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The quantized sine-Gordon system is utilized to examine collective charge transport by moving
charge-density waves (CDW's). The presence of an energy gap, or pinning gap, in the collective ex-

citation (quantum soliton) spectrum of the quantized system implies that creation of quantum
soliton-antisoliton pairs by Zener tunneling is required in order to induce CDW depinning by an ap-
plied electric field, thus providing a justification for the semiconductor model originally proposed by
Bardeen. It is argued that the three-dimensional coherence of a real CDW prevents thermal excita-
tions across the pinning gap, but allows Zener tunneling to take place. Finally, the striking similari-
ties between the current-voltage characteristics and coherent oscillations observed in CDW s and
the phenomena of Coulomb blockade and time-correlated tunneling events observed in series arrays
of small tunnel junctions are discussed.

I. INTRODUCTION

The remarkable non-Ohmic transport properties of
inorganic linear chain compounds, due to collective
charge-density-wave (CDW) depinning, ' has eluded
complete understanding because of unresolved fundamen-
tal issues. One extremely important issue is whether a
completely classical description suSces to fully charac-
terize CDW depinning and dynamics, or whether an
intrinsically quantum-mechanical description is re-
quired, ' as suggested by a number of experiments. "
Another question is whether CDW pinning is more accu-
rately described as weak pinning, ' where Auctuations in
the impurity concentration pin the CDW phase over dis-
tances that are long compared to the amplitude coher-
ence length, as indicated by recent experiments on
NbSe3, ' or strong pinning, ' where a single impurity is
sufhcient to pin the CDW phase at a given point.

In this paper we plan to address the first issue by exarn-
inging the well-known relationship between the quantum
sine-Gordon system and the massive Thirring model,
which describes a (1+1)-dimensional system of interact-
ing fermions. We will show that, for this idealized case
chosen for its mathematical tractability, the existence of
an energy gap, or pinning gap, in the spectrum of
charged collective excitations (quantum solitons) implies
that the creation of quantum soliton-antisoliton pairs by
Zener tunneling is required in order to induce electrical
charge transport. It will be shown that the quantum soli-
tons of the CDW system are essentially dressed electrons
that incorporate the strong coupling of the bare electrons
to the CDW lattice distortion, and that CDW pinning
cannot be simply treated as a perturbation, as implied by
purely classical models, but must be included to zero or-
der in the model Hamiltonian. We will then present
heuristic arguments that the three-dimensional phase

coherence of a real CDW prevents thermal excitations
across the pinning gap, but still allows Zener tunneling to
take place. However, we believe that a complete,
quantum-mechanical treatment of the dynamics of a
three-dimensional CDW system is an extremely impor-
tant topic of future theoretical work. Finally, we will dis-
cuss a possible analogy between CDW tunneling and
time-correlated tunneling events in series arrays of small
tunnel junctions exhibiting Coulomb blockade.

II. QUANTIZATION OF THE PHASE HAMILTONIAN

The theoretical description adopted here will be based
upon the formulation originally proposed by Rice,
Bishop, Krumhansl, and Trullinger, ' and further
developed by Maki, Kurihara and Furuya, and Tuck-
er and Miller. The Hamiltonian for the CDW sine-
Gordon system corresponding to a single chain may be
written as

H = f dx II (x)+ ,'Deva~(x)+D—co [1—cosP(x)]1

(2.1)

Here the phase P(x, t) is measured relative to the undis-
torted CDW, II(x, t)=DRY/Bt is the canonical momen-
tum density, co=(m/M" )' vF is the phason velocity,
and co is the pinning frequency. The parameter
D = (R/4~vF )(M*/m) corresponds to a single chain and
counts only one spin. We shall treat the two spin com-
ponents as independent throughout the remainder of this
discussion. The Frohlich mass M*=MF+rn rejects the
fact that the electrons are tightly coupled to the macros-
copically occupied phonons of the lattice distortion in a
CDW system. The charge density p(x), averaged over
several CDW wavelengths, and current density j(x) are
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given, respectively, by

p(x) = e ]3

2]r Bx

j(x)= II(x) .
2nD

(2.2)

(2.3)

all other commutators being zero.
It is convenient to separate the Hamiltonian into two

contributions H =Ho+H&, where Ho is chosen to be di-
agonalizable in the Bosonic representation:

:~0:= X Beak(b, kb, k+bz kb2 k)e ', (2.10)
k &0

A uniform applied electric field E couples to the charge
density p(x), resulting in an additional contribution to
the Hamiltonian of the form H'=Exp(x)
= (eEx /2m. )]}p/Bx. One can derive an equation of
motion for the phase operator simply by employing the
Heisenberg equation BII/Bt =Dr]p/dt =(1/i')[II, H],
with the result

and the colons:: denote normal ordering with respect to
the boson operators. We will consider two diA'erent
choices for Ho. (i) the unpinned Hamiltonian, and (ii) the
unpinned Hamiltonian plus the ]I) contribution to the
(1 —cosP) pinning term. In either case, the phase opera-
tor commutes with HI, so that

e—co +co sing= E. —
t2 0 &zq

(2.4) [(t(x),H0] .
Bt iA

(2.11)

ir e +(x —x')

