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We present an experimental and theoretical study of quantum ballistic transport in single quan-
tum point contacts {QPC s), defined in the two-dimensional electron gas {2DECs) of a high-mobility
GaAs/Alo 33Gao 67As heterojunction. In zero magnetic field the conductance of quantum point con-
tacts shows the formation of quantized plateaus at multiples of 2e'/h. The experimental results are
explained with a simple model. Deviations from ideal quantization are discussed. The experimental
results are compared with model calculations. Energy averaging of the conductance has been stud-
ied, both as a function of temperature and voltage across the device. The application of a magnetic
field leads to the magnetic depopulation of the one-dimensional subbands in the QPC. It is shown
that the zero-field quantization and quantization in high magnetic fields are two limiting cases of a
more general quantization phenomenon. We use quantum point contacts to study the high-
magnetic-field transport in a 2DECi. Quantum point contacts are used to selectively populate and
detect edge channels. The experiments show that scattering between adjacent edge channels can be
very weak, under certain circumstances even on length scales longer than 200 pm. This adiabatic
transport has resulted in the observation of an anomalous integer quantum Hall efI'ect, in which the
quantization of the Hall conductance is not determined by the number of Landau levels in the bulk
2DEG, but by the number of Landau levels in the QPC's instead. Related e{fects are the anomalous
quantization of the longitudinal resistance and the adiabatic transport through QPC's in series. A
theoretical description for transport in the presence of Shubnikov —de Haas (SdH) backscattering is
given. This model explains the experimentally observed suppression of the SdH oscillations due to
the selective population or detection of edge channels. Finally, we demonstrate that the combina-
tion of a QPC and a bulk Ohmic contact can act as a controllable edge-channel mixer.

I. INTRODUCTIVE

The fundamental properties of electron transport are
best studied in the ballistic regime. In this regime the
elastic and inelastic mean free paths I, and I, are both
larger than the dimensions of the conductor through
which the electrons travel. The motion of the electrons is
then completely determined by the (smooth) electrostatic
potential, which defines the conductor, and is not dis-
turbed by interactions with phonons, impurities, etc. A
classical description of ballistic transport suKces when
the dimensions of the conductor are large compared to
the Fermi wavelength A,z of the electrons. When the de-
vice dimensions become comparable to XF, the quantum
ballistic regime is entered. In this regime the wavelike
nature of the electrons becomes prominent.

The two-dimensional electron gas (2DEG) of a high-
mobility GaAs/Alo 33Gao 6/As heterojunction is a very
attractive system for the study of quantum ballistic trans-
port. At low temperatures both I, and t', can become rel-
atively large ( ) 10 iLtm). Also, A,F is relatively large (typi-
cally 40 nm). With modern microfabrication techniques
it is therefore possible to fabricate devices in a 2DEG

that operate in the quantum balhstic regime. We have
employed a split-gate technique' to fabricate quantum
point contacts (QPC's). These QPC's are short and nar-
row constrictions, with dimensions comparable to Xz.
An attractive feature of the split-gate technique is that
the properties of the QPC's can be controlled continuous-
ly by the applied gate voltage. This has enabled us to
perform a detailed study of the quantum ballistic trans-
port regime.

This paper consists of two major parts (Secs. III and
IV). After the description of the device layout and the
experimental setup in Sec. II, we study the ballistic trans-
port through single QPC's in Sec. III. Section III A gives
a brief introduction of quantum ballistic transport. The
experiments that reveal the quantization of the ballistic
conductance of quantum point contacts in the absence of
a magnetic field are presented in Sec. III 8. The results
will be explained with a simple model. Deviations from
ideal quantization are discussed in Sec. IIIC. In Sec.
III D we study the inAuence of energy averaging due to a
finite temperature and finite voltage across the QPC's. A
comparison of our results with model calculations will be
given in Sec. IIIE. The application of a perpendicular
magnetic field leads to the magnetic depopulation of the
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one-dimensional subbands in the QPC. The quantization
is preserved, and it is shown that the zero-field quantiza-
tion and the quantum Hall efFect (QHE) in a QPC are two
limiting cases of a more general quantization
phenomenon (Sec. III F). The conclusion of this section
is in Sec. III G.

In Sec. IV we present a detailed theoretical and experi-
mental investigation of high-magnetic-field transport in a
2DEG, studied with QPC's. Recently a simple and ap-
pealing model for electron transport in the quantum Hall
regime ' has been proposed. The main ingredients of
this model are the so-called edge channels. These edge
channels consist of the current-carrying electron states of
each Landau level, and are located at the boundaries of
the 2DEG. We will give a brief description of this model
in Sec. IV A. The power of the quantum point technique
is that the transmission properties of QPC's can be con-
trolled by the applied gate voltage. The most important
property of QPC's in high magnetic fields is that they,
when used as current probes, can selectively inject
current into specific edge channels. When used as volt-
age probes they can selectively measure the occupation of
specific edge channels. A description of the high-
magnetic-field transport in single QPC s is given in Sec.
IV B.

The selective properties of the QPC's allow us to per-
form a detailed study of the role of contacts in the QHE.
An important result of our investigation is that scattering
between adjacent edge channels (located at the same
2DEG boundary) can be very weak in high magnetic
fields, which implies that adiabatic transport can take
place. Electrons travel through the 2DEG with conser-
vation of their quantized magnetic energy (Landau-level
index), with only a little chance of being scattered into
other edge channels. The combination of this quantum
adiabatic transport with the selective population and
detection of edge channels by QPC's has resulted in the
observation of an anomalous integer QHE (Ref. 9) (Sec.
IVC). The quantization of the Hall conductance is not
determined by the number of Landau levels in the bulk
2DEG, but by the number of Landau levels in the QPC's
instead. Related phenomena are the anomalous quantiza-
tion of the longitudinal resistance and the quantum adia-
batic transport in QPC's in series (Sec. IV D).

Next we used QPC's to perform a detailed study of the
scattering between edge channels. In Sec. IV E we give a
description of the scattering processes in the 2DEG. We
make a distinction between intra-Landau-level scattering
(scattering between edge channels belonging to the same
Landau level) and inter-Landau-level scattering (scatter-
ing between edge channels belonging to different Landau
levels). In our model the Shubnikov —de Haas (SdH) os-
cillations arise from backscattering of electrons in the
upper (highest occupied) Landau level. The experiments
that show that the SdH oscillations can be suppressed, ei-
ther by selective population or by selective detection of
edge channels, are presented in Sec. IVF. These results
show that under certain circumstances the scattering be-
tween adjacent edge channels can be weak even on a mac-
roscopic ()200-pm) length scale. ' Another illustration
of the nonlocal transport is given in Sec. IV G-, where we

demonstrate that the voltage measured with a particular
voltage probe can be strongly affected by the transmission
properties of an adjacent voltage probe. This shows that
a voltage contact that consists of a QPC and an Ohmic
contact can act as a controllable "edge-channel mixer. "
Section IV H concludes the paper.

The main body of our results has been published in ear-
lier papers.

II. DEVICE LAYOUT AND EXPERIMENTAI. SETUP

In Fig. 1 we show the schematic layout and a micro-
graph of the devices. Identical devices have been used for
the study of coherent electron focusing, ' ' hot electron
focusing, ' nonlinear transport in QPC's, ' and the
Aharonov-Bohm effect in singly connected point con-
tacts. ' The starting material is a high-mobility two-
dimensional electron gas, which is present in a
GaAs/Alo 33Gao 67As heterojunction, grown by
molecular-beam-epitaxy (MBE) techniques. The struc-
ture consists of a 4-pm GaAs layer (grown on semi-
insulating GaAs), followed by a 20-nm undoped
Alo 33Gao 6&As spacer layer, a 40-nm doped (1.33 X 10'
cm Si) Alo 33Gao 67As layer, and a 20-nm undoped

(a)

2 DEG

y%%%%%V

II
~$%%4%0%%$, y y jxx4xXX

i

I

~6 i

FIG. 1. (a) Schematic layout of the device. The gates define
two adjacent quantum point contacts 2 and B. (b) Micrograph,
showing the gate on top of the heterojunction, which defines
two adjacent QPC's. The white bar is 1 pm.
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GaAs cap layer. The electron density of the 2DEG is
3.6X 10' /m, which results in a Fermi energy EF = 12
meV, and a Fermi wavelength A,F =40 nm. The elastic
mean free path (at 4.2 K) is 9 p,m (the mobility is 85
m /Vs). Ohmic bulk contacts 1 —6 are fabricated by al-
loying Au/Ge/Ni. A Hall bar (200 pm wide and 600 p,m
long) is defined by optical lithography and wet chemical
mesa etching. Gates A and B (20-nm Au) are fabricated
by a combination of optical lithography (hatched sec-
tion), electron lithography (solid section), and lift off
techniques.

The QPC's are defined by a split-gate technique, which
was pioneered by Thornton et al. ' and Zheng et al. for
the study of low-dimensional electron transport. ' An at-
tractive feature of this technique is that contact with the
2DEG, which is located about 60 nm below the surface,
is avoided during the fabrication process. This prevents a
possible reduction of the electron mobility due to surface
damage. Application of a negative gate voltage
V = —0.6 V depletes the electron gas underneath the
gate. As a result, two quantum point contacts 3 and B
are defined, with a lithographic width of 250 nm and a
separation of 1.5 pm. A further reduction of the gate
voltage creates a saddle-shaped potential at the QPC's,
and reduces their width and electron density. The QPC's
are completely pinched off at = —2.2 V. The two
separate gates make it possible to control the QPC's indi-
vidually. As can be seen in Fig. 1, QPC B is controlled
by the gate voltage Vs, whereas QPC A is controlled by
both Vz and Vz. It was found experimentally that the
properties of QPC A are approximately determined by
the effective gate voltage ( V„+Vii )/2.

We have investigated several nominally identical sam-
ples. In Sec. III we present experimental results of sam-
ple 1. Thermal cycling between room temperature and
liquid-helium temperature resulted in a gradual
deterioration of the quality of the quantization in zero
magnetic field in this sample. Therefore the conductance
of this sample obtained in different measurement runs
shows a different quality of quantization, as well as
different fine structure. However, the overall behavior of
the sample did not change. In Sec. IV results on sample 2
are presented. The results obtained from these samples
are typical for the remainder of the investigated samples.

The experiments were performed either in a pumped
He cryostat or in a He- He dilution refrigerator. The

measurement leads were filtered to prevent rf interfer-
ence. A phase-sensitive lock-in technique was used, with
the voltages across the device kept below kT /e to
prevent energy averaging of the conductance.

III. QUANTUM BALLISTIC TRANSPORT
AND QUANTIZED CONDUCTANCE

IN SINGLE QUANTUM POINT CONTACTS

A. Ballistic transport through quantum point contacts

An important feature of ballistic transport is its nonlo-
cality. The electron distribution (both in energy and
momentum space) in a given section of the conductor is
determined by scattering processes that have occurred in

G, (EF ) =
PL Pa

2e
T(E~ ),

with T(EF ) the transmission probability at the Fermi en-

ergy, and in which we have introduced the conductance
quantum 2e /h. The ballistic point-contact resistance is
exclusively determined by elastic processes. Dissipative
processes in the wide reservoirs will equilibrate the elec-
tron distribution. In the ballistic regime these processes
occur suKciently far away from the point contact, and do
not influence the resistance.

