and (D,Be) acceptor complexes in sil-
icon and the rotational frequencies of the corresponding
free molecules. The paradox is resolved because the octa-
hedral model contains an unobservable intermediate lev-
el, of the opposite parity, between the observed optical
frequencies. This parity behavior is similar to that of the
free molecule, and produces similar selection rules.
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In Ref. 8 Denteneer, Van de Walle, and Pantelides calculate
the equilibrium positions of the hydrogen in the various loca-
tions allowing, in each case, a complete relaxation of the sur-
rounding atoms. The tunneling paths, however, are calculat-
ed assuming no intermediate relaxation of the lattice between

the equivalent initial and final states. Although the BM
points, when relaxed, are only 0.1 eV above the C minima, in
the absence of relaxation their energy is much too high to
participate in the tunneling process, which may proceed in-
stead through the antibonding directions.

'The octahedral model developed here requires only eight
quantum nuclear states with matrix elements compatible with
octahedral symmetry and permitting "tunneling" among
them; the specific mechanisms of tunneling as well as the
presence or absence of relaxation of the various atoms and
configurations are essentially irrelevant for the analysis car-
ried out here.

' lt should be noted that the excited states of the np manifold
actually do split into states of symmetries I z, I 8, I 6, and I 7

for p ~, and I 6 and I 8 for p2; this splitting is observed experi-
mentally but is irrelevant for the present discussion.
The obtained value for the (N;I,+) to (N;I 5 ) level separa-
tion for H, 25.9 cm ', is still larger than the molecular rota-
tion splitting of 21.1 cm '. The difference is nonetheless
small, the lines are fairly broad, and inclusion of second-
neighbor tunneling should alter slightly the ratio of 2:1 be-
tween the I &+ to I & and I"5 to I 3+ energy separations.