[y(x),y(x') ]= [11(x),ri(x )]=0,

(2.5)

(2.6)

where the parameter e represents the CDW amplitude
coherence length. The term on the right-hand side of
(2.5) reduces to 5(x —x') in the limit as e~0. The self-
consistency of the definition of the momentum operator
can be checked with use of the Heisenberg equation

D =D [P(x),H] = f dx'II(x')—BP 1 L, , 1 e
Bt i'It 0 'ir e +(x —x')

(2.7)

which reduces to DBQ/Bt = ri(x) in the limit e~0.
Equations (2.5) and (2.7) thus imply that our quantization
procedure will be valid over length scales that are long
compared to e.

Following Takada and Misawa, the phase operator is
expressed in terms of boson creation and annihilation
operators:

4(x)=i g fk[(b],k+b2, —k}e
k&0

(b +bt ) ikx] —ek/2 (2.8)

where

Ibi, k b],k]=1=[be,—k b2, -kl (2.9)

The above equation is formally identical to the classical
equation of motion in the absence of dissipation, as is the
case with any operator equation of motion derived within
the Heisenberg picture. Nevertheless, it is not possible to
solve (2.4) simply by treating the phase as a c number, be-
cause the phase operator does not commute with itself for
unequal times, i.e., [it](t), it](t')]%0 for tWt' This is. one
reason why it is difficult, in general, to solve quantum-
mechanical problems simply by solving the equations of
motion for the operators.

The Hamiltonian of (2.1) does not include amplitude
Auctuations in the CDW order parameter, and is thus
valid only for phase variations that are small within an
amplitude coherence length. We therefore employ the
following commutation relations for the quantized phase
and momentum operators:

( b b t )e ikx]e —ek/2 (2.12)

The values of the coefficients fk which make Ho diagonal
are found to be given by

fk =Qfi/2DLcok . (2.13)

III. BOSONIC AND FERMIONIC REPRESENTATIONS

The quantum sine-Gordon system is well known to be
equivalent to the massive Thirring model, which de-
scribes a system of interacting fermions. For the case of
a CDW these fermions represent dressed electrons incor-
porating the motion of the lattice distortion. In the bo-
sonic representation, the diagonal form of the unpinned
Hamiltonian, obtained from the first two terms of (2.1},is
given by (2.10). The excitation energies are ficok =ficok,
representing the energies of phase excitations, or
phasons, originally proposed by Overhauser, and subse-
quently formulated by Lee, Rice, and Anderson. In
this case the phasons are the Goldstone bosons of the sys-
tem. Substituting cok =cok into (2.13) yields

fk =(m/M*)'/ &2~/Lk.
The equivalence between the bosonic and fermionic

representations for a one-dimensional electron gas was
originally demonstrated by Mattis and Lieb. An expli-
cit Bose-Fermi transformation was first developed by
Mattis and by Luther and Peschel. Their work
caused the genesis of the field of "g-ology, " which de-
scribes the various scattering processes (forward, back-
ward, umklapp, etc. ) in a one-dimensional electron gas.
The Bose-Fermi transformation was subsequently applied
in the context of field theory by Mandelstam.

Here we follow the procedure outlined by Takada and
Misawa in order to convert from the bosonic to the fer-
mionic representation. The calculations are rather
lengthy, and are treated in greater detail in Appendix A.
It is found that the unpinned Hamiltonian can be ex-
pressed in the diagonal form

Combining (2.7), (2.8) and (2.11) yields an expression for
the momentum operator:

11«)=—g fk[(b], k b2, —k }e
k &0
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'HO' rf ~cok (a 1k 1k a 2k 2k )e
—~lkl

k

(3.1) We will now include the P contribution to the pinning
energy by defining

where g' signifies that the k =0 term is to be excluded
from the summation and the fermion operators satisfy
the anticommutation rules

[a.k a. k ] =~..~kk

[a„k,a„.k ] = [a„„,a„,„.j =0 .
(3.2)

In the treatment by Takada and Misawa, a, k and azk
were found to commute rather than anticommute, but it
is straightforward to construct anticommuting operators
with use of an appropriate transformation, as discussed in
Appendix D. The physical interpretation of the fermion
operators is clear in the limit m /M*~ l. In this case the
unpinned Hamiltonian becomes

1
Ho = dx II (x)+ i Dcog„(x)+ ,'D—co~/ (x)

0 2D

(3.8)

:Ho:= g' %co(2k —
k *)(a,ka, k a ika—ik )e

k

(3.9)

This Hamiltonian is again diagonalizable in both the bo-
sonic and fermionic representations. In the bosonic rep-
resentation, the Hamiltonian is given by (2.10), where the
excitation energies ficok =fi(co +cok )' and the terms

fk in (2.13) are modified by pinning frequency co . In the
fermionic representation, the Hamiltonian H0 is found in
Appendix A to be given by