In metals the Fermi wavelength is typically a few
angstroms, and is usually much smaller than the width of
the point contact. This means that the transmission
probability T(EF) can be evaluated classically, and the
point-contact conductance is expected to be proportional
to its width. In the experiments described in the follow-
ing section we will measure the conductance of a quan-

other sections of the conductor. This is the reason that a
description of electron transport in which a local electric
field is the driving agent is not suitable for the description
of ballistic transport. Instead, a global description has to
be given, in which current flows as a result of the
difference in electrochemical potentials between different
parts of the conductor. The electrochemical potential p
indicates up to which energy (kinetic plus electrostatic)
the electronic states are occupied. A net current flows
when the electron states that carry current in one direc-
tion are occupied up to a different energy than the elec-
tron states that carry current in the opposite direction.
In this description of electron transport the resistance is
caused by the backscattering of electrons. Landauer
has proposed that resistance can be described with
transmission and reflection probabilities, which indicate
the fraction of the current that is transmitted or reflected
by an obstacle. In the diffusive regime, where the mean
free path between collisions with impurities is smaller
than the dimensions of the conductor, the backscattering
results from these impurity collisions. In the ballistic re-
gime the backscattering is caused by the boundaries of
the conductor itself.

The most elementary device to study ballistic transport
is a so-called point contact. A point contact, first pro-
posed by Sharvin, ' basically consists of a narrow and
short constriction that connects two wider conductors.
Both its width and length are less than the elastic and in-
elastic mean free paths. The description of the electron
transport is as follows: The two wide conductors on ei-
ther side of the constriction act as electron reservoirs that
emit and absorb electrons. A voltage difference V that is
applied between the two regions creates a difference in
electrochemical potential e V=pl —pz. As a result, elec-
trons will impinge on the point contact from the right
with energies up to p~ and from the left with energies up
to pl. The net current I through the point contact is
therefore determined by the transmission probability of
electrons in the energy interval between pz and pL.
When the applied voltage is low enough (eV «E~), the
two-terminal conductance G, of the point is given by the
Landauer formula
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turn point contact as a function of its width. The fact that
the width (250 nm or less) is comparable to A,F ( =40 nm)
yields a result that is stikingly different from the classical
result.

8. Conductance quantization in a quantum point contact

The resistance of QPC A is measured in zero magnetic
field as a function of applied gate voltage V~ = Vz at 0.6
K. A three-terminal setup is used, with voltage contacts
1 and 5 and current contacts 4 and 5 (see Fig. 1). Fig-
ure 2 shows the conductance G„which was obtained
from the measured resistance after subtraction of a con-
stant series resistance of 400 A. This resistance was
chosen to match the plateaus with their corresponding
quantized values, and is in reasonable agreement with the
estimated series resistance, based on the sheet resistance
of the 2DEG (=20 0) and the geometry (=16 squares)
of region II.

The conductance of the QPC shows a sequence of
quantized plateaus" at multiples of 2e /h. In the gate-
voltage interval between the formation of the QPC at—0.6 V to pinch off at —2.2 V, 16 plateaus are observed.
A close examination of Fig. 2 shows that several plateaus
are quite Rat, whereas others show some fine structure.
Similar results have been obtained by Wharam et al. ,
who discovered the conductance quantization in short
(=0.6 pm) and narrow channels, also defined with a
split-gate technique. "'

We have studied several nominally identical QPC's.
They all show the steplike structure in G, ( V ). However,
the fine structure in between the plateaus is different for
each device. Also some devices show structure on the
plateaus themselves. In our device geometry it is dificult
to determine the accuracy of the quantization at the pla-
teaus, because the series resistance may depend slightly
on the applied gate voltage. However, a prerequisite for
accurate quantization is that the plateaus are Aat, and do
not show fine structure. The results, therefore, show that
the quantization is not exact. We will discuss the devia-

tions from exact quantization in detail in Secs. III C and
III E.

The explanation for the observed conductance quanti-
zation is very elementary. We assume that we can model
the QPC as a channel with finite length, in which the
electrons are confined laterally by a parabolic potential
—,'m *coox, in which m *=0.067mo is the effective mass of
the electrons, and coo indicates the strength of the lateral
confinement. This choice of confinement is not essential
for the result, but is a realistic approximation when the
QPC's are near pinch of% The lateral confinement leads
to the quantization of the lateral motion, and the forma-
tion of one-dimensional subbands. We obtain the follow-
ing dispersion relation for the electron states in the QPC:

Ak
E„(ky) =(n —

—,
' )ficuo+ +eVo, (2)

2&i

which is the sum of the quantized lateral motion
(n =1,2, . . . is the index of the 1D subbands), the kinetic
energy along the channel (k is the wave number for the
inotion along the channel), and the electrostatic energy
eVo in the QPC. Figure 3 shows the occupied electron
states at two different gate voltages. The analysis of the
magnetoresistance of the QPC's in Sec. III F shows that
the effect of the gate voltage is twofold: A more negative
gate voltage increases the confinement and thus the ener-
gy separation A~o. As a second effect the electrostatic
potential potential Vo in the QPC is raised. As can be
seen in Fig. 3, both effects reduce the number of occupied
subbands X, .

For the evaluation of the conductance 6, we assume
that all electron states with positive velocity
u~ =(1/A')[dE„(k» )/dk~ ] are occupied to pL and all elec-
tron states with negative v are occupied to pz. This is
equivalent to the assumption that no reflection occurs at
both ends of the channel. Furthermore, we assume that
the channel is long enough to prevent a contribution of
evanescent waves to the conductance. The expression for
6, now reads

c PI
G, =—g I —,'eX„(E)u„(E)dE. (3)
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FICi. 2. Quantized conductance of a quantum point contact
at 0.6 K. The conductance was obtained from the measured
resistance after subtraction of a constant series resistance of 400
A.

FIG. 3. Occupied electron states in the channel at two
diferent gate voltages in the case of a current Aow through the
channel. In equilibrium the electron states are occupied up to
the bulk Fermi energy EF. An applied voltage creates a
difference eV=p~ —pl between the electrochemical potentials
of the reservoirs.
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The product of the 1D density of states (including both
spin orientations) N„(E)=2/~[dE„(k)/dk ]

' and the
group velocity U„(E)=(1/A)[dE„(k)/dk ] is energy in-
dependent, and equal to 4/h. This is an important
feature of 1D transport and gives the result

EI; —eVp
G = N with X =int +-

C I C C
Scop 2

(4)

in which int denotes the truncation to an integer. The
conductance is simply given by the conductance quantum
2e /h, multiplied by the number of occupied subbands in
the QPC. Prior to the experimental discovery of the
quantized point-contact conductance, the possibility of a
quantized contact resistance between two reservoirs was
anticipated by Imry. However, it was not expected at
that time that an experimental system would show con-
ductance quantization in such a clear and convincing
way.

It can be shown that a classical evaluation of the
point-contact conductance gives the result
6, =(2e /h )(EF—eVO)/Sicko Acorn. parison with Eq. (4)
shows that the difference between classical and quantum
results does not exceed 2e /h. This shows that in the
limit of G, ))2e /h the difference between quantum and
classical results becomes unimportant.

C. Deviations from ideal quantization

Although the model of a channel with a finite length is
clearly oversimplified, we can nevertheless use it to ex-
plain some of the features of the data. In this section we
focus on the transition regions in between the quantized
plateaus. We will explain the absence of quantization in
these regions by the (partial) refiection of electron waves
at both ends of the channel. A sudden widening of the
channel, or change in electrostatic potential, at both ends
of the channel will induce a partial reflection of the elec-
tron waves. This can be compared with the reAection of
waves at an open-ended waveguide. In a first-order ap-
proximation the electron waves in a particular subband
(or waveguide mode) are refiected in the same subband.
We can then define a reAection probability R, which de-
scribes the fraction of the current carried by a subband
that is reAected at the ends of the channel. In a one-
dimensional model the reAection probability for an
abrupt potential step is given by

R= k, —k 2

k, +k 2

in which k
&

and k 2 are the longitudinal wave numbers
inside and outside the channel. The transition regions be-
tween the quantized plateaus can now be understood with
Eq. (5). The threshold for transmission of the nth sub-
band is given by EF=eVO+(n —

—,')%coo. Slightly above
the threshold, k

&

=
I 2m "[EF—e Vo —(n —

—,
' )A'coo]/

is very small, and Eq. (5) shows that R is near uni-
ty. The nth subband does not yet contribute significantly
to the conductance. When eVo+(n —

—,')%coo is reduced
further by increasing the gate voltage, k, increases, R
slowly drops to zero, and the conductance gradually

reaches its quantized value.
Due to the possibility of multiple reAections at both

ends of the channel, we also expect to observe transmis-
sion resonances. When we assume equal reAection
probabilities R at both ends of the channel we can write
the conductance of the QPC as

2e (1—R)
h 1 —2R cos(2k, L)+R (6)

u 1z',

u
Z'.0
C3

—2 —1. 95 —1. 9
GATE VOLTAGE (V)

FIG. 4. Temperature averaging of the transmission reso-
nances of the second subband. The values for the energy-
averaging parameter hE are given. The curves have been offset
for clarity.

in which I. is the length of the channel. This equation
expresses that G, can be written as the sum of the quan-
tized conductance of N low-lying subbands (with low
quantum number n) and the (resonant) transmission of
the upper (highest occupied) subband. Equation (6) pre-
dicts transmission resonances in the transition regions be-
tween the quantized plateaus, where RWO. An impor-
tant feature of Eq. (6) is that even in the case of a finite
reAection probability R, the conductance can still be
quantized, provided that the condition for resonant
transmission is satisfied: 2k &I. =integer X 2'.

Figures 4 and 5 (upper traces) show experimental re-
sults. The data illustrate the transition from the first to
the second plateau. Three maxima and two minima are
observed, of which the second and the third maximum
approach the quantized value 4e /h. The fact that the
first maximum does not reach the quantized value may be
due to the unequal reAection probabilities at both ends of
the channel [note that the geometry of the QPC's is not
symmetric (see Fig. 1)]. The number of observed reso-
nances allows us to make an estimate of the length L of
the channel. At the threshold for the transmission of the
third subband, the longitudinal wave number of the
second subband is given by k, =(2m 'E/fi )', with the
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FIG. 5. Voltage averaging of the transmission resonances of
the second subband. The values for the energy-averaging pa-
rameter hE are given. The curves have been offset for clarity.

subband spacing E = ficoo =2. 5 me V (see Sec. III F).
From the resonance condition 2k &L =3(27r), we find
I.=140 nm, which is a reasonable value, considering the
width of the depletion regions around the gates, which is
estimated to be about 200 nm.

We emphasize that, although several devices showed
structure in the transition region between the plateaus,
clear resonances have been observed in only two devices.
We will discuss this further in Sec. III E.

effective width hE =4k~ T. For voltage averaging,
bE =eV.

