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Band dispersion in the recursion method
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The advantages of the supercell model in employing the recursion method are discussed in com-
parison with the cluster model. A transformation for changing complex Bloch-sum seed states to
real seed states in recursion calculations is presented and band dispersion in the recursion method is
extracted with use of the Lanczos algorithm. The method is illustrated by the band structure of
GaAs in the empirical tight-binding parametrized model. In the supercell model, the treatment of
boundary conditions is discussed for various seed-state choices. The method is useful in applying
tight-binding techniques to systems with substantial deviations from periodicity.

I. INTRODUCTION

Since the recursion method' has been shown to be a
rather stable algorithm and the rounding errors are not
cumulative, many applications have appeared in the
literature. The most promising aspect of the recursion
method is that it is especially suitable for studying large
low-symmetry complicated systems, for example, defect
complexes in the presence of lattice relaxation, disloca-
tions, ' surfaces and interfaces, superlattices, and amor-
phous bodies. It lends itself to easy programming and
does not require large storage capacity of the computer.

The link of the recursion calculation to the local densi-
ty of states is straightforward. It is widely accepted that
the recursion method is a real-space local environmental
approach. In the case of the supercell model, a transla-
tional symmetry is artifically introduced by imposing a
periodic condition on a large unit cell (supercell). The
size of the supercell is chosen so that, on the one hand,
physically it contains the local states interested in order
to decouple the interactions of the local states between
neighboring supercells and, on the other hand, computa-
tionally it will not exceed the maximum storage capacity
allowed for the computer at hand.

In the case of dislocations in semiconductors, it is
desirable to know the dispersion relations of the electron-
ic states along the one-dimensional 8rillouin zone,
whereas in the case of surfaces and interfaces, the disper-
sion of the electronic states in the two-dimensional Bril-
louin zone is required. Then the starting states, some-
times referred to as seed states, in the recursion computa-
tion should be chosen as Bloch-sum-like complex wave
functions. The recursion method is extended to k space
and the partial density of states is expressed via Green's
function as a continued fraction instead of the local den-
sity of states; the complex computation must be tackled.

When the inverse of the nonorthogonal overlap matrix
cannot be avoided in the recursion computation, the
complex nature of the overlap matrix increases the com-
plication of the inverting procedure for the large sparse
overlap matrix. The complex computation arising from
the complex seed states can be avoided by making a uni-

tary transformation to the seed states, Hamiltonian ma-
trix, and overlap matrix.

In this paper we formulate the unitary transformation
by connecting the k and —k basis set of seed states
through the time-reversal symmetry to transform the
complex Bloch-sum-like basis set into a real set. By this
transformation, the Hamiltonian matrix and overlap ma-
trix simultaneously become real matrices and the compu-
tation can be carried out in real space (with matrices
2X2 times larger). The band dispersion can be extracted
from the k-dependent seed states in the Brillouin zone for
the supercell. Thus the seed states will no longer be re-
stricted to local atomiclike orbitals. They can be chosen
as periodic Bloch-sum-type linear combinations of atomic
orbitals.

The transformation is illustrated by the band-structure
calculation of GaAs in the tight-binding parametrized
model. The partial density of states with various Bloch-
sum-like seed states was calculated by the recursion pro-
cedure and their k dependence was demonstrated.

In Sec. II we discuss the advantages of the supercell
model as compared to the cluster model and the choice of
seed states for different physical problems. The different
ways for treating the boundary of the supercell in various
physical system are also presented. Section III is devoted
to the descriptions of the unitary transformation and its
application to the band calculation for GaAs. Finally, in
Sec. IV, we summarize the results and make some com-
ments for the future application of the approach.

II. CHOICE OF THE BASIS SET
AND THE BOUNDARY CONDITION

There are mainly two models in use in the application
of the recursion method, namely the cluster model and
the supercell model.