:Ho.(M* m) = g'fiu~k(a, ka, k a ikaik—)e ' " . (3.3)
k

This is simply the Hamiltonian for a free-electron gas,
where the "1"and "2"branches refer to electron momen-
tum states k+kz on the right and left sides of the Fermi
sea, respectively, and the energies are measured with
respect to the Fermi energy. Unfortunately, no such sim-

ple correspondence can be established between the fer-
mian operators and the bare electrons for M* ))m in the
CDW system. Nevertheless, it is possible to obtain physi-
cal insight by examining the charge, current, and momen-
tum carried by each fermion. The total charge Q, current
I, and momentum P of the system are obtained by in-

tegrating over the sample length, and, in the fermionic
representation, are found to be given, respectively, by

L
p«)dx =e* X'(a ikalk+azka2k)e '"' (3 4)

0 k

LI = j (x)dx =e*co g'(a, ka, k
—azkaik)e

0 k

(3.5)

~kF rf ( 1ka 1k a2ka2k )e -alki

k

(3.6)

where e*=(m/M*)'~ e. Thus the fermions are particles
of efFective charge e'=( m/M)'~ e, velocity co, mass
M'=( M* /m)'~ m, and momentum +fikz The ground.

state of (3.1) or (3.3) is obtained by filling up all the
negative-energy eigenstates, corresponding to a filled Fer-
mi (or Dirac) sea. A Frohlich state moving to the right
can be constructed simply by removing 2, +k particles
and adding 1, +k particles. The energy of the moving
ground state is then found to be —,'XA q /2M', where

X =k~L/m is the total number of particles and q is the
displacement of the Fermi sea, as expected. In the limit
e~0, the boson (phason) operators b„k are found to be
related to the fermion operators a„k by an expression
originally derived by Mattis and Lieb:

1/2
2m

nk p„(k), (3.7)

where p„(k)= ga„qa„~+k is the fermion density opera-
q

tor.

where k*=sgn(k)(k +ko)'~ and ko=co /co. The ex-
pressions for Q, I, and P essentially remain unaltered
from the unpinned case considered earlier when k ))k0.
When k (ko, the expressions (3.4) —(3.6) become modified

by the presence of higher-order scattering terms, which
may contribute to the dissipation discussed in Sec. IV. In
addition, the effective group velocity and current per par-
ticle are likely to be smaller than c0 and e*c0, respective-
ly, for k & k, because of the reduced slope in the energy
dispersion relation in this region.

Thus far we have considered the bosonic and fermionic
representations of the unpinned Hamiltonian, and have
also considered the case where the P contribution to the
pinning energy is included to zero order in the model
Hamiltonian. When the full sinusoidal pinning potential
is included, the low-lying excitation energies in the ba-
sonic representation will only be slightly altered from
fico, provided the number of bosons (phasons) is
sufficiently small that their total energy n fico

((E&=(2/m')(M*/m)' fico& is substantially smaller
than the soliton energy. When the total phason energy is
comparable to the soliton energy, n Ace —E&, the
phason-phason interactions, as represented by the
higher-order terms in the series expansion of the pinning
potential, become substantial, causing shifts in the
phason energies and possibly leading to finite lifetimes.

The situation for the fermionic spectrum is complicat-
ed by the fact that coefficients containing (2 —k*/k)'~
appear to all orders in the expansion of [ 1 —cosP ] in
terms of the fermion operators. These coefficients be-
come large for k ( (m /M" )'~ ko, so that the fermion ex-
pansion no longer forms a perturbatively converging
series. However, it is possible to gain insight about the
excitation spectrum by examining the model pinning po-
tential V(P) =Dco„[1—cos[(M*/m)'~ P] [, hereafter re-
ferred to as (m/M*)' commensurability. In this case
the full fermionic (massive Thirring) Hamiltonian can be
diagonalized exactly, as outlined in Appendix C, with the
result that the fermion energies are given by
E(k)=+[6, +(ficok) ]'~, where 5 =irDcoze In the.
ground state, all the negative-energy states are filled, and
the minimum excitation energy is EG =26 . The physi-
cal interpretation of this "pinning energy gap" is clear in
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E =A, (3.10)

the limit M*/m ~1 of an electron gas. In this case, the
gap results from mixing of the "1 branch" electrons of
wave vector kF+k near the right-hand Fermi surface
with the "2 branch" electrons near the left-hand Fermi
surface. The implication is that the 2k+ component of
the pinning potential resulting from impurities or com-
mensurability cannot be treated as a perturbation, but
must be included to zero order in the model Hamiltonian.

