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The electronic structure of substitutional and interstitial S, Se, and Te point defects and of
defect pairs is investigated by ab initio total-energy calculations. The results show that under
normal conditions the chalcogen point defects are preferentially built in as substitutional atoms.
However, interstitial S point defects cannot be excluded for n-type material. According to our
calculations, the formation energy (without 3ahn-Teller distortion) is 1 eV higher than for the
substitutional S point defect. Stable pairs are formed in n-type material for nearest-neighbor
substitutional S aud Se atoms. For Te pairs the formation energy is always larger than that
for two isolated point defects. Lattice relaxation (which is ignored in our calculation) could
lower this value in order to allow for stable Te pairs. Pairs of interstitial chalcogeu defects aud
also mixed pairs of interstitial and substitutional chalcogen would also be stable if there was
a sufhcient concentration of interstitials. We find that more distaut pairs cau also be stable
for S and Se whereas for Te pairs they are unlikely. We calculate the matrix elemeuts of the
hyperfine interaction with the impurity nuclei and also the ligaud hyperfiue matrix elements
with several Si ligauds and for several different paramagnetic configuratious of the poiut, defects
and the pairs. We find good agreement between the experimental data aud our results for t, hose

configurations that have been found to be stable according to total-euergy calculations. We also
find that next-uearest-neighbor pairs can be stable aud speculate if such pairs can be ide»tified
with the chalcogen X center.

I. INTRODUCTION

A major task in semiconductor research is the iden-
tification of the chemical nature and atomic structure
of defects, in particular, of defects that exist in several
modifications in a given crystal. Among the defects that
form deep levels in silicon the chalcogens S, Se, and Te
have been the subject of many detailed studies, see, e.g. ,

Wagner e] a/. for a review.
In this paper we theoretically investigate the elec-

t ronic structures, total energies, and hyperfine fields of
the S, Se, and Te isolated point defects and of the Dsd
and C3„symmetry pairs. The results are compared
with experimental data, which give a wealth of infor-
mation about the properties of deep states: From in-
frared absorption and from deep-level transient spec-
troscopy (DLTS) experiments the position of the lev-
els in the gap are known accurately. Electron para-
magnetic resonance (EPR) and electron nuclear dou-
ble resonance (ENDOR) experiments result in de-
tailed information about the point-group symmetry of
the defect. In particular the ENDOR experiments give
detailed information involving the shape of the spin-

density distribution at the impurity nucleus and also at
several close and more distant host ligand nuclei. Un-
fortunately, this information cannot be used directly to
map the deep-level wave function in real space. In fact, it
is not even possible to discriminate (without introducing
significant theoretical assumptions) a substitutional site
for the point defect from an interstitial site since both
have tetrahedral symmetry in the diamond lattice.

A further interesting topic for which there is little ex-
perimental information is the structure of impurity pairs.
Again from ENDOR data one can deduce the symmetry
of the pair, but that does not identify the distance be-
tween the nuclei of the pair (and for the case of pairs
with 03~ symmetry again does not discriminate a pair
formed by two impurities on interstitial sites from a pair
of two impurities on substitutional sites). Little if any in-
formation can be derived from experimental data about
the formation energy of pairs, in particular as this quan-
tity depends sensitively upon the position of the Fermi
energy.

Here theoretical total-energy calculations are powerful
tools that allow the calculation of pair formation ener-
gies, of the energy of the deep levels, and also of the hy-
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perfine and ligand hyperfine interaction matrix elements.
We shall present in this paper a detailed investigation
of the properties of point defects and pairs in all charge
states and in difI'erent atomic configurations. In partic-
ular we discuss the stability of S and Se point defects
and of pairs of S and Se. We also calculate the paramag-
netic properties of these impurity configurations which
can be compared directly with experimental hyperfine
data. The diA'erent contributions to the spin density that
arise from the spin polarization of the core states, the spin
polarization of the valence-band states, and the contri-
bution from the single-particle wave function of the state
in the gap are discussed in some detail. We find that at
the ligands the polarization of the valence band states
can be quite significant. The single-particle linear com-
bination of atomic orbitals (LCAO) scheme which
is frequently used for the interpretation of experimental
data does not take this valence-band polarization explic-
itly into account and can therefore lead to an erroneous
description of the bonding properties at the ligands when
forced to reproduce the experimental EPR and ENDOR
data.

II. COMPUTATIONAL

Ab initio self-consistent electronic structure calcula-
tions for defects in solids can be performed eIIiciently us-

ing the Green-function approach. This approach has the
advantage that the problem separates into two parts, the
calculation of the Green function for the perfect crystal,
Gp, and the solution of a Dyson equation for the Green
function G of the crystal with the impurity (or impurity
complex). In this scheme the Green function Gp has to be
calculated self-consistently for an infinite perfect crystal
in a first step. Exchange and correlation are treated in
the local-spin-density approximation (LSDA) of the spin-
density functional theory (DFT) (see also Ref. 21). In
a second step the Green function 6 for the infinite crys-
tal with a point defect (or a defect complex) is obtained
by a solution of Dyson's equation

resulting states will extend over a significantly larger spa-
tial region. A self-consistent solution of Dyson s equation
can therefore be obtained treating a rather small number
of atomic spheres around the impurity.

The use of the ASA unfortunately does not allow us to
treat the eKect of lattice relaxation around the impurity.
The eKect of this relaxation has been shown to be small
for Si:S and Si:Se. For Si:Te, however, the geometrical
misfit of the larger impurity atom may cause important
uncertainties. We shall in the main part of the paper re-
strict our attention to defects that exhibit Td point-group
symmetry and to pairs of Dsg and Cs„symmetry. The
perturbed region will be constructed in such a way that
the point-group symmetry of the defect is retained which
allows the use of symmetry-adapted muf5n-tin orbitals.