We have compared experimentally the effect of voltage
and temperature averaging on the transmission reso-
nances in the QPC conductance. Figure 4 shows the
disappearance of the resonances when the temperature is
increased, and Fig. 5 shows how they disappear when the
ac current through the device is increased. The currents
and temperatures have been selected such that each set of
traces has approximately the same energy-averaging pa-
rameter b,E. (The effective bE due to the ac current with
the rms value I is estimated to be b,E=I.4eI/G, .) The
results show that the effects of elevated temperature and
voltage are similar. The transport remains ballistic, at
least up to temperatures of 1 K and voltages of 0.4 mV
across the device. Recent experiments show that ballistic
and phase-coherent transport in a 2DEG can even occur
up to energies in the meV range. ' '

Figures 4 and 5 show that an energy interval AE =0.5
meV is sufficient to wash out the transmission resonances.
We now investigate how the quantized plateaus them-
selves are destroyed when the temperature is raised fur-
ther. Figure 6 shows that temperature averaging be-
comes effective above =0.6 K. At 4.2 K the plateaus
have almost disappeared. The mechanism for the de-
struction of the plateaus is that at high temperatures elec-
tron states of the next subband become occupied, and not
all electron states of the low-lying subbands are fully oc-
cupied anymore [Eq. (8)j. A comparison of the effective
energy-averaging parameter at 4.2 K, AE = 1.6 meV with
the subband spacing obtained in Sec. III F ( =2.5 meV),
confirms that the mechanism for the destruction of the
quantized plateaus is energy averaging. ' The 4.2-K
trace shows that the plateaus near pinchoff are less
rounded than the other plateaus. This is in agreement

D. Energy averaging of the conductance

EF+e VN

G, ( V) = —g f T„(E)dE.
h V, ) FF

At a finite temperature T the conductance is given by

(7)

In the preceding sections it was shown that at low volt-
ages across the device and low temperatures the conduc-
tance of a QPC can be described by the transmission
probabilities T„(EF) of the different subbands at the Fer-
mi energy. At a finite temperature, or finite voltage
across the device, the current will be carried by an energy
interval of finite width. This leads to energy averaging of
the point-contact conductance. ' The conductance at a
finite voltage Vis given by

2
LLI

C3

1

(3
0

0
C3

G, (T)= g f ' T„(E)dE,
h „,0 dE

in which f(E,T)=[1+exp(E E~)/kT] ' is —the
Fermi-Dirac distribution function. Equations (7) and (8)
show that in both cases the physics is the same, and only
the weighing factors are different. The temperature
averaging has a Gaussian weighing factor, which has an

0
—2 —1.8

GATE VOLTAGE (V)

FIG. 6. Breakdown of the conductance quantization due to
temperature averaging. The curves have been onset for clarity.
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with Sec. III F, which shows that the subband spacing in-
creases when the gate voltage is reduced. Finally, we
mention that the breakdown of the conductance quanti-
zation as a function of applied voltage has been studied
by Kouwenhoven et a/. ' They showed that the conduc-
tance quantization breaks down at a voltage that is ap-
proximately equal to the subband spacing.

E. Comparison of the experimental results
with model calculations

After the discovery of the quantized conductance of
point contacts, many calculations of the conductance of
narrow constrictions have been performed. In this
section we make a comparison between these model cal-
culations and our experimental results. We do not give
an exhaustive discussion, but focus on the aspects that
are relevant for the experimental results.

An interesting question is whether an actual channel of
finite length is required to observe quantization of the
conductance, or whether a "hole-in-a-screen" point con-
tact is already sufFicient. Calculations ' ' ' show that
the conductance of a "hole-in-a-screen" point contact,
calculated as a function of its width 8', already shows a
modulation with a period 2e /h. van der Marel and
Haanappel obtained the surprising result that the con-
ductance at the points of infiection in the G, ( 8') curve is
exactly equal to multiples of 2e /h. When the point con-
tact is given a finite length, the structure rapidly develops
into well-defined plateaus. It was found that the length I.
of the channel should exceed 0.3+28'AF, to prevent the
contribution of evanescent waves to the conductance,
which destroy the quantized plateaus. However, strong
transmission resonances are observed when the channel is
made longer such that it can accommodate several wave-
lengths.

Several authors have calculated the conductance of a
constriction with the typical wedge geometry of the litho-
graphic gate (Fig. 1) that defines the QPC's. 952 No
well-defined plateaus were observed in this geometry.
This clearly shows that the actual electrostatic potential
that defines the QPC's is substantially different from the
geometry of the lithographic gate. The potential is the
2DEG changes more smoothly than the lithographic
gate, and this improves the quality of the quantization.

If the change in width and electrostatic potential at
both ends of the channel is su%ciently smooth, adiabatic
transport can occur. In this case the electrons move with
conservation of subband index, and no mode mixing
takes place. Adiabatic transport through QPC's was
studied in Refs. 37 and 41. Glazman et al. obtained a
condition for the radius of curvature of the boundaries of
the constriction, required for adiabatic transport. How-
ever, it is difficult to compare this criterion with the ex-
perimental results, since the actual QPC's also contain a
potential barrier (see Sec. III F), which is not included in
the calculations.

Several authors have included scattering in their model
calculations, which, as expected, destroys the quantiza-
tion. Recently Nixon et al. and Laughton et al. calcu-
lated the transport through QPC's, by modeling the

confining potential as the sum of the potential due to the
gates and the fluctuating potential due to the randomly
distributed donor atoms. They find that QPC's with
different donor distributions show a different quality of
the quantized plateaus, as well as different fine structure
in between the plateaus. For particular potentials they
find resonances in the conductance, similar to those de-
scribed in Sec. III C. Although a slight variation in the
gate geometry for different devices cannot be ruled out,
we think that the reason that resonance structure is ob-
served is due to the fact that backscattering at both ends
of the channel may be enhanced by the fluctuating poten-
tial.

F. Transition from zero-field quantization
to quantization in high magnetic fields

In this section we study the eft'ect of a perpendicular
magnetic field on the conductance quantization. It is
shown that the application of a magnetic field preserves
the quantization and a gradual transition is observed
from the conductance quantization, due to the lateral
confinement of the electrons, to the quantization in high
magnetic fields. We deliberately do not use the term
quantum Hall effect, since this is restricted to four-
terminal measurements, whereas we study a two-terminal
conductance. However, as we will show, the origin of the
quantum Hall effect and the zero-field quantization is
closely related.

The presence of a perpendicular magnetic field does
not change the one-dimensional nature of the transport in
the QPC. Because of the translational invariance of the
Hamiltonian in the direction along the channel, the
transport can still be described by electron waves travel-
ing in a waveguide. The dispersion of these waves now
becomes

AkE„(ky ) = ( n —
—,
' )iricu+ + e Vo+ ,'g psB-

2m

with

eB
iu —1/ coo+ co~, aild co~ =

CO 0 m
~ 67m=m*

The magnetic field creates hybrid magnetoelectric sub-
bands, and changes the dispersion relation of the waves. '

However, because of the one-dimensional nature of the
transport, the essential relation between the 1D density of
states N„(E)and the group velocity u„(E)still holds:
N„(E)u„(E)=4/h.Ignoring spin splitting we obtain the
result

2e
G, (B)= N, with N, =int FI; —e Vo +— . (10)

%co 2

Equation (10) shows that there is a gradual transition be-
tween the quantization in zero field (co, =0) to the quant-
ization in high field (co, &)coo). '

Figure 7 presents experimental results on the transition
from zero-field to high-field quantization, ' obtained at
0.6 K. The top trace reproduces the 8=0 result. When
a magnetic field is applied, the width of the plateaus is
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TABLE I. Values for the subband spacing %coo and potential
barrier eVo at several values of the gate voltage V~, obtained
from a At of Eq. (9) to the experimental data of Fig. 8.

Vg (V)

—1.0
—1.3
—1.6
—1 ~ 85
—2.0

fi~, (meV)

1.0
1.1
1.5
1.8
3.0

eVO (meV)

0
2.0
3.5
5.5
6.5

z',

u2

-2 —1.8 —1.6 —1.4 —1.2 —1

GATE VOLTAGE (V)

FIG. 7. Transition from quantization in zero field to quanti-
zation in high magnetic fields, obtained at several fixed values of
the magnetic field at 0.6 K. The conductances were calculated
from the measured resistances after subtraction of the resis-
tances of the bulk contacts. The curves have been offset for
clarity.

widened compared to the 8 =0 case. This reflects the in-
crease of subband spacing with magnetic field [Eq. (9)j. It
takes a larger variation of the gate voltage to populate (or
depopulate) a new subband. The quantization is
preserved, in agreement with Eq. (10). At high fields the
spin degeneracy is lifted (gp, sB exceeds kii T), and pla-

12

teaus at uneven multiples of e /h become visible.
Equation (10) predicts that at high magnetic fields

(co, ))coo), N, is determined exclusively by the combina-
tion of the potential barrier Vo and co„and is proportion-
al to 1/B. At low fields, however, the number of sub-
bands is limited by the lateral confinement, and deter-
mined by mo. We have determined the number of occu-
pied subbands X, as a function of magnetic field at
several fixed values of the gate voltage from Fig. 7. The
result is shown in Fig. 8 (square dots). From the fit of Eq.
(10) to these data we have obtained the values of Vo and
co at these values of the gate voltage. They are given inCOO

Table I (a similar analysis for an infinite square-well po-
tential is given in Ref. 12). The results show that a reduc-
tion of the gate voltage increases both the confinement
(measured by coo) and the potential barrier Vo in the
QPC. The results show that the maximum subband spac-
ing, which is achieved in our QPC's, is about 3 meV.
Similar results have also been obtained by Wharam et al.

65for a split-gate wire.
A characteristic feature of QPC's in a magnetic field is

that the quality of the quantization is improved when a
magnetic field is applied. This is most clearly observed
when the zero-field quantization is poor. In this case the
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FIG. 8. Number of occupied subbands as a function of in-
verse magnetic field (square dots) obtained at several fixed
values of the gate voltage. The solid curves correspond to fits
with Eq. (9). The parameters are given in Table I. The curves
have been offset for clarity.
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FIG. 9. Improvement of the conductance quantization by the
application of a magnetic field, measured at 40 mK.
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quality of the quantization has deteriorated due to several
thermal cycles. Figure 9 shows how a relatively small
magnetic field already improves the quantization. The
mechanism is probably that the backscattering near or in
the QPC is reduced in the presence of a magnetic field.
Because the quantization is already improved at a very
low field (the cyclotron radius at 0.1 T is about 1 pm), it
is possible that part of the backscattering occurs near the
QPC (possibly by impurities), and not in the QPC itself.

As discussed by Buttiker, a suKciently large magnetic
field can completely prevent the backscattering induced
by impurities or irregularities in the confining potential.
This absence of backscattering in high magnetic fields is
probably the main reason for the extreme accuracy of the
quantum Hall effect, compared to the limited accuracy of
the conductance quantization in zero field.