When M*/m )&1 and the potential is taken to be
Dco~[1 —cosP], the gap energy is expected to be compa-
rable to twice the energy of a quantum soliton, which has
been calculated using nonperturbative techniques by
Dashen, Hasslacher, and Neveau and others. ' The
energy of a quantum soliton of charge e per chain per
spin is found to be equal to the classical soliton energy
E&=(2/ir)(M*/m )'~ fico&, within corrections of order
( m /M* )

' ~ E&, provided soliton-soliton and soliton-
antisoliton interactions are neglected. In Sec. II we
found that the effective charge of a dressed fermion,
which fully incorporates interactions and corresponds to
the unpinned Hamiltonian, is given by e*=(m /M*)' e,
and this effective charge may be applicable to the pinned
system, provided excitations are created in pairs so that
there are no topological "kinks" existing in the absence
of "antikinks. " The gap for the interacting system may
therefore be scaled down by about (m/M )'~ from
twice the classical soliton energy, resulting in the expres-
sion

1/4

ing term, due to scattering, which is governed by the
mean relaxation time of the system. When a 1,—k parti-
cle reaches the Fermi surface, it either Zener tunnels
through the pinning energy gap EG into the 1,k states
with probability P (E), or is Bragg rejected into the 2,k
states with probability 1 P(—E). The Zener tunneling
probability is given by

P(E)=e (4.1)

where

Eo=
~Re *co

5/4
4A Scop

(4.2)

=e*EP(E) .
dt (4.3)

When integrated over an effective relaxation time ~, the
steady-state displacement will be q =e*E~/A. The CDW
contribution to the current is obtained by setting
JcDw =ne *Ud =ne *Aq /M', with the result

Note that if we scale the soliton energy and charge by(m/M*)', as indicated in Sec. III, then our expression
for Eo will differ from Bardeen's by a factor
A(M*/m )'

The equation of motion for the displacement q of the
Fermi sea of dressed fermions with respect to their
ground-state configuration is given by, in the absence of
dissipation and polarization effects,

0
—E /F.

JCDw =0 bEe (4.4)
where A. is a dimensionless parameter of order unity. The
energies of the dressed fermions would then be given by

E(k) =+[(ficok) +(EG/2) ]'~ (3.1 1)

It should be pointed out, however, that this issue of
whether the appropriate charge is the "dressed" chargee' or the topological charge e is still an open question.

IV. ZENER TUNNELING IN AN ELECTRIC FIELD

In the model presented here the current carriers in the
CDW system are considered to be dressed electrons
(quantum solitons) each carrying an elfective charge
e*=(m/M*)' e, velocity co=(m/M*)' vz, momen-
tum A'k~, and energy +[(Rcok) +(EG!2) ]'~ . In the
absence of any external field, the fermions will be in the
ground-state configuration in which all the 1,—k and 2, k
states are occupied while the 1,k and the 2, —k states are
empty (k )0). Excitations above this ground-state
configuration are represented by particle-hole (quantum
soliton-antisoliton) pairs above and below the pinning
gap, respectively. These are collective excitations of the
CDW system, which are distinct from the single-particle
excitations above the Peierls gap. Thermal excitation of
these collective entities is suppressed by the three-
dimensional coherence resulting from interchain coupling
and delocalization of the dressed electrons in the trans-
verse direction, as discussed in Sec. V. When a uniform
electric field E is applied along the length of the sample,
the particles are accelerated in k a space against a damp-

where the limiting high-field CDW conductivity is given
by

ne ~0 M* (4.5)

A quantum-mechanical treatment of the forced sine-
Gordon theory has recently been used by Widom and
Srivastava to derive an expression for the transition rate
for the creation of soliton-antisoliton pairs by Zener tun-
neling. In their treatment, using the boson-fermion
(1+1)-dimensional map for one particular value of the
coupling strength, they employed Swinger's proper time
method to calculate the V-I characteristic for a model
long, thin Josephson junction. Each soliton in a long
Josephson junction is a Auxon, carrying one magnetic
Aux quantum, and the relationship between voltage and
current is inverted as compared to the CDW system.

It has been proposed that the effective mean free pathl—:2UF~ for the CDW system ought to be comparable to
the distance over which the phase is correlated -co/co,
leading to a relaxation frequency r '-(M*/m)' co~
directly proportional to the pinning frequency. However,
millimeter wave measurements on NbSe3 (Ref. 39) and
TaS3 (Ref. 40) demonstrate that the relaxation frequency
is essentially independent of impurity concentration and
pinning frequency, suggesting that other mechanisms be-
sides impurity scattering are dominant. Furthermore,
the Arrhenius behavior of the CDW current and dielec-
tric relaxation frequency observed in K03MoO3 (blue
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bronze), ' (TaSe4)21, and orthorhombic TaS3 (Ref. 43)
at low temperatures provides compelling evidence that
screening by normal carriers plays a key role in the dissi-
pation at relatively low fields and frequencies in these ma-
terials. However, at high electric fields, dramatic evi-
dence for dissipationless CDW conduction has been ob-
served in blue bronze at low temperatures (-4 K),
where the differential conductance dI/d V has been found
to diverge at a well-defined threshold voltage. In this
case, the entire CDW appears to be moving with little or
no dissipation, where screening by normal carriers is no
longer involved.