A. The resonance problem

It is well known that the single-particle band gap of the
DFT-LSDA calculations for silicon is too small by about
0.5 eV if compared to the experimental band gap. In
the case of chalcogen point defects and defect pairs this
deficiency has the consequence that the defect-induced
gap state turns out to be a resonance near the bottom
of the conduction band. For the paramagnetic isolated
point defects and defect pairs of the chalcogens this gap
state is singly occupied. This is modeled in our calcu-
lation by an occupation of the resonance state with one
unpaired electron. The change of the resulting density-
of-states distribution with respect to a perfect crystal for
the resonance is shown in Fig. 1 for Ses;.

In order to obtain a quantitative estimate of the eft'ect

of the resonance we have performed non-self-consistent
calculations: the self-consistent potential for the per-
turbed region containing the impurity and the next 16
Si ligands was modified by the addition of a small con-
stant potential bV. This potential is used to force the

G=Gp+Gp AUG.
0.10—

+
esi

Here AV is the potential which describes the perturba-
tion caused by the impurity. Dyson's equation has to
be solved self-consistently using again the DFT-ISDA
method.

In this paper we shall be interested particularly in the
paramagnetic properties of defects which are determined
predominantly by the spin densities near the nuclei of the
defect and its ligands. We therefore have used the linear
mufBn-tin orbital method in the atomic-sphere approxi-
mation (LMTO-ASA). In the LMTO-ASA method the
crystal is divided into overlapping spheres with spherical
symmetrical potentials for which the Kohn-Sham equa-
tion is solved directly. The solution of Dyson's equation
is considerably simplified by the fact that the potential
AV is localized in a rather small region in space around
the impurity site only, although the wave functions of the
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FIG. l. Induced density of states for the a~ resonance
state of Se+, projected into the Se+ sphere (solid line), into
the Si(1,1,1) ligand sphere (dashed line), and into a Si(2,2,0)
ligand sphere (dash-dotted line).
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deep level down into the band gap thereby altering the
localization of the resonance state. We find that for Ss;
and Ses+ a potential 6V = —0.15 eV is sufficient, and
leads to an increase of the electron density of the res-
onance in the ASA shells of the perturbed region that
amounts to less than 10%. For Tes+, on the other hand,
the resonance is found to be significantly higher in the
conduction band than for Ss; and Ses;. In this case the
value of bv required to shift the resonance into the gap is

larger by a factor of 8. This larger shift is accompanied
by an increase of the electron density of the resonance
in the Te ASA sphere and also in the nearest-neighbor
ligand spheres by more than a factor of 2.

We thus find that in the case of Ss; and Ses, it is per-
missible to identify the resonance with the defect-induced
localized state. We note t,hat the error in the electron
deI1Slty (allCl also lI1 tile SplIl densify, etc.) al'ISlllg fI'olil

the resonance nature of the induced state is expected to
be below 10%. For Tes, we expect larger errors. In the
remainder of this paper we shall address the resonance as
"deep state" and its energy as the "deep level. " All cal-
culated quantities quoted will be derived self-consistently
from the deep-state resonance without any correction by
an additional potential 6V.

B. Hyperfine interaction

In electron paramagnetic resonance (EPR) and elec-

tron nuclear double resonance (ENDOR) experiments the

hyperfine interaction (HFI) matrix elements of a para-

magnetic impurity with the impurity nucleus can be de-

termined if there are isotopes with nonzero nuclear spin

for the impurity. From the experimental data the point-

group symmetry of the defect site can be obtained di-

rectly. A distinction between a tetrahedral substitutional

site and a tetrahedral interstitial site, however, is not

possible directly. Besides the interaction with the im-

purity nucleus the ENDOR data can provide the ligand

HFI matrix elements with the magnetic host crystal nu-

clei at different ligand positions with respect to the impu-

rity. Again a, careful analysis of the angular dependence
of the ENDOR data provides the information about the

symmetry of the "shell" of equivalent ligands that are
transformed into each other by the operations of the sym-

metry group of the defect cluster. This means that one

abtains directly the paint-group symmetry of the shell

of distance vectors between the paramagnetic impurity
and the ligand nuclei but not the length of these vec-

tors. There is no simple way to estimate these distances.
In particular, it is in general not correct to assign the

smallest distance vectors to the largest HFI matrix ele-

ments as is sometimes assumed in experimental analy-
ses. It should be noted that even for shallow donors in
silicon it is known that the ligand hyperfine matrix
elements for the nearest-neighbor ligand is much smaller
than that for several more distant ligands. For donor
impurities that are described by the effective-mass ap-
proximation (EMA) the matrix elements depend in an
oscillatory way on the distance vector from the impurity

site .This is due to the fact that in Si there are several
inequivalent conduction-band minima. For deep impu-
rities the EM A does nat hold but nevertheless the HFI
matrix elements will in general depend in an oscillatory
way on the distance from the impurity site.

The isotropic hyperfine interaction (also called the
Fermi contact term) for an electron with gyromagnetic
ratio g, interacting with a nucleus at the site R~ with
gyromagnetic ratio g~ is given by

cijv = —,po g. ger j jv m(~iv),—2 (2)

where po is the susceptibility constant and p~ is the
nuclear magneton. The magnetization density at the nu-
clear site R.~ is the product of Bohr's magneton p@ and
the difference m(r) between the electron spin densities of
up and down spins, nT and n.l, respectively,

m(r) = jIII [nt (r) —nt(r)j.

po
(bjv )i,j — 9e 91v V'Jv

Sz
3z z. —r2b

(4)

The integrand is strongly peaked at the nucleus and,
therefore, it is sufFicient in practically all cases to per-

m(r) can be analyzed in terms of three different contri-
butions ~ The first contribution arises from the paramag-
netic spin of the single-particle wave function describing
the deep state. This contribution actuates the magneti-
zation of other states. As a consequence of this deep-level
wave function we will have a spin-dependent modification
of the valence-band states, i.e., a spin polarization of the
valence states, and also a spin polarization of the impu-
rity and ligand core states.