G. Concluding remarks

The conductance of quantum point contacts was found
to display quantized plateaus at multiples of the conduc-
tance quantum 2e /h. This quantization can be ex-
plained by the formation of one-dimensional subbands in
the point contacts, each occupied subband contributing
2e /h to the conductance. Both experiments and model
calculations show that the accuracy of the quantization is
sensitive to the detailed shape of the confining potential
and the possible presence of impurities. Nevertheless, we
estimate that it may be possible to obtain accuracies
exceeding O. l%%uo in properly designed geometries. How-
ever, the fact that the quantization can probably be des-
troyed by a single impurity, located at an unfavorable po-
sition, will exclude the possible use of QPC s as a resis-
tance standard.

The experiments show that the transport through the
QPC's remains ballistic up to at least 4.2 K. This means
that inelastic processes are not yet important at 4.2 K.
The conductance quantization breaks down due to energy
averaging. It is shown that the application of a magnetic
field leads to a gradual transition to magnetic quantiza-
tion. The major difference between the quantization in
the absence of a field and the quantum Hall effect is the
nature of the scattering. In the absence of a magnetic
field, the backscattering from impurities or irregularities
in the confining potential will destroy the quantization.
As discussed in the following section, backscattering is
suppressed by a sufficiently high magnetic field.

IV. QUANTUM TRANSPORT
IN HIGH MAGNETIC FIEI.DS

A. A model for quantum transport in high magnetic fields

In this section we give a brief description of transport
in high magnetic fields in a 2DEG free of imperfections.
We assume that the electrons are laterally confined in the
2DEG by the electrostatic potential given in Fig. 10. The
electrostatic potential V(x) has a fiat part in the middle,
and rises at the edges of the 2DEG. The width 8' of
these depletion regions at the edges is usually of the order
of 100—500 nm in actual devices. The following disper-

-----.E

------EF-----

FIG. 10. Cross section of a 2DEG, showing the occupied
electron states of two Landau levels, in the presence of a current
Aow. (a) shows the regular situation. The arrow indicates
intra-Landau-level scattering. (bj shows the occupied electron
states when current is injected selectively with a QFC. The ar-
row illustrates inter-Landau-level scattering between adjacent
edge channels.

sion relation is obtained for the electron states in the
2DEG:

E„(k) =e V(x)+(n —
—,
' )fico, + —,'m *Uii+ ,'g psB, —

eV(x) =E~ (n —,' )fico, + ,'gp~B—. ——(12)

Because this condition is usually satisfied at the edges of
the 2DEG one speaks about transport in edge channels.
These edge channels are located at the intersections of
the Landau levels and the Fermi energy. Figure 10(a)
shows the occupied electron states of two Landau levels
when a net current I Aows in the 2DEG. This current is
a result of the difference in occupation of the right- and
left-hand edge channels, which carry current in opposite
directions. It can be shown that the net current I is
independent of the details of the dispersion of the Landau
levels and is given by

The current carried by each Landau level is simply given

The energy of an electron consists of four terms: the
electrostatic energy eV(x) at the center coordinate
x =lbk of the electron wave function (lb =&Pi/eB ), the
quantized cyclotron energy (n is the Landau-level index),
the kinetic energy associated with the drifting motion of
the electrons in crossed E and 8 fields, and the Zeeman
spin-splitting term. Evaluation of the third term in (11)
with a typical value E =EFI(eW) =10 —10' V/m for the
electric field at the boundary of the 2DEG shows that
this term can usually be neglected in high magnetic fields
(B &1T).

The relevant electrons for transport are those at the
Fermi energy EF. We now obtain a very simple picture
for electron transport when we note that electrons with
different Landau-level indices n Aow along difFerent equi-
potential lines V(x), which are given by the condition
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by e /h multiplied by the electrochemical potential
difference pL

—pz between right and left edge channels.
Voltage probes attached to either side of the 2DEG will
measure this electrochemical potential difference, and the
Hall resistance is

IH (PI. Pii ) e 1

I eI h X (b)
2

This is the elementary explanation for the quantum Hall
effect. A necessary condition for the observation of
the QHE is that the right-hand contact exclusively mea-
sures the electrochemical potential of the right-hand edge
channels and vice versa. A second condition is that
(back)scattering between the two sets of edge channels on
either side of the 2DEG is absent.

A major deficiency of the above description is that it
does not take into account screening. A description of
the transport in terms of edge channels is only possible by
assuming that the Fermi level EF in the interior of the
2DEG can be positioned in between the flat parts of two
consecutive Landau levels. In a 2DEG without potential
fluctuations this is not possible, because the electron den-
sity is fixed, and the Fermi level will be pinned to the
upper Landau level. Calculations of self-consistent
screening, which take into account the finite width of the
2DEG, support this picture. ' They show that the
large degeneracy of the Landau levels can result in per-
fect screening, and the Fermi level may be pinned to the
upper Landau level in a considerable region of the
2DEG. Because all electron states of the low-lying Lan-
dau levels remain occupied in the interior of the 2DEG,
the edge-channel description will remain valid for these
Landau levels.

Our experiments show that we can use the edge-
channel description for all Landau levels, including the
upper Landau level. We think that this is due to the
presence of potential fluctuations in the 2DEG. These
fluctuations will localize states in the bulk of the 2DEG.
As illustrated in Ref. 6, this localization may be en-
visaged as edge channels that close upon themselves, and
therefore do not affect the transport. Although the
edge-channel picture provides the basis for the under-
standing of the QHE, it is clear that a further investiga-
tion of the scattering processes in the bulk is required for
a complete understanding of the QHE.

(c)
2

FIG. 11. High-magnetic-field transport in a QPC for three
different values of the potential barrier Vo, illustrated for the
case of two occupied Landau levels (see text).

eI 28 (N+T) . (15)

by N = int [ ( EF —e Vo ) /( A'co, ) + —,
' ].

Figure 11 illustrates the current flow in edge channels
through the QPC for three different values of the poten-
tial barrier Vo. In Fig. 11(a) no potential barrier is
present, and all edge channels are transmitted. The QPC
does not influence the electron transport. This is approx-
imately the case when the QPC is formed at —0.6 V. In
Fig. 11(b) the gate voltage is reduced, and a potential bar-
rier is created. In this particular example, a fraction T of
the electrons in the second edge channel is transmitted
through the QPC and a fraction R =1—T is reilected.
Note that the electrons in the edge channel with the
highest Landau-level index are the first to be reflected,
since this edge channel follows the lowest equipotential
line. In Fig. 11(c) the potential barrier is such that this
edge channel is completely reflected, whereas the other is
still completely transmitted. We now write the two-
terminal resistance G, of the QPC as

B. High-magnetic-field transport in quantum point contacts

The transport properties of QPC's in zero and nonzero
magnetic field have been discussed in Sec. III. In this
section we focus on the high-field regime, in which the
electron transport can be described in terms of edge chan-
nels. We first note that the electrostatic potential
landscape at the QPC's has a saddle shape. Besides the
lateral confinement of the electrons, the potential in the
QPC's is also raised relative to the bulk 2DEG. This po-
tential barrier Vo is a function of the applied gate voltage
(see Sec. III F). In high magnetic fields (when ro, ))coo),
the transport is exclusively determined by Vo and u„and
independent of coo. The number of occupied Landau lev-
els in the QPC is reduced relative to the bulk and is given

In this expression, N denotes the number of (spin-
degenerate) edge channels that are fully transmitted
through the QPC, and T denotes the transmission of the
partially transmitted edge channel. We assume that at
the QPC only one edge channel can be partially transmit-
ted, and all others are either completely reflected or com-
pletely transmitted. Also we assume that no scattering
between edge channels occurs in or near the QPC. The
observation of an anomalous integer quantum Hall effect
(Sec. IV C) shows that these assumptions are justified for
B & I.5 T in our device geometry.

By considering the edge channels that flow away from
the QPC, it can be seen that they are occupied up to
different electrochemical potentials p„orp~, depending
on whether they have been transmitted or reflected at the
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QPC [see Fig. 11(c)]. This means that a QPC, when used
as a current probe, can selectively inject current into only
those edge channels that are transmitted by the QPC.
Similarly, when used as a voltage probe, a QPC will ex-
clusively measure the electrochemical potentials of those
edge channels that are transmitted through the QPC. 2

2DEG

C. Anomalous integer quantum hall e6'ect

In this section we investigate the (quantization of the)
Hall conductance, when it is measured with QPC's that
couple selectively to specific edge channels. In the regu-
lar QHE, when the Hall conductance is measured with
ideal bulk contacts (which couple ideally to all available
Nz edge channels), the quantization of GH is determined
by the number of bulk Landau levels XL. The formation
of a quantized plateau in GH is accompanied by a vanish-
ing of the longitudinal resistance RL. It is shown in this
section that the selective coupling of the QPC's, com-
bined with the absence of scattering between edge chan-
nels, leads to an anomalous quantization of the Hall con-
ductance, in which GH is not determined by the number
of bulk Landau levels XI, but by the number of Landau
levels in the QPC's instead. At the same time, the longi-
tudinal resistance shows quantized plateaus (see Sec.
IV D). We emphasize that the anomalous quantization of
the Hall and longitudinal resistances, as well as the adia-
batic transport in series QPC's (Sec. IV D) have the same
origin: the selective population and detection of edge
channels, combined with the absence of scattering be-
tween edge channels in the region between the QPC's.

In an identical device, van Houten et al. ' ' studied
coherent electron focusing at low fields. Electron-
focusing peaks were observed in both Ha11 and longitudi-
nal resistances as a result of the ballistic transport in
skipping orbits between the QPC's. At low fields many
edge channels are occupied, and the focusing peaks can
be explained with a classical calculation. The fine struc-
ture in the focusing spectrum was explained by the quan-
tum interference between many coherently excited edge
channels. ' ' In this paper we are interested in the high-
field regime, where only a few edge channels are occu-
pied.

We calculate GII, which is defined as the ratio of the
current I and the voltage difference between contacts 1

and 6, when 5 and 4 are used as current probes [see Figs.
1 and 12(a)]. The two QPC's serve as adjacent current
and voltage probes. We first perform the calculation for
a forward-directed magnetic field. We assume that all
bulk contacts are ideal. This means that these contacts
absorb the total current that flows along the 2DEG
boundary, and that all NL edge channels that leave a bulk
contact are equally occupied and have the same electro-
chemical potential. An ideal contact, therefore, has a
two-terminal conductance 6 = (2e /h )Nl . In the calcu-
lation we set p&=0 for convenience. By employing the
general Biittiker formula for four-terminal measure-
ments, an expression for GH can be given in terms of
transmission probabilities between the bulk contacts.
However, we prefer to give a step-by-step derivation of
the result, which brings out the physics involved more
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FIG. 12. (a) Electron flow in edge channels, resulting in an
anomalous quantization of the Hall conductance GH=2e /h.
(b) Comparison between the two-terminal conductances G& and
Gz of the point contacts with the Hall conductance GH. The
Hall conductance shows an anomalous plateau at 2e /h, in
agreement with Eqs. (17)—(20). The rapid rise in G~ below
—2.2 V is an artifact due to the complete pinchoff of the QPC's.
The curves have been offset for clarity.

cleal ly.
The two-terminal conductance of the current QPC A

can be written

eI
G

Ps P&

2e (N~+ T~ ), (16)

in which A~ denotes the number of' fully transmitted
(spin-degenerate) edge channels, and T„denotes the
transmission of the partially transmitted edge channel
through QPC A. Whenever Nz (NI, the injected
current is disturbed unequally over the available %L bulk
edge channels [Fig. 12(a) illustrates the electron Aow for
the NL =2 case, and N„,N~ = 1]. The lowest N „chan-
nels are fully occupied up to p5, and carry a current
(2e/h )Nz p&. Channel N„+1 is only partially occupied,
and carries a current (2e/h )@AT„.Channels N„+2up
to Nl are not populated at all, and carry no current. The
injected current flows towards the voltage QPC B. At
this point we assume that no scattering between edge
channels takes place in the region between the QPC's.