V. EFFECT OF THREE-DIMENSIONAL COHERENCE

One of the main objections to the tunneling hypothesis
is the fact that the pinning gap energy EG —10 k&T
must be substantially smaller than the thermal energy
kz T, in order for the predicted values of E0 to agree with
experiment at temperatures T-100 K at which non-
Ohmic CDW transport is typically observed. It must be
emphasized, however, that EG refers to the gap energy
per chain. In reasonable quality crystals, the CDW
motion is coherent across X—10 parallel chains, as
pointed out by Bardeen. ' The three-dimensional coher-
ence resulting from electron delocalization and interchain
coupling is, in fact, an important prerequisite for the oc-
currence of a Peierls transition. If the CDW phase is as-
sumed to be correlated across X parallel chains, then the
energy required to thermally excite a collective soliton-
antisoliton pair will be NEG, which is substantially larger
than k~T, so that the probability for thermal excitation
exp( NEz/kz T) will —be extremely small. On the other
hand, the Zener tunneling probability will be unaffected
by this rescaling, as can be seen by examining the various
quantities which go into (4.2). If we treat the tunneling
events involving N parallel chains (or, in k space, N trans-
verse wave vectors ki) within a transverse coherence dis-
tance as being statistically correlated, then the effective
charge e*=Ne" and energy E(k)=NE(k) will each be
scaled up accordingly. The implication of this rescaling
is that both the effective energy gap EG =KEG and slope
Aco=NAc0 of the energy dispersion relation in the large-
k limit will be scaled up by N. By inserting these quanti-
ties into (4.2) the factors of N are found to cancel out,
yielding the same value of E0 as before.

The heuristic argument presented above is undoubted-
ly overly simplistic, and substantial further theoretical
work is clearly needed in order to address this extraordi-
narily dificult, and important issue of three-dimensional
CDW coherence. Alternative heuristic arguments about
the three-dimensional coherence have been made by Bar-
deen et al. and by Tucker and Miller, utilizing an
analogy to Josephson tunneling. The tunneling of paired
electrons between two superconductors constitutes an im-
portant precedent for coherent tunneling of individual
entities within a many-body ground state. In this case
the relevant tunneling probability amplitude is that of a
single Cooper pair, despite the fact that there is only one
thermal degree of freedom for the entire system of X
pairs. Furthermore, recent theoretical work ' on other

systems where evidence for tunneling has been observed,
including phase slip at low temperatures in one-
dimensional superconducting wires and quantum eva-
poration of liquid helium, have found that semiclassical
calculations involving a single "saddle point" for the
macroscopic system yield theoretical WKB tunneling
probabilities which are far too low in these systems, indi-
cating that the semiclassical WKB approach, which ig-
nores the individual microscopic quantum degrees of
freedom, is inadequate.

Finally, it should be pointed out that there is compel-
ling evidence suggesting that a quantum mechanism may
play an important role in magnetic relaxation by Aux
creep in high T„and other type-II superconductors.
Several experiments at millikelvin temperatures have
demonstrated that the magnetic relaxation rate dM/d lnt
extrapolates to a large finite value as the temperature ap-
proaches zero in Y-Ba-Cu-O, ternary molybdenum
sulfide crystals, ' and UPt3 (Ref. 52)—a result that con-
tradicts the prediction dM/d lnt —kii T/UD of the
Anderson-Kim model of thermally activated Aux creep
and its variants. If a quantum mechanism does indeed
play an important role in these systems, then it is very
likely that the internal quantum degrees of freedom are
crucial in allowing tunneling to take place. Taken to-
gether with the evidence" ' for a quantum mechanism
of CDW depinning, these results suggest that the concept
of coherent, or collective, tunneling of particles with indi-
vidual quantum degrees of freedom within a condensate
ought to be generalized beyond Josephson tunneling of
paired electrons between two superconductors. One
might further speculate on whether coherent quantum
effects play an important role in the cooperative behavior
of biological macromolecules.

VI. ANALOGY BETWEEN CDW TUNNELING
AND COULOMB BLOCKADE

An additional effect of three-dimensional coherence is
that the CDW order parameter will have a well-defined
expectation value n,'~ (e'~) proportional to the square
root of the density n, of condensed CDW electrons. One
might therefore be tempted to interpret many aspects of
CDW dynamics, such as the observed threshold field and
coherent oscillations, on a semiclassical basis. Note,
however, that, in general, (e'~)We'(~, and we believe
that this fact precludes simply rewriting Eq. (2.4) as a
classical equation of motion for the expectation value of
the phase (P). We believe that important clues to the
origin of the sharp threshold field, coherent oscillations,
"narrow-band noise, " and mode locking in CDW's can be
found by examining a striking similarity of these phe-
nomena to the remarkable phenomena of Coulomb
blockade and time-correlated tunneling events in small
tunnel junctions. "' In a pioneering paper, Fulton and
Dolan confirmed experimentally the existence of charg-
ing effects in small circuits of planar tunnel junctions. In
linear arrays of small tunnel junctions charge is
transferred by mutually repulsive charge solitons, re-
sulting in time-correlated tunneling events with frequen-
cy I/e. Delsing et al. demonstrated this effect by su-
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e(0) A

L
(6.1)

where e(0) —107eo is the dielectric constant at zero fre-
quency. Assuming that X tunnel events are statistically
correlated, then the threshold voltage across this region
can be estimated by using the analogy to Coulomb
blockade:

nc Xe'
VT =ETL

n

so that

nc Xe'L
n 2e(0) A

(6.2)

1 nc
e'(0)E = — n e',T 2 ch (6.3)

where n, /n is the fraction of condensed electrons, n, h is
the number of spin chains per unit area, and e' is an
effective charge.