It should be noted that for the comput, at, ion of parti-
cle and of spin densities in the nuclear region of atoms
it is important to take relativistic effects into account,
at least by using a scalar relativistic wave equation (see,
e.g. , Ref. 28). In the Mcissbauer spectroscopy (see, e.g. ,

Refs. 29 and 30) it is customary to correct particle den-
sities obtained using a, nonrelativistic calculation by a
function S'(Z), which can be shown to be a good ap-
proximation to relativistic particle densities. S (Z) de-
pends an the nuclear charge only and amounts to 1.12
for S, 1.54 for Se, and 2.61 for Te. For the contact in-
teraction the same correction must not be used because
in a relativistic theory the magnetization density is
not to be averaged over the nuclear volume but rather
over a sphere with diameter equal to the Thomas radius
r, h ——Ze2/(2mcz). For test purposes we have performed
nonrelativistic calculations and obtained isotropic HFI
constants that are smaller than the corresponding results
of a relativistic calculation by a factor of 1.02 for the HFI
at Si nuclei, 1.03 at S, 1.16 at Se, and 1.45 at Te nuclei,
respectively.

The anisotropic (dipolar) HFI is given by an integral
over the magnetization density over all space
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form the integration over the central ASA sphere and to
approximate the contributions from the other spheres re-
placing the spin distribution in each of these spheres by
point dipoles with a dipole moment appropriate for the
integrated spin density in the spheres. For the computa-
tion of the anisotropic part of the HFI, relativistic eA'ects

turned out to be of minor importance. The anisotropic
hyperfine tensor can be diagonalized into the form

(b —b' 0 0
0 b+b' 0
0 0 2b—)

(5)

We shall present in the following the dipolar constant 6

exclusively and do not attempt to calculate 6'. For a nu-
cleus in the center of the perturbed region 6' is zero due
to the symmetry. For nuclei that are not on a threefold-
symmetry axis of the perturbed region (and only for these
nuclei b' will be nonzero) we cannot even calculate the
contributions of all nearest neighbors because our per-
turbed region is too small for this purpose. As a conse-
quence we shall present also the calculated data for b in
parentheses in these cases.

In the following we denote by a~ and b~ the hyperfine
matrix elements which are calculated from the spin den-
sity of the single-particle density of the deep state alone.
By at t and bt- t we denote the hyperfine matrix elements
which are calculated from the total spin densities which
includes contributions from the deep state, the valence
band, and from the core states. The spin polarization of
the core states was taken into account in each step of the
self-consistent cycle using the potential derived from the
solution of Dyson's equation in an atomic Dirac-LSDA
calculation.

The distribution of the induced density of states for Ss+,

that transforms according to the irreducible representa-
tions A~ and T2 is shown in Fig. 2. The induced densities
of states are identical to those presented earlier 3 and will
be discussed in more detail in connection with the results
for the pairs.

In the experiment the paramagnetic deep states of Ss+

and Ses+, are at midgap, thus energetically these states
are very deep. This does not mean, however, that the
spin density of these states is localized within a few unit
cells around the impurity site. This is demonstrated in
Table I where we list the s, p, and d components of the
charge densities obtained from the single-particle wave
function and projected into the diA'erent AHA spheres.
According to our calculations only 4.0% of an elemen-
tary charge is located within the S+ ASA sphere, 4.3% is
within each of the four Si(1,1,1) ligands, 0.5'%%uo in each of
the twelve Si(2,2,0) ligands, while 0.8% is found in each
of the ten interstitial spheres. The sphere that contains
the chalcogen atom and its nearest and next-nearest Si
ligands, therefore, encloses only 35'%%uo of the total spin of
this antibonding a~ state. The corresponding bonding
a~ state is a hyperdeep resonance state within the va-
lence band. The aq state below the valence band (see
Fig. 2) is essentially an s state pulled down from the
valence band. Here 77% of the particle density is found
within the chalcogen atomic sphere while the remaining
particle density is located predominantly at the nearest
S i ligan ds.

1. Total energies

A plot of the induced density of states for the aq res-
onance level of Ses, is shown in Fig. 1. The resonance
has a characteristic asymmetry. We will take the maxi-

III. RESULTS

A. Isolated impurity atoms

For the total-energy computation of the substitutional
chalcogen point defects we have used a perturbed region
that consists of the impurity site, the four (1,1,1) nearest-
neighbor silicon sites and the twelve (2,2,0) next-nearest
silicon sites (we label the complete shell of neighbors by
one representative and denote distance vectors in units
of d = a/4 where a is the lattice constant). Outside this

region LV would be small and is therefore set to zero
in the calculation. For a proper fill factor of the crystal
we have also included "empty" spheres at the tetrahe-
dral interstitial sites. This gives us a total of 27 atomic
spheres. We have in addition calculated the spin densi-
ties, etc. , for the Si(3,1,1) and the Si(3,3,3) sites. In these
calculations the impurity site was not in the center of the
perturbed region. As a consequence the symmetry of the
perturbed region was Cs„ instead of Tg These calcula-.
tions are, therefore, less accurate. Due to computational
limitations we have not been able to include more distant
ligands into our calculation.
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FIG. 2. Induced density of states symmetry for the Se+,.
point defect transforming according to the Aq representation
(upper panel) and to the T2 representation (lower panel).
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TABLE I. Occupation of the diR'erent partial waves of the deep-level wave function for the S+,.

and the Ses+; point defects and for the NN and NNN (Ss;-Ss;)+ and (Ses,-Ses;)+ defect pairs.

Shell

chalcogen
Si(1,1,1)
Si(2,2, 0)
Si(3,1,1)
Si(3,3,3)

0.0401
0.0020

(0.0001
0.0035
0.0007

p

Ss+,.