In order to calculate p6 and G~, we have to consider
three situations. When N~ )N„(N~ is the number of
fully transmitted edge channels by QPC B), the total in-
jected current I will enter the voltage QPC B. Because
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QPC B is a voltage contact, an electrochemical potential
p6 will build up to compensate this in-going current with
an equal out-going current. This electrochemical poten-
tial is determined by the two-terminal conductance Gz
and is given by p6= eI //G~. This yields the Hall conduc-
tance:

28
(Nii+ Tii )

In the X~ &X~ case, all channels entering the voltage
QPC are fully occupied up to p~. This means that p6 be-
comes equal to p~ and

2e
GH=G& = (Nz+ Tz ) for Nz )Nz .

h

If Nz =X& =X, the current entering the voltage probe
as a result of the fully populated channels is given by
(2e /h )Np~. Channel N + 1 carries a current
(2e/h )Tzp5, of which an amount (2e/h )Tz Tiip5 enters
the voltage probe. Compensation of the total in-going
current by an equal out-going current gives the result

2~2 (N+ T„)(N+Tii)
h (N+ T„Tii)

(19)

Equations (17)—(19) predict that GH is quantized when-
ever the QPC with the largest conductance is quantized.
The quantized values for G& are given by

28
GH = max(N„,Nii) .

vided that the edge channels are equilibrated by inelastic
scattering in between the contacts. However, it is shown
in Sec. IVF that under certain circumstances scattering
between adjacent edge channels can be weak even on
macroscopic length scales ( ) 200 pm), which implies that
the properties of bulk contacts may be important for the
establishment of the QHE.

We have measured the Hall conductance G~, as well as
G~ and Gz, as a function of magnetic field at 1.3 K for
several fixed values of the gate voltage ( V„=Vii). In re-
verse magnetic fields the regular QHE is observed. The
number of observed plateaus, as well as their positions,
are not affected by the gate voltage. Figure 12(b) presents
results obtained in forward magnetic field. A comparison
is made between the two-terminal conductances G~ and
Gz, measured between contact pairs 1-5 and 1-6, respec-
tively, and the Hall conductance GH. Two bulk Landau
levels are occupied at 3.3 T. The measured Hall conduc-
tance closely follows the probe conductances, and exhib-
its an anomalous plateau at 2e /h. The rapid rise of G~
below —2.2 V is an artifact due to the complete
pinchoff of the QPC's. These results are consistent with
Eqs. (17)—(20), and provide the experimental proof of
the selective population and detection of edge channels
by the QPC's. In addition, the accurately quantized
anomalous plateau implies that the scattering between
edge channels is extremely weak, and that adiabatic
transport takes place between the QPC's.

We have made a comparison between the probe con-
ductances and the Hall conductance for a range of fixed
magnetic fields. The results are presented in Fig. 13. The

The fact that the number of bulk Landau levels XL does
not appear in the equations for G~ can be understood by
the fact that a bulk edge channel that is neither popu-
lated by QPC A nor detected by QPC B is irrelevant for
the electron transport.

The anomalous QHE will be destroyed by scattering
between populated and nonpopulated edge channels in
the region between the QPC's. The regular QHE does
not require the absence of scattering between adjacent
edge channels. In this case, all edge channels located at a
given boundary of the 2DEG are in equilibrium, and a11

have the same electrochemica1 potential. This means
that the scattering rate from one edge channel to another
is perfectly compensated for by an equal scattering rate in
the opposite direction.

In a reverse magnetic field the electrons that are inject-
ed by QPC 3 move away from QPC B and Row towards
bulk contact 1. We have assumed that this contact is
ideal, which means that it can be represented as a contact
with a two-terminal conductance G=(2e /Ii )NI . The
Hall conductance now has the regular value
GH =(2e /h )NL (it is determined by the probe with the
largest conductance). We therefore see that in reverse
field the properties of bulk contact 1 are important for
the establishment of the regular quantum Hall eFect.
Buttiker has suggested that in the case of nonideal con-
tacts (which do not couple ideally to all NI edge chan-
nels) a regular quantum Hall effect may still occur, pro-

VA= VB G = 2e2/h
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FIG. 13. Comparison between the quantization of G„and
6& and the quantization of 60 for several fixed values of the
magnetic field. The dashed lines indicate the gate-voltage inter-
vals in which both 6& and 6& are quantized. Solid lines indi-
cate the gate-voltage intervals in which 60 is quantized (see
text). The dashed and solid lines have been onset for clarity.
The magnetic-field intervals in which the regular quantum Hall
plateaus occur are indicated at the right-hand side of the figure.
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dashed lines indicate the gate-voltage intervals in which
G„and Gz deviate less than 0.05(2e /h ) from the corre-
sponding quantized values. The accompanying solid lines
indicate the intervals in which GH shows quantized pla-
teaus, obtained with the same criterion. These results
confirm that the quantization of GH is determined by the
quantization of the probe conductances. (For compar-
ison we have indicated the magnetic-field intervals in
which the regular quantum Hall plateaus occur at the
right-hand side of the figure. This was measured with
regular bulk contacts, by applying no voltage to the
gates. )

At low fields (B (2.0 T), GH measured in forward
fields fails to show quantized plateaus, whereas the probe
conductances are already quantized for B ) 1.4 T (the
QPC's in this particular sample show poor quantization
in the absence of a field, and therefore require a magnetic
field to improve the quantization). We attribute this to
the onset of inter-edge-channel scattering at low fields.
This probably occurs at the exit of the QPC A and the
entrance of QPC B, where the confining electrostatic po-
tential changes rapidly. It can be seen in Fig. 13 that at
low gate voltages a higher magnetic field is required to
obtain an anomalously quantized plateau. This may be
due to the fact that the presence of a higher potential bar-
rier e Vo at low gate voltages (see Sec. III G) increases the
scattering rate between edge channels, and therefore a
higher field is required to obtain adiabatic transport.
Note that the quantization of the two-terminal conduc-
tance of a QPC is not affected by scattering between adja-
cent edge channels that Aow in the same direction.

At even lower fields (B ( 1.0 T), electron-focusing
peaks are observed. At low temperatures large quantum
interference eft'ects have been observed in GH. ' ' This
means that no adiabatic transport occurs in low fields.
QPC A excites several edge channels coherently, which
subsequently gives rise to interference, since QPC B also
couples coherently to several edge channels.

The role of an individual QPC has been investigated by
fixing both magnetic field and gate voltage Vz. In this
way, NL and Gii are kept constant. Figure 14(a) gives a
comparison between GH and Gz, both measured as a
function of Vz. Gz has been fixed at 4e /h. The number
of occupied Landau levels Nl =3. Whereas G~ drops
from the 4e /h to the 2e /h plateau, GH remains quan-
tized at 4e /h. This illustrates that GH remains quan-
tized whenever the QPC with largest conductance (G~ in
this case) remains quantized [Eq. (17) with Ning=2 and
T&=Oj. In Fig. 14(b), Gz has been fixed at 2e /h. The
number of occupied Landau levels Xl =2. For G~ & Gz,
the Hall conductance reproduces the features present in
Gz. For G~ & Gz the Hall conductance remains fixed at
2e /h, until QPC A is fully pinched off. These observa-
tions correspond with Eq. (19) (Nz, Nz = 1, Tz WO,

Tii =0) and Eq. (17) (N~ =1, Tz =0), respectively. These
experiments confirm that the anomalous integer QHE is a
result of the nonlocal transport. The Hall conductance
changes, although the 2DEG in between the QPC's is not
affected ( V~ as well as B are constant).

Equations (17)—(20) have been derived assuming spin
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degeneracy. At high fields, when the spin splitting is
resolved (due to the Zeeman splitting gp~B exceeding
kz'P, these equations remain valid provided that the con-
ductance quantum is replaced by e /h, and N and T ap-
ply to single-spin channels. Equation (19) shows that
there is an interesting exception to the rule that the
quantization of GH is determined by the largest QPC con-
ductance. It predicts that when the current and voltage
QP C couple to one (single-spin) channel only
(N„,Nii =0), GH is always quantized at e /h. This
means that the anomalous Hall conductance, measured in
forward fields, cannot drop below e /h. A similar result
has been obtained by Sivan, Hartzstein, and Imry. '

We have investigated this experimentally by applying a
fixed gate voltage Vz such that the resistance of QPC B is
high (=50 kQ), which implies T~ =0.5. In Fig. 14(c) a
comparison is given between the Hall conductance GH
and G„,both measured as a function of V„.When QPC
3 is slowly pinched off, the Hall conductance saturates at
=1.2e /h and remains at that value until the complete
pinchoff of QPC A. The fact that GH does not fully
reach the value e /h is probably due to the fact that the
spin splitting is not yet complete at 1.3 K (QPC B shows
a "quantized" plateau at Gii = 1.2e /h). In the same ex-
periment, performed at 100 mK, the Hall conductance

GATE VOLTAGE VA (V)

FIG. 14. (a) and (b) Comparison between the Hall conduc-
tance GH and the conductance of the current probe G&, demon-
strating the validity of Eqs. (17)—(20). (c) Comparison between
G„and GH, illustrating the saturation of GH near e /h.
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indeed saturates at the e /h plateau.
The above results support the picture that transport in

the (integer) quantum Hall regime takes place through
edge channels, which each have a conductance e /h. Re-
cently the fractional quantum Hall regime was studied
with similar devices. While the filling factor in the bulk
2DEG was kept fixed at v = 1, a Hall conductance
GH 3

e /h was observed, when the fil ling factor in the
adjacent voltage and current probes was reduced. The
experiment implies that a description in terms of (frac-
tional) edge channels is valid in the fractional quantum
Hall regime as well.

Glazman and Jonson have obtained a criterion for
adiabatic transport in high magnetic fields. They
modeled the QPC's by a hard-wall potential boundary.
Scattering between edge channels is induced when the
boundary has a finite radius of curvature R. With an esti-
mate of R =0.2 pm for the radius of curvature of the
2DEG boundary near the entrance and exit of the QPC's,
they obtained a threshold field of B = 1.0—1.5 T, required
to suppress the inter-edge-channel scattering. Although
this value is quite near the experimentally observed
threshold fields, we think that the presence of a potential
barrier in the QPC s will also affect the adiabatic trans-
port, and should also be inc1uded in the calculations.

