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Experimental consequences of the uniform resonating-valence-bond state
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Our recent work on the effect of gauge-field fluctuations on the uniform resonating-valence-

bond state is extended to the case of strong coupling, where the Boltzmann description breaks

down. The important Feynman paths are found to be modified in shape so that almost retrace-

able paths dominate. We find features in the resistivity and Hall constant which improve the

agreement with experiments. We also discuss a variety of experimental results such as the anisot-

ropy in magnetic susceptibility and quasielastic Raman scattering, which may provide more infor-

mation on the fluctuating gauge field.

Recently, the importance of the gauge field has been recognized by several authors and the unusual properties of the
high-T, materials are analyzed from this viewpoint. ' The present authors discussed the normal state properties of the
uniform resonating-valence-bond (RVB) state by using the following effective Lagrangian density:

r

1L(r, r) =gf*(r, r) 8, —ao —pF+ ( —i V —a) f (r, r)+b*(r, )r8, —ao —ptt+ ( —i V —a) b(r, r),
0 mF 2m

gf; f; +b;*b; =I . (2)

Therefore, the gauge field represents the fluctuation of the
spin chirality and the local constraint. The latter gives the
composition laws for physical quantities. For example,
the resistivity is given by p =pF+ pB where pF and pB are
the resistivity of the fermions and bosons, respectively.
An external magnetic field H is screened by the gauge

where f and f* are the Grassman variables for the fer-
mions with spin o. while b and b* are the c numbers for
the slave bosons. The spatial components of the gauge
field a come from the phase of the RVB order parameters.
The flux associated with the gauge field h=Vxa is pro-
portional to the spin chirality S~ SzxS3. If a gauge-
charged particle goes around a closed loop, the quantum
amplitude acquires the phase factor exp[i@] where @ is

the flux penetrating the area enclosed by the loop. The
time component ao comes from the Lagrange multiplier
and imposes the following local constraint for each site i:

gFRH+gBRHRH= 3
XF+XB

where RH (Rtt) is the Hall coefficient of the fermions (bo-
sons). The magnetoresistance is given similarly by

g FhpB +gB~pFhp=
4F+X.)'

(4)

When the normal state of the high-T, materials is

identified as the temperature region where the slave bo-
sons are not condensed and obey the Boltzmann distribu-
tion, hatt and ptt

' are much smaller than gF and pF ', so

that p and RH are dominated by those of the bosons. We
are therefore interested in the bosons coupled with the

gauge field described by the following eAective action S:

I

field to satisfy the local current constraint JF+JB =0,
where JF (Jtt) is the diamagnetic current of the fermions
(bosons), which is proportional to the Landau diamagnet-
ic susceptibility gF (hatt). The Hall coefficient RH is given

by

r

~p 1S= dr drb*(r r) 8, —ao —Ittt+ ( —iV —a) b(r r)+Sg, „g, .
m

(5)

qaqp a.(q, to„)ati( —q, —co„),
2

The action for the gauge field Sg.,„g, is derived by integrating out the fermions and bosons as follows.

Sgauge = Z gdq + ~up
q, cu„ q

where gp =gF +gB, and only the transverse part of the

gauge field is taken into account. In Ref. 2, we discussed
this problem in terms of the conventional Boltzmann
transport theory, and the results are ptt = T/(xgd) and

RH =x '. The Boltzmann transport equation, however,

is justified only if the mean free path is greater than the
thermal length X. =(2tr/mT)'I . In fact, the mean free

I

path I is given by

l =VZB

1 t/2

mph

T g
(7)

where v is the thermal velocity, zB is the transport time of
the boson, and we have introduced the dimensionless cou-
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gauge field a, the Debye-Wailer factor D for a given path
r] is

pling constant

g =(meed)
D=(e' "),=exp( —

—,
' (@[r(]'),). (i2)

We obtain (@ [r~]) = g (@;) =N(@; ) where the numberi=1
of independent flux fluctuations N is roughly Aqo, while
(@;) is estimated as

~90
(@;) =qo qdqT/gd =qo T/gd .