The experimental situation is ambiguous as to whether
the relevant charge e' should be the topological charge e

perimposing onto the dc bias an ac signal of frequency f,
resulting in partial mode locking at current levels I =ef
and 2ef. More recently, complete mode locking has been
observed in a frequency-locked "turnstile device" for sin-
gle electrons by Geerligs et al.

An ideal CDW with a complete Peierls gap at low tem-
peratures exhibits a similar scaling of CDW current with
frequency of the form ICDw =2¹fD,where X is the total
number of parallel CDW chains, fD represents the drift,
or "washboard" (we believe this term is a misnomer) fre-
quency, and the factor of 2 counts both spins. Moreover,
in NbSe3 samples of high purity, the bias voltage-
dependent differential resistance d V/dI has a sharp
discontinuity at the threshold voltage, ' and the high-
current asymptote of the CDW current-voltage (I V)-
characteristic extrapolates through the threshold voltage
( VT) rather than through the origin, which is nearly the
"ideal" behavior expected for Coulomb blockade in a
small tunnel junction at low temperatures. It should be
further noted that both the rigid overdamped oscillator
model ' and the classical deformable model of CDW
depinning predict that the asymptote of the I-V curve
should extrapolate through the origin.

In order to make the analogy between CDW tunneling
and Coulomb blockade more concrete, one must examine
the origin of the threshold voltage in each case. In the
case of a small tunnel junction, Coulomb blockade results
from the fact that an electron tunneling through the junc-
tion with a bias voltage Vb;„must gain enough energy
eVb;„ to overcome the "charging" energy e /2C, result-
ing in a threshold voltage V, =e/2C and offset voltage in
the current-voltage characteristic V,&=+e /2C. For the
case of charge-density waves, the fact that pinning results
largely from randomly distributed impurities implies that
the CDW phase is correlated only over a Fukuyama-
Lee-Rice domain length L, which is comparable to the
length co/co of a classical soliton. Suppose we consider
a CDW "tunnel junction" consisting of X parallel chains
in a domain of length L and cross-sectional area A. The
capacitance will be given by

or the "dressed" charge e*. A reversible threshold polar-
ization e(0)ET of about 0.5e per conducting chain has
been found emperically by Wu, Janossy, and Griiner in
TaS3 and alloys with Nb. About the same value has been
found in other CDW compounds ' measured at tempera-
tures sufficiently high for complete Coulomb screening by
normal carriers, and a similar relation has been discussed
theoretically by Bardeen. However, Mihaly and co-
workers find an effective polarization per chain of
about 0.16—0.24e in blue bronze, TaS3, and (TaSe4)zI at
low temperatures, where the normal carriers are almost
completely frozen out.

In extremely pure samples, the relevant length L may
actually be the distance between contacts. The CDW in
the regions under the contacts will be stationary, so these
regions may be considered as CDW electrodes on the left-
and right-hand sides of a "tunnel junction. " The tunnel-
ling of quantum solitons between the electrodes could
then be treated within a tunneling Hamiltonian formula-
tion, ' where the polarization effects would be included
with an additional contribution Q /2C to the Hamiltoni-
an. The theoretical treatment developed by Widom,
Clark, and Megalondis, Averin and Likharev, and
others could then be applied to describe the time-
correlated tunneling events.

An alternative, but related interpretation of the CDW
threshold field based on the soliton tunneling mechanism
has been obtained by Krive and Rozhavsky, by consid-
ering the coherent Coulomb interaction between charged
solitons. In their interpretation, the threshold field ET is
the deconfinement field of bound soliton-antisoliton pairs,
and the universality relation e(0)ET=const is also ob-
tained.

VII. CONCLUSION

We have attempted to construct a quantum-
mechanical theory of CD% dynamics by utilizing tech-
niques of nonperturbative quantum field theory
developed for the quantum sine-Gordon system. Within
this context, although it is possible to derive an operator
equation of motion that is formally identical to the corre-
sponding classical equation, the noncommuting proper-
ties of the phase operator for unequal times imply that a
fully quantum-mechanical treatment is required in order
to correctly describe CDW dynamics. Furthermore, the
existence of an energy gap in the spectrum of collective
excitations, as originally proposed by Bardeen, implies
that Zener tunneling is required in order to depin the
CDW, at least for the idealized case of the sine-Gordon
system. Although this is clearly an oversimplification, we
nevertheless believe that is a useful approximation in
describing highly coherent samples of NbSe3 and TaS3.
We have argued that the three-dimensional coherence
plays an important role in suppressing thermal excita-
tions across the "pinning energy gap,