0.0
0.040
0.0009
0.0015

(0.0001

0.0
0.0042
0.0042
0.0010

(0.0001

0.0310
0.0021

(0.0001
0.0030
0.0006

J'

Ses+;

0.0
0.0307
0.0003
0.0009

(0.0001

0.0
0.0038
0.0038
0.0007( 0.0001

chalcogen
Si(1,1,1)

(Ss., -Ss;)+ NN pair
0.0139 0.0106
0.0009 0.0151

0.0041
0.0023

(Se;;-Ses;)+ NN pair
0.0108 0.0092
0.0009 Q.0129

0.0030
0.0024

chalcogen
Si(1,1,1)

(Ss;-Ss;)+ NNN pair
0.0127 0.0113

(0.0001 0.0030
0.0042
0.0045

(Se;;-Ses;)+ NNN pair
0.0091 0.0023 0.0031( 0.0001 Q. 0025 0.0035

chalcogen
Si(1,1,1)

(Ss,-Ss;)+++ NNN pair
0.0175 0.0082 0.0013

(0.0001 0.0021 0.0020

(Ses;-Ses;)+++ NNN pair
0.0161 0.0075 0.0010( 0.0001 0.00163 0.0020

mum of this resonance as the single-particle energy of the
deep level. The single-particle energy of a single-particle
wave function cannot be compared with an energy level
observed by DLTS or optical experiments. Far such com-
parison it is necessary to calculate electron removal en-
ergies either from total-energy diAerences or from the
corresponding transition states. It should also be noted
that DLTS and optical data are nat necessarily giving the
same deep-level energies, because they diAer in the con-
tribution of the lattice relaxation which takes place upon
relaxation. However, calculations by ScheRler for S in
Si predicted that this Franck-Condon shift is very small

(( 0.05 eV). It is not known, however, how this theoret-
ical number compares to experimental results. From our
calculations we obtain the formation energy LE~ ~. This
is the difference between the total energies of the sys-
tem "crystal perturbed by an impurity" and the system
"isolated atom plus a perfect crystal. " For charged impu-
rities this difference depends an the position of the Fermi
energy. This energy has to be corrected because in
our calculation the Coulomb tail of the self-consistent
field (SCF) potential of a charged impurity is cut off out-
side the perturbed region. From perturbation theory we
estimate that this treatment requires a correction of the
SCF calculation of U by 0.1n eV, where n is the impurity
charge state. We show in Figs. 3(a) and 4(a) the calcu-
lated LE~ ~ results for substitutional sulfur and selenium
point defects. For each charge state we obtain a diAerent
straight line. The energies at which two lines intersect
are the removal energies for an electron in this state: If
the Fermi energy is at the removal energy there is no en-
ergetic diA'erence between the two corresponding charge
states. We observe a diA'erence between the E++~+ and
the E+l states that amounts to 0.20 eV for S and to 0.18
eV for Se which is to be identified with the electronic cor-
relation energy U. We list in Table II the energies af the

deep states in comparison with experimental data. We
find a satisfactory agreement for Ss; and Ses;.

In agreement with the calculations of Heeler et aL
we find for tetrahedral interstitial Se and Te point de-
fects that the calculated AEt, & is by several eV above the
value obtained for the substitutiona. l configuration. We
therefore conclude that in thermal equilibrium there will
be no significant concentration of interstitials of these
atoms. For sulfur interstitials the situation is less clear.
We find that for n-type silicon crystals the total energy
for a S;„, impurity is by about 1.4 eV above the total
energy of a Ss; impurity. The state in the gap for the in-
terstitial chalcogen impurity transforms according to the
t~ representation and, therefore, we expect a Jahn-Teller
distortion (see, e.g. , Ref. 36). Such a distortion will lower
the total energy of the defect. Therefore, we cannot, ex-
clude that at least for n-type material a calculation that
includes the structural relaxation could lead to a cert, ain
fraction of stable or metastable interstitial sulfur point
defects.

2. Hyperjne interaction matrix elements

In Ta,hie III we compare our results for the HFI con-
stants with experimental data taken from Refs. 8, 24,
and from 11. As mentioned above it is not possible to
determine the distance between the impurity site and the
ligand nuclei from the experiment, al magnetic resonance
data, alone. The symmetry of the shell of ligand nuclei
at equivalent positions with respect to the impurity site
can be safely identified. We compare our calculated data
for which of course the distance vectors are known with
those experimental data for a given symmetry type for
which the contact interactions are largest.

From Table III we find gaod agreement between our
calculated HFI constants and the experimentally deter-
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FIG. 3. Formation energy of substitutional S defect in di8'erent configurations and charge states as a function of the Fermi
energy: (a) isolated point defect; (b) difference between a NN pair and two point defects; (c) difference between a NNN pair
and two point def'ects; and (d) difference between a NN and a NNN pair. The zero of the energy scale in (a) refers to the case
of an isolated S atom.

TABLE II. Calculated electron removal energies for deep states (in eV) with respect to the
valence-band edge compared with experimental data. (Ref. 6 for S and Se, Ref. 10 for Te point
defects, and Ref. 1 for the Te pair).

Charge state

p ol lit defect,
+/0
++/+
SS NN pair
+/0
++/+
SS NNN pair
+/0
++/+
+++/++
++++/+++

This work

0.82
0.52

0.90
0.56

0.99
0.87
0.43
0.25

Expt.

0.852
0.556

0.982
0.799

Tlils work

0.79
0.50

0.81
0.57

0.89
0.71
0.53
0.42

Expt.

0.863
0.577

0.964
0.78

This work

0.89
0.75

0.90
0.63

1.09
0.95
0.68
0.54

Expt.

0.97
0.716

1.016
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mined data for the contact interaction at the S+ and Se+
nuclei. The agreement between experimental data and
our theoretical values is rather poor for the data at the
Te+ nucleus. This was to be expected from the fact that
in the case of Tes; the resonance is shifted farther into
the conduction band and that lattice relaxation will mod-
ify the wave functions significantly (see the discussion of
this point in Ref. 37). Therefore it is not surprising that
for the ligands in the Tes+ system the agreement between
theory and experiment is even worse.