The recursion method can handle very large clusters
(2500 atoms or more) so that the surface interactions of
the cluster can be detached from the interactions in the
center of the cluster. However, particular care must be
taken in choosing the shape of the cluster. A regularly
shaped cluster tends to add up phase-coherent boundary
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corrections from all parts of the boundary at the center;
thus the boundary will introduce spurious resonance
peaks in the local density of states curve for the central
atom, if one chooses a spherical cluster. The reason why
the spurious structure in the local density of states occurs
is due to the fact that the recursion procedure proceeds
as the propagation of the "recursion wave. " In a regular-
ly shaped cluster the wave starting from the center of the
cluster reaches the boundary of the cluster at the same
time. The wave rejected from the boundary bringing
with it the information of the surface interactions arrives
back at the center. Though the cluster may be very large,
the local density of states of the central atom will still
contain peaks derived from surface states. This can be el-
iminated by using a cluster with a shape as irregular as
possible while retaining the symmetry of the Hamiltoni-
an. Another drawback of the cluster model is that it does
not have a symmetry which can be exploited so that the
dispersion relation cannot be extracted, for example, in
the case of dislocations the dispersion along the disloca-
tion line is lost.

An alternative way to deal with cluster surfaces is to
impose periodic boundary conditions which correspond
to an infinite crystal built up from supercells consisting of
the defects or interfaces amidst a large number of host
atoms. This artificially introduced periodicity allows the
dispersion relations to be readily extracted by standard
band-structure calculation technique. One of the advan-
tages of the supercell model compared with the cluster
model is that the perturbation on the defect coming from
the surface at a distance d is removed and replaced by a
perturbation at roughly a distance 2d coming from the
surrounding defects. The surface-defect interaction is
thus replaced by defect-defect interactions which result in
broadening of the defect levels into a band, if the super-
cell is not large enough.

The choice of the seed states is problem dependent. In
the case of crystal impurities, our attention is concentrat-
ed on the local density of states of the impurity and its
surroundings. Thus usually we take as seed states atomic
orbitals with different symmetries on the impurity sites or
the surrounding atom sites in the presence of crystal re-
laxation. From the recursion coefficients, we can find the
local density of states and deduce the bound defect levels.
Here we choose as basis set and seed states real atomic
orbitals or their linear combinations. The translational
symmetry is exploited in the following way: For atoms
near the boundary of the supercell interaction with atoms
(usually first neighborings up to fourth neighborings) out-
side the supercell, the Hamiltonian (over1ap) matrix ele-
ments will be formed with the translational equivalent
atoms inside the supercell. Thus we can restrict the cal-
culation within a supercell and the three-dimensional
periodically repeated supercell structure is taken to be
infinitely extended.

In Fig. 1 we illustrate the way to handle the periodic
condition in a two-dimensional supercell. The supercell
contains 15 atoms, the Hamiltonian and the overlap ma-
trices are arranged by the numbering of atoms inside the
supercell as demonstrated in the figure. If we take into
account interactions up to the second-nearest neighbors,
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FIG. 1. The correspondence between the lattice points inside
and outside a plane supercell: 3 ~15;B~11;C~15; D ~12;
E~10. The dashed lines represent the boundary of the super-
cell.
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All the interactions for the atoms near the boundary of
the supercell are treated in this way to recover the
periodicity of the supercell.

When we handle the problem of dislocations in semi-
conductors, because the translational symmetry along the
dislocation line is retained, it is essential to know the
dispersion of the bound band induced by the dislocation
along the dislocation line. Thus we choose the Bloch
sums of the atomic rows parallel to the dislocation line as
basis set and the Bloch sums with different symmetries on
the sites of dislocation core as the seed states. The basis
set has only translational symmetry along the one-
dimensional Brillouin zone and the translational symme-
try in the plane perpendicular to the dislocation line
reduces to the artificial periodicity of the supercell. For
surface and interface problems in semiconductors, we
deal with the translational symmetry in two-dimensional
space the basis sets and seed states in the recursion com-
putation should be taken as complex two-dimensional
Bloch sums. The periodic condition of the supercell
along the direction perpendicular to the surface is intro-
duced by periodically repeated slabs with two surfaces
and vacuum, the thicknesses of the slab and the vacuum
layers are chosen so that the interactions between the sur-
face states are decoupled.