The Debye-Wailer factor D in Eq. (12) is estimated as

D=e —»/Xd —
gW j~'=-e

In summary, we have the expression for the boson polar-
ization tztt(r, z) as follows:

ttti(r, z) = X)r~(t)exp ——,
' m„[r'~(t)] dt gA/)—

(i4)Itzti(r, z) = 2)r~(t) exp ——„[i~(t)]'dt+ie[r~]
a

The first term in the exponent of Eq. (14) expresses the
entropy force which makes the particle diftuse, while the
second term is an energy cost proportional to area 2
which the trajectory encloses. For the unperturbed trajec-
tories [Fig. 1(a)], the first term is of the order of 1 and the
area Ao —r(z/m) 't . Therefore, when g«1, the first
term dominates the second term which is of order g when
we put Ao into A with r —k and z —P. In this case, the
trajectories are unperturbed, and we obtain

l t/2

(9)

where the path r~(t) obeys r~(0) =r~(2z) =0 and
r~(z) =r, and

@fr~] =(~ a[r~(t)] r~(t)dt = dAh(r) (io)

is the flux penetrating the area A enclosed by the path
r~(t). In Eq. (9) ( . ), means the average over the
gauge-Geld fluctuations.

From Eq. (6), the fiuctuation of the magnetic field
h =B„a~—t)~a, is described by

tza(r, z) =tztt (r, z)exp —gTmr(0) (is)

where tza (r, z) =z exp( —2mr /z) Thus the . typical
r —(z/m) ', and upon putting this relation into Eq. (1S)
we obtain the mean free time ~g of the boson as

=gT, (i6)
which is in agreement with the results by Boltzmann
transport theory in Eq. (7).

Next we consider the opposite limit g»1. In this case,
loops with areas of order Aq are suppressed by the factor
exp( —g). Only loops with area A of order X /g contrib-
ute. This reduction in area A means that the almost re-
tracing paths give dominant contribution as shown in Fig.
1(b). Even if we restrict to the exactly retraceable path so
that r~(z+t) =r~(z t) for 0 ( t & z, w—e still have
tze(r, z) given by

m
tzti(r, z) =„2)r~(t)exp —2—

&
[r~(t)] dt

where r~ (z) is subject to the condition r~ (0) =0, r~(z) =r.
This is the expression for the propagator Gs (r, z) of a sin-
gle particle with the mass 2m. Therefore, the characteris-
tic length scale for tran(r, z) remains X. In general, we can
choose an arbitrary function f(t ) with f(0) and f(z) = z,
and make a path by r~(z+t) =r~[z —f(t)] for 0(t & z,
which is also retraceable when projected onto the real
space. Therefore, tze(r, z) is different from Gti of the free
boson, but its mean free path remains of order X. Since
the area of the sausage-shaped loop in Fig. 1(b) is of order
X /g, its width is of order X/g.

(h~h —~) = dco q Im
1 —1 T

e~" —
1 iso/q+ gdq

for q & qn with qo= (T/gz) ' . When the linear dimen-
sion of the area A for the integral Eq. (10) is larger than
qo ', the integral is the sum of many independent flux
fiuctuations @[r~]=g;=~@;. Upon averaging over the

0 0

(a)

FIG. 1. Typical Feynman paths for the boson polarization x&
projected onto the two-dimensional plane for (a) weak-coupling
case g« I, and (b) strong-coupling case g)) l. X is the thermal
length.

We estimate gF —(1 —x)/mF and ge —TtsE/Tm where
TtiE =2tzx/m. In the mean-field treatment of the t J-
model, mF =J and m =t, so that g is temperature
dependent and is of order unity near the condensation
temperature. While we expect significant renormalization
of the continuum parameters m and mF, we expect g to be
~ 1 in the normal state so that the applicability of the
Boltzmann theory is questionable. In this paper we exam-
ine the strong-coupling limit g » 1 in order to estimate the
correct behavior in the intermediate coupling regime by
interpolation.