The diAerent contributions to the HFI matrix elements
for the Ss+ and the Ses+; point defects are summarized in
Table IV. For the contact HFI with the impurity nuclei
we find that the contribution from the deep level, a~, is
essentially identical with at t, with only small contribu-
tions from the valence and core polarization. For the HFI

with the ligands, however, the inclusion of the valence-
band and core polarization eKects can be very impor-
tant. The contribution of the valence-band polarization
for the nearest-neighbor ligan d is about the same as the
contribution of the single-particle wave function. For the
next-nearest neighbor almost the entire contact HFI t, erm
is made up of valence-band contributions. This has
the efI'ect that the oscillations of the single-particle wave
function which has a node at the next-nearest ligand site
are less prominent in the HFI contact terms. The con-
tribution of the core states is negative for all Si ligands
and is of importance only for the Si(l, l, l) ligand, for all
the other Si ligands the eA'ect of the core polarization is
small.

Inspection of Table I shows that the single-particle
wave function at all Si ligands is essentially p type with
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FIG. 4. Formation energy of substitutional Se defect clusters in diferent configurations and charge states as a, function of
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TABLE III. Comparison of the calculated and experimental hyperfine data for isolated sub-
stitutional chalcogen impurities (in MHz). a~ and b~ are calculated from the single-particle wave
function of the deep level, while at t and ht t are obtained from a calculation that takes into ac-
count the polarization of the valence band and core states also. The largest experimental conta. ct
interactions compatible with the symmetry of the shells are listed as a, pt and 6 pt. Experimental
data are taken from Ref. 8 for Si:S, from Ref. 11 for Si:Se, and from Ref. 24 for Si:Te.

Ligand

ss
S+
Si(l, l, l)
Si(2,2, 0)
Si(3,1,1)

Si(3,3,3)

Se+,.
Se+
Si(1,1,1)
Si(2,2,0)
Si(3,1,1)

Si(3,3,3)
125T +

Sl
125T +

Si(l, l, l)
Si(2,2, 0)

239.3
21.1

& 0.001
3.0

6.0

1176
15.6

& 0.001
2.66

7.30

1034
0.9

& 0.001

atot

240.5
31.9
5.64
3.11

6,2

1208
25.4
5.29
2.75

8.18

1133
5.14
3.64

aexpt

312.4
30.7
8.94
3.84
4.77
9.00

1658
28.9
7.54
3.87
4.27
3.17
9.63

3492
17.7

5 26

0.0
7.9
0.17
0.45

&0.001

0.0
7.1
0.01
0.44

0.01

0.0
2.5
0.02

0.0
9 ~ 05

(0.28)
(0.48)

(0.05)

0.0
8.1

(0.26)
(0.54)

(0.08)

0.0
2 8

(0.06)

bexpt

0.0
12.0
0.47
Q.42
0.03
0.62

0.0
12.5
0.52
0.45
0.11
0.07
0.57

0.0
9.8
0.21

a small s admixture only [except for the Si(3,3,3) ligand
where the p-type wave function is essentially zero]. The
main effect of the valence-band polarization is to add
some 8-type spin density to the predominantly p-type
spin density.

Since the total spin of a paramagnetic chalcogen impu-
rity must obey a sum rule the extra spin density supplied
by the valence-band polarization (which in our calcula-
tions was found to be positive at, all ligands considered)
ITlust be balanced by a negative contrlbutlon at more dis-
t, ant ligands. It is therefore possible that this negative
contribution at some ligand is larger than the (positive)

contribution of the single-particle wave function in which
case the total spin density could turn out to be nega-
tive at this ligand. M'e have not been able to observe
this efI'ect due to computational limitations. Our calcu-
lations are limited to the four silicon ligand shells given
in Table III. Although the magnitude of the HFI is not
a monotonous function of the distance we find our cal-
culations cover most of the larger contact and dipolar
HI"I constants found experimentally. In fact, for Ss; and
Ses; only four shells with larger HI"I matrix elements are
found in the experiment for which there is no counterpart
in our calculation.

TABLE IV. Contributions to the contact hyperfine interaction from the single-particle state in
the gap, the n$ core states, and the valence baud, respectively, for the chalcogen point defect aud
the Si ligands.

S+

gap state
1$
2$
valence band

Se+,.

gap state
1$
2$
3$
valence band

total

Ch alcogen

239.3
2.5

—0.6
—0.7

240.5

1176
6.23
1.59

—3.55
28.5

1208

Si(1,1,1)

21.1
—3.9

0 2
14.9

15.6
—3.1
—0.3

25.5

Si(2,2, 0)

& 0.001
—0.13
—0.23

G.QQ

& 0.001
—0.12
—0.19

5.60

5.29

Si(3,1,1)

3.0
—0.04
—0.05

0.20

2.66
—0.03
—0.04

0.16

Si(3,3,3)

6.0
0.00
0.00
0.18

7.30
0.00
0.00

0.88

8.18
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Even with the present state of agreement between the
experimental and theoretical data the assignment of ex-
perimental numbers to shells for which we have theoret-
ical data is not in all cases unambiguous. It seems clear
that the Si(l, l, l) and Si(3,3,3) are to be assigned to the
two largest HFI interactions in the experiment for which
a [111]shell symmetry was found. For the experimental
data for which a [110] shell symmetry was found there
is one shell with an isotropic constant which is larger by
more than about a factor of 2 compared to the others.
The similarity with our theoretical data strongly sug-
gests that this should be due to the nearest ligand shell

(2,2,0). The next two (three in the case of Ses+;) experi-
mental contact interactions of [110]shell symmetry which
are listed in Table III are of about the same size. For one
shell in each impurity system, however, the dipolar HFI
is of the order of 0.5 MHz, while for the remaining shells
this quantity is smaller by a factor of about 7. From the
order of magnitude of the theoretical dipolar HFI we ten-
tatively assign the (3,1,1) shell to the experimental data
for which the dipolar HFI is largest. Inspection of Table
III shows that the dipolar HFI is also not a monotonous
function of the ligand shell distance.