Recently it was suggested ' that the reduction of the
spatial overlap of the wave functions of adjacent edge
channels can be an important factor in the suppression of
the inter-edge-channel scattering. In high magnetic
fields, the wave functions decay as exp[ —(by/Ib ) ], with

Ay the distance from the center of the wave function and
/b the Inagnetic length. The overlap of the wave func-
tions therefore becomes exponentially small when the
separation of the centers of the wave functions becomes
larger than the magnetic length. From an estimated
width 8'=150 nm for the depletion regions we obtain a
typical value for the electric field E =EF /(e8') = 8 X 104

V/m at the boundaries of the 2DEG. At 8 =2.0 T (the
typical field required for adiabatic transport) the separa-
tion of the wave functions of adjacent edge channels is es-
timated to be A'co, /(eE)=35 nm. At this magnetic field,
/&=17 nm. This shows that the overlap of the wave
functions is indeed reduced when adiabatic transport
occurs.

In this section we have used QPC's to simulate
nonideal contacts, which do not couple equally to all XL
edge channels. We have shown that, because of the lack
of equilibration between the edge channels, these
nonideal contacts give rise to deviations from the regular
QHE, and can even result in an anomalous QHE. Komi-
yama et a/. have studied the deviations from the regu-
lar QHE that occur in samples with nonideal bulk con-
tacts. In their case, a nonequilibrium population of edge
channels is created by the backscattering at a cross gate.
They find that at B=3.8 T the nonequilibrium popula-
tion of the edge channels created by the backscattering at
the cross gate can considerably a8'ect the Hall voltage
that is measured about 50 pm away from the gate.

Alphenaar et a/. have studied the scattering between
edge channels in a double point-contact device similar to
ours, but with a spacing of 80 pm between the QPC's.

They find that in their device almost fu11 equilibration of
the edge channels takes place at 2.8 T, with the notice-
able exception of the upper edge channel. As a result,
they observe an anomalous Hall conductance GH corre-
sponding to XI —1 Landau levels. McEuen et a/. have
explained their experimental results with a "decoupled
network model, " which explicitly takes into account the
special role of the upper Landau level.

Finally we mention that edge channels can also be
selectively populated or detected by using a 2DEG region
in which the electron density is reduced by means of a
gate on top of the heterostructure.

D. Anomalous quantization of the longitudinal resistance
and adiabatic transport in series QPCS

To calculate the longitudinal resistance RL, which is
defined as RI =(p6 p4)/(e—I), with contacts 1 and 5 as
current probes [Fig. 12(a)], we have to calculate the elec-
trochemical potential of bulk contact 4. Again we as-
sume that this bulk contact is ideal, which gives the re-
sult p&=h/(2e)I/ILAIL. In a forward magnetic field the
longitudinal resistance is given by

P6 P4
eI

h

2e XL
(21)

with GH given by Eqs. (17)—(20). When GH and the bulk
2DEG are quantized, RI is also quantized at a value
given by

h 1 1

max(X„,Xs ) XL

In the regular QHE, the formation of a quantized plateau
in GH is accompanied by the vanishing of the longitudi-
nal resistance. This is because backscattering is absent in
these magnetic-field ranges. The edge channels at a
given boundary of the 2DEG are in mutual equilibrium,
and all have the same electrochemical potential p. In this
case the measured voltage is always p/e, independent of
the details of the coupling of the voltage probes. The
anomalous quantization of RL is a consequence of the
nonequilibrium distribution created by QPC A. Because
of the selective detection by QPC 8, it measures a
different electrochemical potential than bulk contact 4,
which measures the average electrochemical potential of
the edge channels.

It should be noted that this mechanism for the anoma-
lous quantization is different from the quantization that is
observed when the longitudinal resistance is measured
with probes located on either side of a region with a re-
duced electron density created by a cross gate or a split
gate. In this case, the quantized longitudinal resistance
arises from the backscattering of one or more edge chan-
nels, which is a result of the potential barrier created by
the gated 2DEG region. This mechanism does not re-
quire the absence of scattering between adjacent edge
channels.

Experimental results are given in Fig. 15, which gives a
comparison between the two-terminal resistance
Rii = I/Gs (Rz and Rs behave almost identically) and
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FIG. 15. Comparison between the two-terminal resistance
R~ of QPC B and the longitudinal resistance RL, showing
anomalously quantized plateaus.
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RL. At 8=2.5 T the transport in the bulk 2DEG is
quantized, with three occupied Landau levels. Plateaus
are observed at Rt =0 [Nt =3 and N~, N~ =3 in Eq.
(22)j, and at RL =

—,', (h/e )=2 11 kA (NL =3 and

N„,N~ =2). Although a precursor of the last plateau can
be seen, it is not at its proper value of —,'(h /e ) =8.6 kQ,

(NL =3, N„,N~=1). This is probably due to the fact
that inter-edge-channel scattering sets in when the QPC's
are near pinchoff. At this magnetic field, no anomalous
QHE is observed at low gate voltages either (see Fig. 13).

Transport through a series configuration of QPC's in
the absence of a magnetic field has been studied experi-
mentally by Wharam et al. ' and Main et al. , and
theoretically by Beenakker and van Houten.
Kouwenhoven et al. studied the transition from the
Ohmic transport regime in the absence of a magnetic field
to the adiabatic transport regime in high magnetic fields.
In this section we focus on the high-field regime where
adiabatic transport in edge channels takes place. We
study the two-terminal conductance Gs measured be-
tween contacts 5 and 6 (the other contacts are not con-
nected). The calculation proceeds along lines similar to
those in Sec. IVC. Again we assume that the bulk con-
tacts fully equilibrate the edge channels. The results are

eIGs=
Ps P6

2e
h

(N„+T„)when N„(Nti, (23)

2e
Gs = (Ns + Ttt )

h
(24)

This result can simply be understood by noting that the

(N+ Tti )(N+ T„)
Gs=

h X+T + — T
when N„=N~=X .

A TB TA B

(25)

Equations (23)—(25) state that Gs is quantized when the
QPC with the lowest conductance is quantized. The
quantized value for Gs is given by

2eGs= min(N„,N~) . (26)

6 = -1.95 V

S
G8 = 2e2lh

-2 -k. 5
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FIG. 16. Comparison between the two-terminal conductance
G~ of single QPC A with the conductance Gz of QPC's A and
8 in series (see text). The magnetic field is 3.3 T. The upper
trace in t,

'a) has been shifted upwards by e'/h for clarity.

bottleneck for the transport is formed by the QPC with
the highest potential barrier, which transmits the least
number of edge channels. In contrast to the anomalous
QHE, there is no difference when the magnetic field is re-
versed. This is because Gs is a two-terminal conduc-
tance, which must be symmetric upon reversal of the
magnetic field: Gs(B) =Gs( B). Note a—lso that
different expressions are obtained for a series
configuration of QPC's without the presence of bulk cop-
tacts in the region between the QPC's. In this case
there is no edge-channel equilibration in the region be-
tween the QPC's.

Figure 16(a) presents an experiment where G~ was
kept constant at 4e /h and Gz and Gs were measured as
a function of Vz. The number of occupied Landau levels
NL =2. In agreement with Eq. (23), G& is almost identi-
cal to G„.In Fig. 16(b), QPC B was fixed at 2e /h. Now
Gs closely follows G~ when G~ (2e /h, and is constant
at 2e /h when Gz &2e /h. These results correspond
with Eqs. (24) and (25), respectively.

K. Inter- and intra-Landau-level scattering
in high magnetic fields

In this section we will include scattering in the model
for electron transport. At low temperatures one expects
elastic scattering to be dominant. This means that the
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appearance of a finite resistance (e.g. , the Shubnikov —de
Haas oscillations) in a 2DEG is not the consequence of
dissipative processes. In this respect there is no funda-
mental difference with the resistance of ballistic point
contacts or the low-temperature residual resistance of
metals: The prime source of resistance is the elastic back-
scattering of the electrons. Afterwards the electron dis-
tribution is equilibrated by inelastic processes, which,
however, do not affect the resistance when the inelastic-
scattering rate is suSciently weak.

We therefore describe the scattering in terms of
transmission probabilities T and reflection probabilities 8
between edge channels. In our model we will distinguish
between inter-Landau-level scattering and intra-Landau-
level scattering.

Inter-Landau-level scattering from one edge channel to
another edge channel belonging to a different Landau lev-
el can occur at the edges of the 2DEG, where the edge
channels of different Landau levels are in close proximity
(see Fig. 10). Possible sources of inter-Landau-level
scattering are impurities, irregularities of the 2DEG
boundary, etc. When the adjacent edge channels have
the same electrochemical potential [Fig. 10(a)], there is
no net scattering between them. The edge channels are in
equilibrium, and the scattering rate from one edge chan-
nel to another is perfectly compensated for by an equal
scattering rate in the opposite direction. Figure 10(b) il-
lustrates that a net inter-Landau-level scattering rate can
occur when two adjacent edge channels have a different
electrochemical potential. As shown in Sec. IVC, such
an inequilibrium occupation of adjacent edge channels
can be created with QPC's. It should be noted here that
the scattering between adjacent edge channels does not
reverse the direction of the current, and therefore does
not produce backscattering.

Intra-Landau-level scattering is the scattering from one
edge channel to another edge channel belonging to the
same Landau level, which flows in an opposite direction.
We will now show that the Shubnikov —de Haas (SdH) os-
cillations, which are the most prominent manifestation of
resistance in a 2DEG, are the result of intra-Landau-level
scattering of electrons in the upper Landau level. Figure
10(a) illustrates the occupied electron states in a 2DEG
for two occupied Landau levels. The Fermi energy re-
sides in between the flat parts of the Landau levels. The
electrons at the Fermi energy in the upper (second) Lan-
dau level flow along the edges of the 2DEG and follow
equipotential lines at the edges of the 2DEG. Because of
the spatial separation of these edge channels, backscatter-
ing is absent and the Hall resistance is quantized. When
the magnetic field is increased, the bottom of the second
Landau level approaches the Fermi energy. It now be-
comes possible for the electrons in the second Landau
level to scatter from one edge to another. This will hap-
pen each time when the bottom of a Landau level crosses
the Fermi energy, and this produces the Shubnikov —de
Haas resistance oscillations. Even though we do not
know the exact nature of the scattering, we can neverthe-
less look upon the SdH oscillations as the backscattering
of the electrons in the upper Landau level, distributed
over the entire length of the 2DEG.

(a)

RsDH'~

lN $$ &/

QPC A

250 pm

V' 4—2
1

QPC A

FIG. 17. (a) Current Aow in the presence of Shubnikov —de
Haas backscattering, illustrating the mechanism for suppression
of the SdH oscillations due to selective population of edge chan-
nels by the QPC. The reflection probability at the QPC is indi-
cated by r. Dashed arrows illustrate the Shubnikov —de Haas
backscattering in region II, indicated by Rs«. (b) Mechanism
for suppression of the SdH oscillations due to selective detection
of edge channels.

We thus see that intra-Landau-level scattering is pri-
marily due to the backscattering of electrons in the upper
Landau level, and will be an oscillating function of the
magnetic field, being extremely weak at a quantum Hall
plateau, and relatively strong at a Shubnikov —de Haas
maximum. The experiments presented in the following
sections will show that the inter-Landau-level scattering
can be extremely weak in high magnetic fields.