III. BAND DISPERSION FOR GaAs
A. Unitary transformation

In the present section we demonstrate how to trans-
form the complex Bloch-sum basis set to a real basis set
in the recursion calculation of the band structure for

the atom numbering 1 interacts with atoms A, B,C, D, E
outside the supercell, their translational equivalents in-
side the supercell are atom 5, 11,15,12,10, respectively.
The Hamiltonian matrix element Hi z refers to R& s in
the layout of the Hamiltonian matrix for the supercell,
namely,

~i, s =~i, ~

For the overlap matrix we have the similar relation



12 466 WANG YONG-LIANG 43

jnbk) =X '~ g exp(E'kR, +i k V& )
~
nbR, ) (3)

as basis set to construct the zinc-blende-structure tight-
binding Hamiltonian. The quantum number n runs over
the s, p, p, p„and s* orbitals: the X wave vectors k lie
in the first Brillouin zone, the site index b is either a (for
anion) or c (for cation), the anion position is R, , and in
terms of the Kronecker 5, we have Vi, =5&,(a&/
4)(1, 1, 1). The quasiatomic functions are Lowdin orbit-
als: symmetrically orthogonalized atomic orbitals. The
Schrodinger equation for the Bloch function ~kA, ) is

[H —E(kA, ) ] ikA, ) =0

or, in this basis,

(4)

GaAs. In the empirical tight-binding pararnetrized mod-
el, we employ the k-dependent Bloch sums as a basis set;
it will be straightforward to deduce the partial density of
states and the band dispersion from the recursion
coefficients.

The recursion calculation has many advantages in that
it can save very much of the storage capacity of the com-
puter and its connection to the local density of states via
Green s function expressed as a continued fraction is sim-
ple and concise. The recursion method is applicable to
many physics problems, especially it is particularly
powerful for large low-symmetry complicated systems
such as impurity complexes with lattice relaxation, dislo-
cations, surfaces, interfaces, and so on. From physical
considerations, we choose a complex basis set, while for
computational simplicity, it is usually desirable to avoid
complex computations, especially when we encounter the
nonorthogonality of the overlap matrix. We choose the
Bloch sums formed from the quasiatomic functions
~nbR;)
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We can separate the real and imaginary parts of the
submatrix as

H =H"+iH" .a, c r (10)

The matrices H,"and H ' are 5 X 5 matrices which are,
respectively, the real and imaginary parts of matrix (9).
In our case, because the quasiatomic functions are or-
thogonalized, the overlap matrix is a unit matrix, other-
wise, it is also a complex Hermitian matrix.

In the recursion calculation, we wish to avoid complex
computation, so we make a unitary transformation to the
Hamiltonian matrix, so that the complex Hermitian ma-
trix becomes a real symmetric matrix. The unitary trans-
formation takes the following form:

1U=

Because of the time-reversal symmetry, the eigenvalues of
the Hamiltonians for k and —k are equal, we can con-
struct a large Hamiltonian by combining the two Hamil-
tonians without changing the eigenvalues of the physical
problem:

g [(nbk H mb'k) e(kA)5„— .5i, i,, ]( bm'k~kA, )=0 .
m, b'

H(k)
0

0
H( —k)

The solutions are

(6)

The Hamiltonian matrix after the transformation be-
comes

H'= U~H U

n, b

The Hamiltonian matrix elements take the following
form:

H (k)+H (
—k) iH (k) —iH ( —k)

—iH(k)+iH( —k) H(k)+H( —k)

(nbk~H~mb'k) =g exp[ik(RJ —R;)+ik(v& u& )]—
i, b

X(nbR; ~mb'R ) . (7)

(13)

After the unitary tranformation, the submatrix (9) in (13)
becomes

H,

Hca

H, ,
H, ,

The layout of the submatrix Ha c is as follows:

The Hamiltonian matrix is a complex Hermitian matrix.
In the case of GaAs, because in the unit cell there are
only two atoms (one anion and one cation), the size of the
Hamiltonian matrix is 10X10 and the structure of the
Hamiltonian takes the following form:

H,', =
H"
Ha, c

l

—H"
l

H"r
(14)

The size of this submatrix is 10X10. The Hamiltonian
matrix (13) is a real symmetric matrix and its size is
20X20.