For the Ss, and Ses, point defects the comparison of
the single-particle contribution o~ of the contact inter-
actions at the Si ligands with the experimental data
shows that a simple single-particle LCAO analysis of ex-
perimental data is usually not meaningful. For shallow
donors in Si which are described by the effective mass
theory (EMA) (see Refs. 27 and 26) the spin density
at the nearest-neighbor ligand is small because there is
a node in the single-particle wave function. The deep-
level single-part, icle wave function also is oscillatory as
can be seen from the fact that the contribution a~ of the
single-particle wave function to the contact term for the
Si(2,2,0) ligand is virtually zero while this contribution
for the Si(3,3,3) ligand is larger by a factor of 2.5 than
the corresponding value for the much closer Si(3,1,1) lig-
and. The same features are found for S, Se, and Te in all
charge states.

For interstitial chalcogen point defects we find a bound
state in the gap that transforms according to the t2 irre-
ducible representation. The contribution from the single-
particle wave function to the contact interaction at the
impurity nucleus is therefore zero. A dynamical Jahn-
Teller eA'ect could in principle remove this confIict with
the experimental data but is unlikely. Furthermore, the
large dipolar interaction (calculated to be 230 MIIz for
Se;+„„, for example) has not been observed in the mag-
netic resow. ance experiments. We therefore can conclude
that the paramagnetic centers observed experimentally
cannot be identified with interstitial chalcogen point de-
fects.

Q. Chalcogen pairs

We have calculated the total energies for pairs of iden-

tical chalcogen atoms where both chalcogen atoms are
either at substitutional sites (SS), or at interstitial sites

(II) and for pairs for which one chalcogen is at a substi-
tutional site and the other is at an interstitial site (SI).
For the former two pairs the symmetry is D3p which is

also suggested from ENDOR data. i4 The SI pair has Cs„
symmetry. For the D3d pairs we have studied two diA'er-

ent configurations: in the first (NN) configuration both
chalcogen sites are at a nearest-neighbor distance sepa-
rated by the distance vector d (l, l, l, ), while in the sec-
ond (NNN) configuration both impurities have the same
symmetry but are separated by d (3,3,3). For the NNN

SS pairs the two chalcogen atoms are separated by two
"empty" spheres along the [ill] direction while for the
NNN II pair the impurities are separated by two Si lig-
ands.

If we compare both pairs we have to bear in mind an
important distinction between the NN and the NNN pair:
the NNN pair can be understood as a "molecule" of two
interacting point defects, each consisting of a chalcogen
atom held in place by the four dangling bonds of a va-

cancy, The NN pair in contrast can be represented in
the corresponding picture by a chalcogen molecule situ-
ated in a divacancy where it interacts with six dangling
bonds. While in the former case the electronic states can
be interpreted as the bonding-antibonding combinations
of the corresponding states of the two point defects this
is not true for the NN pair.

For the SS Se pairs the induced densities of states
transforming according to the Aq representation is shown
in Fig. 5 both for the NN and NNN configuration. The
induced density of states for the NNN pair is in many
respects similar to the induced density of states for the
isolated point defect. Note however that states trans-
forming according to the T~ representation in a system
of Tp point-group symmetry split into states transform-
ing according to Ai and E in a Cs„environment. EVe,

therefore, find a remainder of the T~ representation of
the isolated point defect in the A~ peak near —5 eV for
the NNN pair. The states below the valence band as
well as the superdeep states near —7.5 eV are the even-
odd combinations of the corresponding states of isolated
point defects. The same applies for the deep levels above
the valence band for the NNN pair. These can be under-
stood as the antibonding combination of the impurity s
states and the ligand p states. For the pair we have two

A~ deep levels which for the neutral charge state are fully
occupied. Depending on the position of the Fermi level
these give rise to two different paramagnet, ic states.

The induced density of states for the NN SS pair shows
a marked difI'erence to the case of a NN pair in Fig.
The peak near —8 eV has a diA'erent origin than the two
peaks at the same energy for the NNN pair. It is caused
by the bonding combination of the oz(p) states of the
Se molecule with the aiz states of a divacancy (see Ref.
40). The peak near —5 eV is therefore missing. The
antibonding combination of the states giving rise to the
peak near —8 eV gives rise to the deep level in the gap.
There is only the Aq~ state in the gap. The Az„state
arising from the interaction of the o'(p) state of the Se
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FIG. 6. Induced density of states transforming according
to the E representation for the (Ses., -Ses;)+ NN pair (upper
panel), and for the (Ses;-Ses;)+ NNN pair (lower panel).

molecule with the a~& state of the divacancy is found at
the top of the valence band.

While the density of induced states transforming ac-
cording to the Ay representation for both species of pairs
is very similar for Se-Se and S-S pairs, there is a marked
de'erence to the Te-Te pairs: Here the lower a~„state is
slightly above the valence band and forms a deep state
in the gap. Figure 6 shows the induced density of states
transforming according to E representation for the NN
and NNN SS pairs. The resonance-antiresonance struc-
tures for both systems are virtually identical with little
if any changes at all. Induced densities of states for the
II NN pair and the SI pairs have been published in Refs.
41 and 40.

1. Total energies and pair stabiLity

3(d) and 4(d) we find that the NNN pairs would be more
stable for p-type material. Because we have not calcu-
lated complete total-energy surfaces we cannot decide if
in equilibrium the NNN pairs are stable with respect to
NN pair formation and also with respect to separation
into point defects.

The Tes;-Tes; pair turned out to be unstable according
to our calcula, tions. The geometrical misfit of the larger
Te atom in the Si lattice, however, must lead to a sig-
nificant lattice distortion both for the point defect and
for the pairs. Since this effect is not taken into account
in our total-energy calculations we do not believe that
our calculations can really exclude the stability of SS Te
pairs, in particular as for the neutral pair the total en-

ergy is by only 0.3 eV larger than twice the energy of the
point defect (see Fig. 7).