We use the trajectory path integral picture as in Ref. 2.
The boson polarization ze (r, z) is expressed by the in-
tegral over the closed path passing the two points (0,0)
and (r, z), whose projection onto the real space is shown in
Fig. 1.
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Combining the above discussion, we now interpolate the
weak- and strong-coupling limits as follows. The trans-
port mean free time iB of the boson which appears in the
resistivity behaves as 1/gT for g « 1, and remains of order
1/T for g 1. Therefore, the resistivity pg is given by

mT
pg = min(g, 1 ) .

x
The saturation eA'ect in Eq. (17) ensures the T-linear tem-
perature dependence of the resistivity in spite of the
temperature-dependent g as long as g & 1. Experimental-
ly, rq ' estimated from the infrared optical absorption is
about 2 T, which suggests that g ~ 1.

Area A enclosed by a path is A =Ao —X for g«1 and
A =AD/g —X /g for g » 1 which is interpolated as

(i8)1+g
This reduction of area A reduced the response of the bo-
son to the external magnetic field H which always appears
as the fiux p =HA. Therefore, the reduction of the area is
taken into account by reducing H to H, fr =H/(I +g) as a
rough estimate. For example, since o„J is proportional to
H, which should now be replaced by H,p, we obtain

RB(0)
H (i9)1+g x 1+g

Landau's diamagnetic susceptibility gz is also estimated
as follows. The increase in the free energy AF=

& gBH =
2 gB H,g, which gives

(o)
gB

(i+g)' '

where gz = TaF/mT is the susceptibility for nonin-
teracting bosons. Equation (20) can be written as

+BE THE
(o)

m(1+g) T mT

(20)

which means that the Bose-Einstein temperature TqE is
suppressed by the factor (I +g) from the noninteracting
value TzE due to the scattering by the gauge field.

The coupling constant g is inversely proportional to
gd =gF+g~, which is temperature dependent and should
be determined self-consistently. %'e expect gB to cross
over from TaF/mT to (x/m)gq below Tap, where gq is
the boson coherence length. This is because on distance
scale less than gg, the boson behaves like a perfect di-
amagnet. gF is expected to be T independent below a
temperature scale of J. However, if pairing correlation
with the order parameter 5;~ (f; rf~ r f;rf~ r ) is taken—
into account, gF will also grow as (F, where gF is the pair-
ing coherence length below some temperature scale
T&«J. As we argued in Ref. 2, if the suppression of T&
and TqE from their bare values due to gauge-field Auctua-
tions is strong enough, there will be a single transition
where T& and THE coincide with the superconductivity
transition temperature T, . This is because the onset of
(ff) or (b) makes gd infinite which in turn suppresses the
pair-breaking effect of the gauge field. In this case gB and
gF both diverge with a finite ratio gg/gF as T T, and g

scales to weak coupling. The Auctuation phenomena near
T, are then similar to conventional Ginsburg-Landau su-
perconductivity theory.

Now we can discuss the temperature dependence of
various physical quantities in the normal state. In Ref. 2,
we showed that the resistivity is —(xgd) T. While the
leading T dependence is linear in T, the temperature
dependence of gd is probably sufficiently strong to spoil
agreement with experiment. This deficiency is now over-
come by our strong-coupling theory, where p is linear in T
with a coefficient which is T independent even as g(T)
changes from strong coupling to of order unity. Near T„
p approaches zero as in usual superconductors. The Hall
coefficient RH is obtained from Eqs. (3) and (19),

R 1 JF +R
mB +gF +gB gF +gB

(2i)

The fermion Hall coefficient RH depends on the details of
the band structure, but its magnitude is expected to be
smaller than x ' so that we may approximate RH with
only the first term in Eq. (21),

1 ZFRH=-
m8 +gF+gB

For T» T„gg «gF and we obtain RH = x '/(1+g), in
contrast with the weak-coupling theory where RH ~ x
for large T. Experimentally, the high temperature limit
of RH is reduced from x ' by a factor of 2 to 4 depending
on the material, in agreement with our expectation of in-
termediate coupling g. As T is reduced towards T„
gF +gB && m ' and RH approaches a finite value
x '(I+@~/gF) '. In Ref. 2 we assumed that gF is T in-
dependent, which lead RH to decrease with decreasing T,
in disagreement with experiment. Including the T depen-
dence of gF due to pairing fiuctuations may reverse this
trend, but we have not attempted any concrete calcula-
tion.