" but still allows
Zener tunneling to take place. Finally, the possible anal-
ogy between CDW tunneling and the phenomena of
Coulomb blockade and time-correlated tunneling in small
tunnel junctions has been suggested as an interesting in-
terpretation of the observed sharp threshold field and
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coherent oscillations in CDW systems.
During the past several years a number of experi-

ments ' ' have been performed on CDW materials in
order to test the predictions of the tunneling model. In
particular, the theory of photon-assisted tunneling has
been adapted to Bardeen's model in order to generate
predictions of linear and nonlinear rf experiments. The
essentially quantitative agreement obtained in these
diverse experiments constitutes powerful evidence that
tunneling is indeed responsible for CDW depinning in an
electric field. The analysis presented here argues strongly
for tunneling based on established techniques of quantum
field theory. If the tunneling hypothesis is correct, then
CDW transport constitutes an important cooperative
quantum phenomenon.

Ae B e 3 +B (1/2)[ A, B] (A5)

which holds for any operators A and 8 provided I A, B]
is a c number, we obtain

(x)1(i (x') = e ' e
27TC

[a &(x)—a &(x')]

27TE'

Misawa, we define

(x)1';(x)=—,
' lim [f, t(x)1',.(x')+1(i; (x')1';(x)],

E' ((g—+0

(A4)

where g=x —x' and likewise for the other products. Us-
ing the identity
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APPENDIX A:
THE BOSE-FERMI TRANSFORMATION

Here we treat the case of a P potential. The results for
the unpinned system can easily be obtained from this
treatment simply by setting co =0, or equivalently,
k* =k. We begin by defining

1/2

where

A, (x)= gk.. k Lk*

1/2
g. ikx —ek /2

and
2

g(k ) y ~
(

ikq 1)
—ek

k . Lk* '
(k'+ k,') '"

m k
(eik9 1 )e

—Ekdk

g(k„~)=f '()+ f "„(),

where k =2~/L. Under normal experimental condi-
tions (for typical parameter values refer to Appendix B),
k ((kp cp /cop « 1 /6' Thus there exists an integer n

such that n ))1 () 10), pinko ((1 ( ~0.2). We can then
iqnkp —eqkp

use the approximation e '=1 and e '=1. The in-
tegral in Eq. (A6) can therefore be approximated as

t( ii)=xi
k)o k

1/2

—ikx b ikx) —ek/2
1k 1k

(A 1)

where

(k2+ k2 )I/2
()= (e' 'i —1)e

k

$2(x) =i
k)0

and

2&
Lk* (b t ikx—

7

i kx
)

—e.k /2 (A2)

so that

(k 2+ k2 )I/2

g(ko, g)=f„,' ikgdk
m

+ f —(e'""—1)e '"dk
nkp k

1(i;(x)= exp[i(5;(x)], i =1,2 .
1

2&6
(A3) ln

2kp+ igkoln
k e

Whenever we write the product of two or more field
operators g at the same position x we are generally in-
terested in length scales large compared to the cutoff pa-
rameter e. Effectively, we are neglecting the amplitude
excitations, which require considerably more energy than
the phase excitations. Therefore, following Takada and

=ln +ipse, (A7)

where e=2.718 and a=koln(2ko/k e). Under typical
experimental conditions, k «a«1/e. One can thus
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expand out the exponential and keep only the terms
linear in ri. Using the definition (A4) and Eqs. (A6) and
(A7), and expanding to terms linear in q yields

2

(x)f,(x)= lim + ~
(
—a+X)

e && g~0 2~ 62+ ~2 ~2+ ~2

lim
1 e +( —a+X), (A8)

~«Y/~0 2' g + g

g; (x) f;(x)

lim [P, (x)P, (x +g) —P; (x)g;(x —q)],
6« g~O 2'Q

l =1,2
we obtain the relation

where

X=i g
k&0

' 1/2

(b ikx+ b t e
—ikx)e —ck/2 (A9)

:f 'q '(x) q (x)dx:=+i g k*b;+kb;+ke
0 BX k&0

(A17)

Similarly,
where the upper (lower) sign is for the 1 (2) particles.
With use of (2.10) and (A17), taking o)k =cok*, we obtain

g&(x)p, (x)= lim — +( —a —X) . (A10)
e«g~O 'TT g +g

Adding (A8) and (A10) we obtain
r

:HO..= —i%CO.. a-
ux

—
Q2 (x) (t/, (x) dx: .