We list in Table II the electron removal energies for
NN and NNN SS pairs. The stability of these pairs is

calculated from a comparison of the total energy of the
pair in the different charge states with that of two sub-
stitutional point defects. This is shown in Figs. 3(b) and
in 3(c) for the NN Ss;-Ss; pair and for the NNN Ss;-Ss;
pair, respectively. Corresponding data for the NN and
NNN Ses;-Ses; pairs are shown in Figs. 4(b) and 4(c),
respectively. For the neutral NN pairs there is definitely
a strong binding of the pairs which, however, is lost com-
pletely as the Fermi energy is moved below midgap be-
cause of the strong Coulomb repulsion. The neutral NNN

pairs, on the other hand, do not bind because these can
be regarded as interacting close shell atoms for which we

expect a repulsion. The NNN Ss;-Ss; pair will be bond-
ing if the I'ermi energy is near midgap while for the NNN

Ses, -Ses; pair the stability is questionable. If we compare
the formation energies of NN and NNN SS pairs in Figs.

2. Hypergne constants for S~, -Ss, and Ses, -Ses, pairs

The HFI matrix elements that are obtained by our cal-
culations are listed in Table V for the positively charged
paramagnetic NN SS pairs and for the singly and three-
fold positively charged paramagnetic SS NNN pairs.
While the results for the NN pairs are essentially identi-
cal (except for the calculation of the relativistic contact
HFI which is now corrected) with those reported earlier
there are marked differences for the NNN pairs. This dif-
ference is due to the fact that in the earlier calculations
we had ignored the fact that there are two states in the
gap, the a~„state at lower energies which for the NN
pair was found in the valence band and the a~& state at
higher energies. In earlier calculations we used the lower
C3„symmetry instead of the full D3p symmetry and ob-
tained a result for the HFI interaction that was the sum
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TABLE V. Calculated hyperfine interaction matrix elements (in MHz) for nearest-neighbor SS pairs and for next-nearest
[111]SS pairs are compared with experimental data (Ref. 14 for the ligand interactions and for the interactions with the Se
nucleus, and Ref. 13 for the interactions with the S nucleus, respectively). There are no experimental data for the Te pairs.

Pair

(Ss;-Ss;)+ NN pair
(Ssi-Ssi)+ NNN pair
(Ssi-Ssi)+++ NNN pair

expt.

(Ses;-Ses;)+ NN pair
(Se;;-Se;;)+ NNN pair
(Ses;-Ses;)+++ NNN pair

expt.

87.1
98.5
1360

408.3
344.0
595.0

Ch alcogen

@tot

89.7
99.4

140.4

115.3

414.4
378.0
597.0

606.7

1.1
0.14
0.71

6.78
0.93
0.64

1.4
(o.4s)
(2 o)

0.878

7.61
(3.g)
(1.o2)

5.566

aI

9.8
0.071
9.8

9.34
& 0.001

0.81

Si(1,1,1)

+tot

13.5
0.11

10.3

23.85
11.834
8.441

11.7
1.40
0.96

21.69
12.675
8.228

3.4
0.16

3.0
0.11
0.34

(3.6)
(0.19)
(3.o)

4.875
0.428
0.460

(3 '-)
(o.as)
(o.,~7)

5.44
0.4 7]
().f42

(' Tes;-' Tes, )+ NN pair
( Te . Tes )+++ NN pair

364.0
1439.0

458.0
1445.0

1.94
86.7

3.00
94.5

1.00
2.01

7.1 I

4.9

().58
1.30

0.81
1.36

of the contributions of both states. AVe list in t,he table
results for the HI"I interaction at the chalcogen nucleus
and also at the nearest Si(2,2,0) ligand (for the pairs the
distance vectors to the nearest chalcogen nucleus of the
pair is given). Also listed in Table V are experimental
data ~ ~ for the HFI interaction matrix elements at the
chalcogen nucleus and at, the Si ligands with (1,1,0) ori-
entation with respect to the pair oriented in the [111]
direction. Again from the experimental data alone it is
unknown which measured interaction matrix element be-
longs to the calculated result of the NN Si(l, l, l) neighbor
shell. We, therefore, list the three experimental values of
[110] shell ligands with the largest HFI contact interac-
tion (which are also the largest dipolar interaction matrix

elements) .
A comparison of the HI"I contact interaction data at

the chalcogen nuclei with those of the point defects shows
that the magnitude is decreased by about a factor of 3. A
fact, or of 2 would be expected because the paramagnetic
spin is shared by the two chalcogen impurities, the extra
reduction shows that the electronic state of the pair is
diA'erent from that of a point defect. Inspection of the
spin density distribution (see Table I) for the NN SS pairs
shows the following.

(1) The s-like spin density located in the impurity ASA
sphere is approximately equal to the sum of p-like and d-
like contributions.

(2) If we compare the total spin density in the chalco-

(n) (m)
E[(Te . — Te . ) ] - 2 E[Te . ]

+ (n-2m) e E
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2.0
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Formation energy of substitutional Te defect clusters in diR'erent configurations and charge states as a function of
the Fermi energy: (a) difference between a NN pair and two point defects; (b) difference between a, NNN pair. a»d two poi»t
defects.
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gen ASA sphere of a point defect with that of the two
chalcogens of the pair we find 70% more spin density for
the pair, although we count the spin density of the upper
a~„state only. This shows t,hat one has to be careful not,

to take the smaller contact term of the pair state alone
as a measure of the spin density.

(3) If we compare the spin densities at the nearest-
neighbor Si ligands we do not find a significant difference
between the NN pair and the point defect. This indicates
that although the a~& state of the pair is not as deep as
the a~ state of the point defect the spin density is not
more delocalized than that of a point defect.