As we can see the T dependence of g~ and gF plays a
crucial role in our theory and it will be desirable to mea-
sure them directly from experiments. So now we discuss a
variety of experiments in addition to RH where different
combinations of gF and gB appear. The first one is the
contribution to the physical diamagnetic susceptibility g$
which is obtained using arguments similar to the Ioffe-
Larkin resistivity formula

ph gFgB
gd

ZF+XB

For T, «T« J, gF»g~, and gg" =@8(T). Near T„gg
diverges as in the usual Auctuation diamagnetism in su-
perconductors. Experimentally, gd" can be extracted from
susceptibility measurements by noting that gd is aniso-
tropic and depends only on the field component perpendic-
ular to the plane whereas the usual spin contribution is
isotropic. A temperature-dependent anisotropic com-
ponent of g has been observed experimentally, ' which
should be analyzed using Eq. (22) to provide some infor-
mation about gg(T) and gF(T).

The magnetoresistance p given in Eq. (4) is also
suppressed by the strong-coupling effect. The boson mag-
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netoresistance hptt is suppressed by the factor (1+g)
from its weak-coupling value, because gapa is proportional
to H . The coefficient of ApF, i.e., hatt/d is also
suppressed by the factor (1+g) . Then, we expect an
order-of-magnitude smaller magnetoresistance than is ex-
pected from the Boltzmann transport theory for T))T,.
As T T„however, the suppression becomes less and
less and finally hp is governed by the contribution from
the fluctuation effect of the superconductivity.

In the above discussion, we concentrate on the coupling
between bosons and gauge field, because many transport
properties are governed mainly by the boson system at
least for T» T, . The thermal conductivity K, however, is
dominated by that of the fermion system KF. Unlike the
boson case, the coupling between fermions and gauge field
can be treated by the Boltzmann transport theory, but the
inelasticity of the scattering becomes more important be-
cause the energy exchange is of the order of T. Ioffe and
Kotliar pointed out that in contrast to the current relaxa-
tion even the small momentum-transfer scattering is
effective to the energy relaxation. This effect reduces the
thermal conductivity from that predicted by the
Wiedemann-Franz law (tr /3)(k/e) oFT for the fermion
system leading to Ka: T' . It is worth noting that the
prefactor is

—2/3 T I/3
F 'Xgd

which may provide information on the T dependence of
gd.

We next point out that the quasielastic component of
the Raman scattering provides a direct measurement of
gd. Recently, Shastry and Shraiman" developed a theory
of Raman scattering in the Mott-Hubbard system, and

I(co) ee(It, „h q „)= 2+( 3)2 '

where q is the momentum difference of the incident and
scattered light, and is of the order of 10 cm '. The
characteristic Stokes shift m is about gdq, which is es-
timated to be around 2X10 s ', too small to be resolved
experimentally. It may be possible to measure the fre-
quency integrated scattered light, in which case we predict

T
dco I(co) tx:

gd
(24)

From Eq. (24), deviation from the T-linear behavior can
give the temperature dependence of gd.

Finally, we mention that the fluctuating chirality pro-
duces fluctuating transverse current in the layers. The re-
sulting magnetic fields can relax the nuclear spin with in-
teresting temperature dependence related to gF and gtt. '

In summary, we have discussed the temperature depen-
dence of various physical quantities taking into account
the strong-coupling effect of the bosons and gauge field.
The experiments thus far seem to be consistent with the
predictions, but further experimental studies are desired
to determine gF and gtt.

We acknowledge support by the NSF through the Ma-
terials Research Laboratory under Grant No. DMR 87-
19217.

pointed out that in the B t g and B2g geometry, the Raman
tensor includes the spin chirality operator. Then, we pre-
dict from Eq. (11)the scattering intensity to be
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