We will now show that the magnitude of the SdH resis-
tance depends on the transmission properties of the
QPC's that serve as current or voltage probes. We will
discuss this for the geometry of Fig. 17(a), which gives a
simplified layout of the experimental geometry. A three-
terminal measurement is performed, with current con-
tacts 4 and 5 and voltage contacts 1 and 5. In the calcu-
lations we set p5=0. The direction of the electron flow
corresponds with a reverse magnetic field. In this
geometry we expect to measure a combination of the
resistance of QPC A and the SdH resistance of bulk
2DEG region II (the three-terminal setup reduces the
eFect of backscattering in 2DEG region I). Anticipating
the experimental results, we assume that the only
relevant source of scattering in the 2DEG is backscatter-
ing of electrons in the upper Landau level. We also as-
sume that we can use the edge-channel description for the
upper Landau level, and also that the bulk contacts cou-
ple ideally to all KL edge channels (including the upper
edge channel, which is responsible for the SdH resis-
tance). These assumptions make it possible to describe
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R =N~+r (28)

when the QPC does not transmit the upper edge channel.
The backscattered current is given by Ib„k=(2e /h )p4R,
with p4 the electrochemical potential of the electrons that
enter the QPC from the right [see Fig. 17(a)]. The latter
is given by p~=(h/2e)I/(Nl —R ). The backscattered
current Aows towards contact 1 and builds up a voltage
V, = (h /2e ) /NL I„„k.This gives for the measured resis-
tance

V1
R45, 15

h R
2e2 N (NL —R )

Two interesting conclusions can be drawn from this ex-
pression. First it shows that there is an upper bound on
the magnitude of the SdH resistance. When the QPC
transmits all edge channels completely (N rial=0), the
SdH resistance is limited to R4& i5=(h/2e )I/[NL(NL—1)] (an obvious exception is the case NL = 1, when the
resistance can become infinite). This is an immediate
consequence of the fact that the reAection probability
RsdH for the upper edge channel in region II cannot
exceed 1 ~ Because the number of occupied Landau levels
NI is proportional to I/8, Eq. (29) shows that the resis-
tance at consecutive Shubnikov —de Haas maxima should
be proportional to B, provided that the reAection proba-
bility RsdH at the SdH maxima approaches unity. Al-
though the maxima of the SdH resistance oscillations ob-
served in a 2DEG usually scale with B, rather than B,
we believe that the mechanism for the increase is that the
reAection probability RsdH is not very much difFerent for
consecutive SdH maxima. The SdH resistance simply in-
creases because the number of occupied Landau levels Nl
decreases with increasing field, as expressed in Eq. (29).

Another consequence of Eqs. (27)—(29) is that when
the QPC does not transmit the upper Landau level, the
measured resistance is given by R4~ »=(Nz+r)/
[NL(NI N~ r)]. This re—sistan—ce is due to the com-
plete or partial backscattering of edge channels at the
QPC. The special thing about it is that it is independent
of RsdH. This can be understood simply by the fact that
the electrons in the upper edge channel are already com-
pletely reflected at the QPC, and the possible backscatter-

the total SdH backscattering in region II with a reflection
probability R sdH.

The measured resistance R4»5 is due to the back-
scattering of the electrons. This can happen at the QPC,
where N~ edge channels can be completely reAected, and
one edge channel can be partially reflected, with
re(lection probability r (see Sec. IV B). The second source
of reAection is due to the SdH backscattering in the
2DECi region II. The combined reAection R of both
QPC and 2DEG region II can be obtained with the addi-
tion rule for reflection probabilities:

r+RsdH 2rRsdHR=
1 rR sdH

when the QPC transmits the upper edge channel which is
responsible for the SdH backscattering, and

ing in 2DEG region II becomes irrelevant. We conclude
that the magnitude of the SdH oscillations will be
suppressed when the QPC does not transmit the upper
edge channel. A necessary condition is that the scatter-
ing between the upper edge channel and the low-lying
edge channels (belonging to Landau levels with lower
quantum numbers) is weak.

For forward-directed magnetic fields, the current How
in edge channels in reversed relative to Fig. 17(a). Elec-
trons now approach the QPC from the left with electro-
chemical potential p, . The measured resistance is now
given by

Pi
45, 15

h 1

—R
(30)

with R given by Eqs. (27) or (28). Similar to the situation
in reverse field, we see that the resistance becomes in-
dependent of R sdH when the QPC does not transmit the
upper edge channel. Rewriting Eq. (30) with
R =Nl —(N„+T„)gives

h 1
R 45, 15 (31)

When the upper edge channel is not transmitted by the
QPC, the SdH oscillations are suppressed, and the mea-
sured resistance in forward fields is completely deter-
mined by the two-terminal resistance of the QPC.

We restrict ourselves to the above analysis of a three-
terminal geometry. A similar suppression of the SdH
resistance is expected to occur in the usual four-terminal
geometr~~, when the longitudinal resistance is measured
with two adjacent voltage probes. However, in this case
the possibility of edge-channel mixing by the probes has
to be taken into account (see Sec. IV H).

F. Suppression of the Shubnikov —de Haas oscillations
due to selective population and detection of edge channels

In this section we present experimental results on the
suppression of the SdH oscillations, predicted in the
preceding section. The experimental setup corresponds
with Fig. 17(a). Trace a in Fig. 18 shows the results ob-
tained at V = —0.6 V in a reverse field. It is indicated
which (single-spin) Landau levels are responsible for the
SdH maxima. At V~= —0.6 V, the QPC transmits all
edge channels and a result SdH trace is observed, expect-
ed for this field orientation. Traces b —e have been ob-
tained in forward field. At V = —0.6 V, a superposition
of the SdH oscillations and quantized plateaus is ob-
served. When the gate voltage is reduced further, the po-
sition of the plateaus is determined by the QPC and they
shift to lower fields. The residual structure on top of the
quantized plateaus shows that the SdH oscillations are
suppressed. Note the absence of the NL =3 peak in trace
c, and the suppression of the NL=4, 6, and 8 peaks in
traces d, e, and d, respectively. These results correspond
with Eq. (31), and they not only confirm that the SdH os-
cillations arise primarily from backscattering of the
upper Landau level, but also that the majority of the elec-
trons can flow from QPC A to bulk contact 5, without
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FIG. 18. Suppression of the Shubnikov —de Haas resistance
oscillations due to selective population of edge channels. Curve
a shows regular SdH osci11ations, measured in a reverse field.
Curves b esh—ow the quantized resistance of the QPC in series
with the SdH oscillations of the 2DEG. Curves c —e show
suppressed SdH oscillations. The arrows indicate the quantized
values h/(2e ) and h/(4e ). The curves have been offset for
clarity: c, +2 kQ; d, +4 kQ; e, +6 kA.
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being scattered into the upper edge channel (electrons
that are scattered into the upper Landau level will subse-
quently be scattered back and cause resistance). The re-
sults imply that the scattering between the upper edge
channel and the low-lying edge channels is weak even on
macroscopic length scales. (Contact 5 is about 150 pm
away from QPC A. )

We return to trace a. According to the model descrip-
tion in the preceding section, the SdH maxima cannot
exceed (h/2e )[NL/2(NL/2 —1)] ' when the spin de-
generacy is not resolved and h/e fNL(NI —1)] '

(NL
indicates the number of occupied single-spin Landau lev-
els) when the spin degeneracy is fully resolved. A com-
parison with the experiment gives the following: Nl =3,
expt. : 2.7 kQ, theory (spin resolved): 4.3 kQ; Nl =4,
expt. : 3.8 kQ, theory (spin resolved): 2.15 kQ; NL =6,
expt. : 2.5 kQ, theory (spin resolved): 870 Q. This shows
that the measured resistances exceed the theoretical lim-
its. At present, this discrepancy is not understood. It
may be that there is some residual inter-edge-channel
scattering in region II.

To study the absence of scattering between adjacent
edge channels further, we have performed a second ex-
periment. The configuration is given in Fig. 17(b). We
now expect to observe the suppression of the SdH oscilla-
tions due to the selective detection of edge channels. This
is illustrated for the case of two occupied Landau levels.
We set p4=0. Contact 2 injects electrons into the two
right-going edge channels. As a result of the SdH back-
scattering, the second left-going edge channel acquires a
nonzero electrochemical potential. When QPC &
transmits all edge channels, a finite voltage will be mea-
sured. This voltage will vanish when the QPC does not
couple to the upper edge channel, provided that there is
no scattering between the upper edge channel and the
low-lying edge channels in the region between bulk con-

FIG. 19. Suppression of the Shubnikov —de Haas resistance
oscillations due to selective detection of edge channels. The
SdH oscillations are suppressed in curves b, c, and d.

tact 4 and QPC A.
Experimental results are given in Fig. 19. At

V = —0.6 V, the QPC transmits all edge channels and a
more or less regular SdH trace is observed. The fact that
the NL = 3 and NL = 5 peaks are already partially
suppressed is probably due to the fact that a small poten-
tial barrier is already present at this gate voltage. When
the gate voltage is reduced, the magnitude of the SdH
peaks is substantially reduced. At V = —1.7 V, the
Nl =3 peak has almost disappeared (the residual resis-
tance is only a few ohms), and all other peaks above 1.0 T
are substantially suppressed. When we compare Figs. 18
and 19 we see that the suppression of the NL=3 max-
imum in Fig. 19 occurs at those magnetic fields where the
QPC conductance is equal to, or lower than, 2e /h (Fig.
18), which means that the QPC does not transmit the
third edge channel. This shows that the SdH resistance is
suppressed when the QPC does not transmit the upper
edge channel. The suppression of the SdH oscillations
shows that in the region between bulk contact 4 and the
QPC, only very little scattering occurs between the upper
and the low-lying edge channels. ' ' As discussed in
Sec. IV C, a possible explanation may be that the scatter-
ing is suppressed because of reduced overlap of the wave
functions of the different edge channels. The low-lying
edge channels follow equipotential lines near the edge of
the 2DEG, whereas the upper Landau level (which fol-
lows the lowest equipotential line) may be located away
from the 2DEG boundary, and may possibly follow a per-
colating path through the interior of the 2DEG. Howev-
er, the experiments show that the SdH resistance is not
suppressed at V = —0.6 V, when the QPC is about 250
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nrn wide. This means that the upper edge channel cannot
be further away from the edge than about 250 nm.