If we identify the paramagnetic pair found experimen-
tally with the calculated data for the NN SS pair we

find a rather good agreement for the contact interactions
at the chalcogen atom. The dipole interaction matrix
elements at the same nucleus come out somewhat too
large. For the Si(1,1,1) ligand we have listed three dif-

ferent experimental sets of data. From the similarity of
the numbers for the contact term one might be tempted
to identify the Si(l, l, l) ligand data with the second line
of the experimental data. Closer inspection, however,
shows that this choice is in fact incompatible with our
calculations: a fit to the experimental data would re-
quire that the p-like spin density in the Si(1,1,1) shell

(about 1.5% of the total spin) is reduced by a factor of
9. VVe explain the discrepancy between experimental and
calculated data by the assumption that the 8-like contri-
bution, which with 0.1% of the total spin turns out to be
rather small in the Si(l, l, l) sphere, comes out to be too
small in the calculations.

For the NNN pairs we have two distinct localized
states in the gap for which we obtain HFI matrix ele-

ments which are markedly different, in particular for the
Si(1,1,1) ligands. These states do not seem to have been
observed experimentally although at least for the NNN

S-S pair we find a wide range of stability. Greulich-
Weber, Niklas, and Spaeth have given an argument
which shows that the pair observed in their ENDOR ex-
periment cannot be in the II configuration. The same ar-

gument can be used to exclude the possibility that they
measured the NNN SS pair: in both cases one should
have observed a HFI interaction which belongs to a Si
ligand in the [ill] direction. No such ligand has been
observed in the ENDOR experiments. This fact is com-
patible only with our calculations if the pairs observed in
ENDOR are in the NN SS configuration.

We also list in Table V the calculated HFI matrix el-
ements for the two states of the Te-Te SS NN pair. Un-

fortunately there are no experimental data available for
these states and, as mentioned before, the existence of
these pairs is questionable.

IV. CONCLUSIONS

Formation energies, electron removal energies, and hy-

perfine fields are calculated using the LMTO-ASA Green—

function method. One of the main advantages of this
paper is that all these quantities are evaluated with the
same self-consistent calculation. In addition, the use of
the LMTO-ASA scheme is especially appropriate for the
calculation of the HFI constants because (1) the con-
tributions to the HFI matrix elements arising from the
single-particle wave function of the gap state, the polar-
ization of the valence-band states, and the polarization
of the diA'erent core states can be calculated within the
same formalism; (2) the use of a basis that is centered
at the nuclei simplifies the calculation of the HFI matrix
elements and their interpretation.

One of the main problems with the interpretation of
experimental ligand hyperfine data is that from the data
alone only the symmetry type of the shells but not the
distance with respect to the defect center can be deduced.
We have shown in this work that the simultaneous cal-
culation of formation energies and HFI constants makes
it possible to discriminate between ligand shells of the
same symmetry.

Besides the local-spin-density approximation for the
exchange-correlation functional, there is some uncer-
tainty of the results due to the neglect of lattice relax-
ation. We feel, however, that for substitutional S and Se
defects this approximation is justified and does not alter
the principal conclusions for chalcogen impurities.

We find that the contributions from the spin polariza-
tion of the valence band to the contact HFI matrix ele-
ments are relatively unimportant at the chalcogen nuclei.
At the nearer Si ligand nuclei these contributions, how-
ever, sometimes are larger than the contribution arising
from the single-particle wave function of the deep state.
This shows that an interpretation of the experimental
data in terms of a single-particle LCAO spin density can
lead to incorrect estimates about the bonding properties
and about the localization of the wave functions.

As in t, he case of shallow donors in Si we find that the
single-particle wave function of the deep level does not de-

cay exponentially but oscillates and produces nodes. For
deep levels the single-particle wave function is of course
quite diAerent from that of a shallow donor: For a shal-
low donor the nearest-neighbor ligand nucleus is virtu-
ally at a node of the wave function while for chalcogen
point defects the next-nearest Si(2,2,0) ligand nucleus is
at the node. The oscillatory nature of the wave function
is borne out by the fact that the contact HFI for the
Si(3,3,3) ligand is about twice the value for the Si(3,1,1)
ligand which is much nearer to the impurity. In contrast
to the case of shallow donors in Si, the total spin den-
sity is much more localized around the impurity site, but
much less than indicated by the single-particle wave func-
tion. Compared with the valence-band polarization the
core polarization only plays a minor role for the chalco-
gen impurities in Si. However it is of some importance at
the nearest Si(1,1,1) neighbor where it contributes about
20% of contribution due to the single-particle wave func-
tion.

From the results of the total-energy calculation we in-
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fer that chalcogen point defects will be built in as sub-
stitutional point defects with the possible exception that
the S impurity in n-type Si might also be found at an
interstitial position. A comparison of the calculated HFI
data with experimental data convincingly proves that all

paramagnetic chalcogen point defects in tetrahedral posi-
tions are at a substitutional site. Interstitial point defects
would show a Dahn-Teller distortion and hence no tetra-
hedral symmetry. Even if the distortion would turn out
to be small the hyperfine data would be drastically difFer-

ent from those found experimentally. The paramagnetic
resonance data of the EPR and ENDOR experiments are,
therefore, compatible only with our results for substitu-
tional point-defect sites and here the agreement between
experiment and theory is convincing.

For the defect pairs we also And that both chalcogens
will be built ln at subst1tutlonal pos1tlons. Fl o1T1 the
agreement with experimental HFI data we conclude that
for the paramagnetic pairs found experimentally

the chalcogen atoms must have been in nearest-neighbor
positions. Our total-energy calculations also indicate
a range of (admittedly weak) stability for a pair with

D3$ symmetry for which the chalcogens are separated
by three nearest-neighbor distances. It is not clear if
these pairs can be identified with the chalcogen {X)de-
fects reported in infrared absorption experiments (see,
e.g. , Wagner et al. i). A convincing identification proba-
bly can be made only if these defect states are observed
in magnetic resonance experiments.
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