In the recursion calculation we should choose a start-
ing state. The same starting state for Hamiltonian ma-
trices (7) and (13) difFers by the unitary transformation
(11).

If we choose an s-symmetric Bloch sum on the anion
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W =(1,0,0, 0, 0, 0, 0,0,0,0) . (15)

After the unitary transformation (11) the seed state be-
comes

position, the seed state for Hamiltonian (7) can be ex-
pressed as a column vector

off-diagonal elements of the tridiagonal Hamiltonian ma-
trix.

The calculation of the recursion coefficients can
proceed as follows. First choose a suitable seed state u0
and calculate

W' =(1,0,0,0, 0, 1,0,0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0,0) . (16)

The recursion procedure as given by Haydock, Heine,
and Kelly is a powerful approach for any physical sys-
tem especially for the low-symmetry complicated sys-
tems. The approach is based on a tight-binding descrip-
tion of the systems. The recursion model is specified by a
sequence of S orthonormal orbitals [ u 0, u,

Both the seed state (16) and Hamiltonian matrix (13) are
real so the recursion calculation can proceed with a real
computation.

B. Recursion calculation

ao=uoHuo,

b, =[(uoH —aouoS)S '(Huo —aoHuo)]'~

u, =S '(Huo —aoSuo) jb, .

For the next step we have

a& =u &HuI,

b2 = [(u, H a, u, S—b, uoS—)

XS '(Hu, —a, Su, b, Su—o)]'

(19)

(20)

u SQ =6 (17)
u~ =S '(Hu, —a, Su, b, S —u)oIb2 .

u0 is the starting state for the recursion calculation and S
is the overlap matrix of the local orbitals. The two sets of
real recursion coefficients jao,a„.

1
and [b, , b2

are calculated according to the following recurrence rela-
tion:

b, + )Su„+ ) =Hu„—a, Su„—b„Su„

The two sets of recursion coefficients are the diagonal and

The difficult problem is the inversing of the overlap ma-
trix, if the matrix is not a unit matrix. Usually the over-
lap matrix is a large sparse matrix; a specially designed
algorithm is available for its inversing. The algorithm
which efticiently exploits the sparseness of the overlap
matrix only takes a minimum storage capacity of the
computer but requires the reality of the matrix.

The diagonal element of Green's function can be ex-

pressed as a continued fraction:

Go(E) =
E —a 0

E —a)—
E —a2 '.

b2

b 2
2
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FIG. 2. The band structure of GaAs in special points and
along the symmetrical lines in the Brillouin zone.

FIG. 3. The partial density of states for Bloch sum with s
symmetry at anion position in the unit cell. The sharp peak at
the bottom of the valence band shows a strong s character of the
band level.
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FIG. 4. The partial density of states for the Bloch sum with
s* symmetry at cation position in the unit cell. The peaks illus-
trate that the s* orbital is important for the description of the
conduction band.

FIG. 6. The partial density of states for bonding combination
of the Bloch sums with p symmetry at anion and cation posi-
tions in the unit cell. The peak at the top of the valence band
demonstrates that the top of the valence band is mainly bonding
character with p symmetry.

The local density of states is

no(E) = lim ——ImGo(E +i e)
1

g~0 7T
(22)

We carried out a diagonalization calculation for Ham-
iltonian (7); the Hamiltonian matrix elements are taken
from Vogl et al. It is an empirical tight-binding ap-
proach and the interactions are taken into account up to
nearest neighbors.

In Fig. 2 we display the band-structure diagram of
GaAs. Because we employ the s,p, s* quasiatomic orbit-
als both the valence and conduction bands are well de-
scribed.

Then we have performed a complex recursion calcula-
tion by using the complex Hamiltonian (7) and various
seed states with the structure (15). Moreover, we have
also made a real recursion calculation by using the real
symmetric Hamiltonian (13) and corresponding seed

states with the structure (16). The results and the com-
puter time needed for the two calculations are the same.

In our case, because the overlap matrix is a unit ma-
trix, the merits of the real algorithmn are not manifest.
In the case of a nonorthogonal basis set, the real algo-
rithm would be very much superior.