We emphasize that the observed suppression of the
SdH oscillations does not necessarily mean that the
scattering between a pair of low-lying edge channels is
weak on macroscopic length scales. In fact, because the
upper edge channel may be located relatively far away
from the 2DEG boundary, it may be possible that the
scattering rate between the upper edge channel and the
low-lying edge channels is different from the scattering
rate between a pair of low-lying edge channels. We can
investigate this experimentally by observing the suppres-
sion of the Nl =8 SdH maximum at B =2.0 T in Fig. 19.
At Vg= —1.3 V, QPC 2 shows a plateau at h/(6e )

(Fig. 18), which means that it only transmits six (single-
spin) edge channels, and does not transmit the edge chan-
nel that is responsible for the SdH backscattering
anymore. As expected, the NL =8 peak in Fig. 19 is par-
tially suppressed. However, when the gate voltage is re-
duced, the SdH peak is suppressed further. At
V~

= —1.7 V, QPC A only transmits four edge channels
(Fig. 18). The fact that the measured resistance depends
on the number of transmitted edge channels implies that
the low-lying edge channels are not in equilibrium, and
are occupied up to different electrochemical potentials.
To be precise, the edge channels with the lowest Landau-
level indices have the lowest electrochemical potential.
Although it is difficult to give a quantitative analysis, this
lack of equilibration between the low-lying edge channels
means that the scattering between the low-lying edge
channels is also weak. Recent experiments ' show that
equilibration lengths between low-lying edge channels are
typically 20-40 pm.

The experiments show that at the SdH maximum at 5.2
T the first two edge channels that arrive at the QPC are
almost completely empty. This does not only mean that
the scattering of electrons into these edge channels is (al-
most) zero in the 2DEG itself, but also that no (partial)
backscattering of these edge channels occurs at contact 4.
This shows that at the SdH maximum due to backscatter-
ing of electrons in the third edge channel, contact 4 still
couples ideally to the first two edge channels.

G. Edge-channel mixing controlled
by quantum point contacts

An important feature of nonlocal transport is that the
voltage measured with a particular voltage probe can be
affected by the presence of other voltage probes. When
QPC's are used as probes, the mechanism is as follows
[see Fig. 20(a)]: Unequally populated edge channels that
enter QPC B will finally reach bulk contact 6 and equili-
brate. The electrochemical potential of these edge chan-
nels will therefore be different when they leave QPC B
This change in edge-channel occupation will affect the
voltage measured with the subsequent QPC A, provided
that this QPC couples selectively to the edge channels.
Figure 20(a) illustrates the situation for the case of three
(single-spin) edge channels (for clarity, the first two edge
channels have been drawn as one). The third edge chan-
nel is populated (@3%0) and the other two are empty
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(
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FIG. 20. (a) Current Aow in edge channels, illustrated for the
case of three occupied single-spin Landau levels. For clarity the
first two edge channels have been drawn as one. (b) Resistance
measured between contacts 5 and 4, with 2 and 4 as current con-
tacts, measured as a function of gate voltage V& for several fixed
values of the gate voltage V&. The vertical dashed lines indicate
where the effective gate voltage ( V~ + V& )/2 is equal to —1.15
V.

(p„p.z=O). We will now calculate how p~ depends on
the transmission properties of both QPC A and B The.
electrochemical potential @4=0 in the calculation (see
Fig. 1). First we note that the third edge channel can be
refiected at the QPC's themselves (with probabilities r„
and r~), and also in the 2DEG regions behind the QPC's,
as a result of the SdH backscattering. This gives a
reAection probability Rs„H, which we assume equal for
both QPC's [the 2DEG regions behind both QPC's have
equal dimensions (see Fig. 1)]. It was shown in Sec. IV E
[Eq. (27)] that both sources of refiection can be combined
to give a total reAection R~ and Rz for the third edge
channel at probes A and 8:

~A /B +R sdH 2~3 /B R sdH
RA/B

Y"~/aR sdH
(32)

First we consider the situation where the third edge chan-
nel is not transmitted through QPC B. This means that
QPC B does not alter the occupation of the edge chan-
nels. (Qnly edge channels 1 and 2 are transmitted; they
are initially empty and will remain so when they leave
QPC B.) The voltage measured with QPC A is now
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p3
e 2+ T&

With Tg = 1 Rg

when QPC A transmits the third edge channel and

V5 =0 (34)

when QPC A does not transmit the third edge channel.
Up to now the situation is not diAerent from the suppres-
sion of the SdH resistance due to the selective detection
of edge channels, discussed in the preceding section.
However, the situation changes when QPC 8 starts
transmitting the third edge channel. The electrochemical
potential of QPC 8 now becomes

TB
p6 — p3 with T~=1—Rz .2+ Tg

(35)

Now the first and second edge channels that leave QPC 8
are not empty anymore, but carry a current
Ij +I&=(e/h)p32T&l(2+TJi). The third edge channel
carries a current I3 = (e lh )@3[T& l(2+ Tii ) + ( 1 —TIi ) ].
To calculate the voltage at QPC A, we distinguish be-
tween two situations, depending on whether the third
edge channel is transmitted by QPC A or not. In the
former case we obtain

p3 2Tg +2' Tg Tg
V5= when T„WO (36)

whereas the latter case gives

p6 p3 TB
V =—=

e e 2+ T~
when Tz =0 .

We see that when QPC 8 (partially) transmits the third
edge channel, V5 does not become zero anymore when
the QPC A couples to the (initially empty) first and
second edge channels only (T~ =0), but saturates at a
constant value, determined by QPC 8 [Eq. (37)]. This
shows that the presence of a voltage probe can create a
finite resistance.

We have performed an experiment [Fig. 20(b)] in
which we have created an unequal occupation of edge
channels by tuning the magnetic field at the
Shubnikov —de Haas maximum at B=5.2 T. Contacts 2
and 4 are current contacts, and 4 and 5 are voltage con-
tacts. The analysis in the preceding section shows that
because of the absence of scattering between edge chan-
nels, the first two edge channels arrive almost empty at
QPC 8, and only the third edge channel is occupied. In
the experiment the transmission through QPC 8 was kept
fixed at several fixed values of Vz, and the transmission
through QPC A was varied by changing V~ [note that
the effective gate voltage that defines QPC A is approxi-
mately given by (Vz+ Vz)/2]. From measurements of
the two-terminal conductance of the QPC's, it was found
that the third edge channel is transmitted at gate voltages
of —1.15 V and higher. The bottom curve in Fig. 20(b)
shows the result when V~ (—1.15 V, and QPC 8 does
not transmit the third edge channel. For V~ ) —1.15 V,

a resistance is measured, and for V~ ( —1.15 V, when
the third edge channel is not transmitted anymore by
QPC A, the resistance vanishes, in agreement with Eqs.
(33) and (34). The situation changes at gate voltages
Vz & —1.15 V. The resistance does not vanish anymore,
but saturates at a constant value when QPC A couples to
the first and second edge channel only (the vertical
dashed lines approximately indicate the threshold values
where the effective gate voltage is —1. 15 V). When the
transmission Tz is increased, the resistance at the plateau
also increases, which corresponds with Eq. (37). These
results are the experimental proof that QPC 8 together
with bulk contact 6 acts as a controllable "edge-channel
mixer. "

Measurements of the two-terminal conductances of the
QPC's show that their conductances are approximately
equal when Vz = Vz. We now make a comparison be-
tween the resistance measured in this case, which corre-
sponds to Eq. (36) with Tz =Tii = T, and the resistance
measured with the same voltage on V& only and a gate
voltage on gate A, such that QPC A does not transmit
the third edge channel [this case is given by Eq. (37)].
The ratio of the two voltages given by Eqs. (36) and (37)
is given by (4—T)/(2+ T).

The experimentally observed ratios are —0.8 V, 1.75;—0.9 V, 2.0; —1.0 V, 1.9; and —1. 1 V, 2.0. It was con-
cluded from the analysis of the SdH oscillations that the
total reAection probabilities A~ and R~ at a SdH max-
imum are near unity, and the corresponding Tz and Tz
are small. At low gate voltages the experimental values
are therefore in excellent agreement with the theoretical
ratio of 2, expected for low transmissions. The agree-
ment between the experiments and our model indicates
that a description of the electron transport in terms of
edge channels remains valid even at a maximum of the
SdH resistance.

We can now make a rough estimate for p3, the electro-
chemical potential of the third edge channel at the en-
trance of QPC B. From the ratio 1.75 at V = —0. 8 V,
we find T =0.2. From the measured resistance at the pla-
teau (160 II) we find, with Eq.(37), p3/(eI)=1. 1 kA.
This has to be compared with the electrochemical poten-
tial di6'erence p between the current contacts 2 and 4,
which is limited by h /(2e ) )p/I ) h /(3e ). This means
that the electrochemical potential of the third edge chan-
nel is a considerable fraction of the total electrochemical
potential across the sample. This means that the scatter-
ing at a SdH maximum is strong.

The SdH scattering rate can be measured directly in a
Corbino geometry. ' Experiments on Corbino disks
show that when the 2DEG is quantized, the resistance
between interior and exterior edges of the 2DEG be-
comes extremely high. This is because of the absence of
Shubnikov —de Haas scattering between the contacts. At
magnetic fields that correspond with a maximum of the
Shubnikov —de Haas scattering rate, which in the case of
a Corbino geometry implies a maximum in the transmis-
sion between the interior and exterior contact, the sheet
resistance of the 2DEG is about 10—100 kA. Compared
to the resistance of a single edge channel (25.8 kQ), this
again confirms that the SdH scattering is strong.
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H. Conclusions and discussion

From our experiments, the following picture for high-
magnetic-field transport emerges: The electron transport
is almost perfectly adiabatic on length scales of the order
of several pm, and may even be (partially) adiabatic on
length scales exceeding 200 pm for the case of the upper
Landau level. The electrons Aow in edge channels, with
only little change of being scattered into other edge chan-
nels. The major scattering processes occur at the
Shubnikov —de Haas maxima, when electrons in the
upper Landau level can be scattered to the opposite edge
of the 2DEG. The transport in the low-lying Landau lev-
els can be described completely in terms of edge channels,
which are located at the boundary of the 2DEG. The ex-
periments seem to indicate that an edge-channel descrip-
tion works for the upper Landau level as well, even at a
Shubnikov —de Haas maximum, where the scattering is
severe. However, at these SdH maxima the electrons in
the upper Landau level are not bound to the edges
anymore, but can move throughout the interior of the
2DEG. A further study is required to explain how the
edge-channel description for the electron transport in the
upper Landau level can be reconciled with the pinning of
the Fermi level to the upper Landau level in the bulk of
the 2DEG. Also, the detailed mechanism of the
Shubnikov —de Haas backscattering, and together with it
the appearance of the quantum Hall plateaus that occur
when the SdH backscattering is absent, remain to be ex-
plained. For a complete picture, the (localized) states in
the bulk 2DEG may have to be taken into account.

Because of the lack of equilibration in the 2DEG itself,
our experiments show that in micrometer scale devices
the accuracy of the QHE depends crucially on the ideal
coupling of the contacts. As shown by Buttiker, at least
two adjacent ideal contacts are required to obtain the
QHE. In larger devices (of the order of 100 pm), the con-
tacts may inhuence the QHE.

A first requirement for ideal contacts is that the elec-
tron density in the 2DEG near the contact must be equal
or higher than the electron density of the bulk 2DEG to
avoid backscattering of one or more edge channels at the
contact. Our experiments have shown that this is gen-
erally the case. Because the mixing of edge channels in
the 2DEG itself is weak, we believe that the actual mix-
ing occurs in a region of the contact where the two-
dimensional electron gas is completely destroyed. Con-
sidering their important role in the transport in high
magnetic fields, a further study of the physics of contacts
is desirable.
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