In Figs. 3 and 4 the partial densities of states are shown
for seed states with s-symmetric and s*-symmetric Bloch
sums on the anion position, respectively. From Fig. 3 we
can conclude that the bottom of the valence band is
mainly s symmetric and Fig. 4 shows that the s *-
symmetric quasiatom orbital is important for the descrip-
tion of the conduction band. In Figs. 3 and 4, the k point
is taken at the so-called Baldereschi point in the Brillouin
zone, which is the average point in the Brillouin zone:
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FIG. 5. The partial density of states for antibonding com-
bination of the Bloch sums with s and s* symmetry at anion and
cation positions in the unit cell. The peak at the bottom of the
conduction band shows that the band level is mainly antibond-
ing character with s and s* symmetry.

where a denotes the lattice constant.
In Fig. 5 we display the partial density of states with

the seed state of antibonding combination for s- and s*-
symmetric Bloch sums on both the anion and cation posi-
tions. The sharp peak at the bottom of the conduction
band means that the bottom of the conduction band is s
symmetric and of antibonding character.

In Fig. 6 the partial density of states with seed states of
bonding combination for p -symmetric Bloch sums on
the anion and cation positions is displayed. The sharp
peak at the top of the valence band shows that the top of
the valence band is p symmetric and of bonding charac-
ter.

In our recursion calculation, we choose the k-
dependent Bloch sums as seed states and transform the
complex Hamiltonian matrix and seed states into a real
matrix and column vector; we can extract not only the
band dispersion of the band structure but also the intrin-
sic symmetry of the band levels.
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IV. SUMMARY

In the present paper the treatment of the supercell
boundary has been discussed. When the basis set for the
recursion approach is real, the periodic condition on the
boundary of the supercell is taken into account by the
reAection of the recursion wave on the boundary, so that
we can restrict the calculation within the supercell.
When the basis set for the recursion calculation is com-
plex and k dependent, the periodic conditions are con-
sidered by the periocity of the Bloch sums and the
reAection on the boundary of the supercell, if the Bril-
louin zone is less than three-dimensional.

We have extended the recursion calculation from real
space to reciprocal space. Starting from the k-dependent
Bloch-sum basis set, we can extract not only the band
dispersion from the partial density of states but also the
symmetric components contained in the particular band
levels.

In order to avoid the complex computation, we have
introduced a unitary transformation to the complex k-
dependent Hamiltonian matrix and the basis set. By this
transformation, the physical characteristic of the system
is not changed, while the complex Hermitian Hamiltoni-
an matrix become a real symmetric matrix of doubled di-
mensions. At the same time, the complex seed states un-
dergo the same unitary transformation and become real
column vectors.

One of the advantages of this transformation is that the
calculation of the recursion coefficients can proceed
within real computation so that the algorithm leads to
easy programming. Especially when the basis set is
nonorthogonal and the inverse of the overlap matrix is

required in the calculation of recursion coefficients, the
real computation can efficiently exploit the sparseness of
the overlap matrix and significantly reduce the storage
capacity of the computer, so that we can choose a larger
supercell. For some physical problems, a larger supercell
can be crucial for decoupling the interactions between de-
fects in neighboring supercells.

The Bloch sums are no longer localized wave func-
tions, while in the usual recursion approach, the localized
atomic orbitals are taken as basis set. In the present pa-
per, we have extended the recursion approach from real
space to reciprocal space and extended the basis set in the
recursion calculation from a localized orbital set to an ex-
tended wave-function set. The complex Bloch sums are
taken as basis set in the recursion approach. They do not
cause problems in convergence. The Bloch-sum-type
basis set is based on tight-binding localized orbitals.

The convergence of the recursion coefficients depends
on the degree of localization of the tight-binding orbitals
(how many neighbors the interaction extends up to). For
the supercell model it turns out that the larger the super-
cell, the more rapidly the recursion coefficients converge.
In fact, the essential factor for the convergence of the re-
cursion coefficients is the sparseness of the overlap and
Hamiltonian matrices. Sparser overlap and Hamiltonian
matrices results in a faster converging of the recursion
coefficients.
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