[$)(x),(T, (x)]= lim
6«g —+0 + g +g

(Al 1)

(A18)
Similar results for the two particles are

1/2
2+k'

k)0 L
(b

i' ikx+ b
—ikx) —ek/2

2 —ke

(A13)

gz(x)P2(x) = lim
1 e + ( —a —Y), (A14)

6«r/ —+0 2' g +'g

pz(x )gz(x ) = lim + ( —a+ Y), (A12)
E'«q —+0 277 g +q

where

We now come to the problem of defining the field opera-
tors g in terms of the fermion operators a,k and a;k,
i=1,2, such that the Eqs. (All), (A15), and (A16) are
satisfied. One can verify that we have derived the correct
expressions by employing the same approximations used
to derive Eq. (A8):

g;(x)= 1

VL k+O

1/2
ikx —~lkl/2 i —

1 2a;ke e 7

(A19)

where the fermion operators obey the anticommutation
and commutation relations

and

1 e
[$2(x),1(~t(x)]= lim —

~ 2
—a

e«g~O 7T g +g
(A15)

[a;k, a;k. ] =5k k, i =1,2
[~ lk +2k' ] [+(k + 2k' 1 (A20)

In addition, the commutation relation [P,(x),$2(x')]=0
implies that

[(T~,(x),1'(x') ]= [g, t(x), gz(x') ]=0, (A16)

In the limit e &(g~O as the amplitude coherence length
approaches zero, the term e j(e +ri ) will likewise ap-
proach zero. Therefore we can dispense with this term in
Eqs. (A8), (A10), (A12), and (A14). However, we keep
this term in the anticommutation relations (Al 1) and
(A15) because, as we will see, it dramatically controls the
energy spectrum of the fermions. Using the definition

It is preferable for the "1"fermions to anticommute
with the "2" fermions rather than commute, especially
when one is required to make a Bogoliubov transforma-
tion involving both the 1 and the 2 particles. Complete
anticommutation relations can be established by perform-
ing a Klein-transformation as discussed in Appendix D.
A particularly appealing feature of this transformation is
that all the equations written below are invariant under
it, to within physically irrelevant phase factors, and
henceforth we shall take it for granted that the 1 and 2
operators are anticommuting. A straightforward substi-
tution using (A19) yields the expression

Pb, (x)g, (x)=— lim
L e«g~O k k'&0

k'2—
k I)fc

1/2

akak e cosi(k —k')x (k )e
—e(lkI+ Ik'I)/2 (A21)
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where 21=x —x'. Comparing Eq. (A21) with (A8) for
each k yields a rather complicated relation between the
"b" and "a"operators that reduces to the simplified form
of Eq. (3.7) in the limit co,e~O. Combining Eqs. (A18),
(A19), and (A20) yields the result

0(2k —k*)(a ikaik —a2ka2k)e
'" . (A22)

k

APPENDIX 8:TYPICAL EXPERIMENTAL VALUES
OF RELEVANT PARAMETERS

Here we present five typical experimental values of
relevant parameters:

=10

I =2mm,

m =10' —10"sec

UF =10 —10 cm/sec,

e= 1/k, =10 c0/cop .

APPENDIX C: EXACT SOLUTION
FOR ( m /M* )' COMMENSURABILITY

We begin by taking 00 to be the unpinned Hamiltoni-
an and then show that the intire pinning term
[1—cos[(M*/m)' P]J can be expressed in terms of the
field operators g; defined in Appendix A. Following Sec.
II we recall that, for the unpinned case, the phase opera-
tor at a point x is given in the bosonic representation by

P(x) =i
M*

1/4
27r

k)O Lk

1/2

[ ( b t +b )e
—ikx

( b +b t
)e i kx

]e
—ok /2

7 t
(C 1)

where we have used Eqs. (2.8) and (2.13) and the result
that cok =cok for this case of interest. Following Appen-
dix A we now define the field operators as

g;(x) = exp[i(M*/m )' P;(x)],1

&2m.e
(C2)

where (M*/m )' P;(x)=P;(x), as defined in Appendix A
for the case co =0. If one now follows the algebra of Ap-
pendix A, the integral f(k0, rj) can now be evaluated in
closed form, resulting in an expression which is identical
to (A7) with a=0. All of the equations given in Appen-
dix A thus hold identically for the case under considera-
tion simply by setting a=O and ro =0 (i.e. , k'=k and
k0 =0). In particular, Eqs. (A19) and (A22), respectively,
reduce to

Ek =+[(A'c0k ) +b, p,„]' (C6)

APPENDIX D: THE KLEIN TRANSFORMATION

We remarked earlier that, although the P;-field opera-
tors anticommute among themselves, f, and g2 commute
with each other rather than anticommuting. Strictly
speaking, this would not allwo one to perform a Bogo-
liubov tranformation, which mixes the 1's with the 2's.
However, the required anticommutation properties be-
tween the 1's and 2's can be obtained with use of the fol-
lowing transformation:

by a standard Bogoliubov transformation, yielding the
quasiparticle spectrum

and

q (x)— 1

k&0
(C3)

42 it2 =e' 42 (D 1)

where a and /3 are Hermitian operators obeying the fol-
lowing commutation relations:

(D2)(C4) [a,bk]=[P, bk]=0, [a,P]=i(2n+1)m. ,'~0' X ~ Ok 1k 1k 2k 2k )
k&0

where n is any integer. ONe can easily construct opera-
tors a and p from the boson operators b0 and b0. For ex-
ample, when n =0 one makes the following definitions:

bo —bo ho+ boa=i &rr, p=Vrr
v'2 (D3)

However, this particular case of (I /M*)'~" commen-
surability is unique in that the full pinning term can also
be expressed in terms of the a operators as shown below:

L:H;„:=: dx Dco [1—cos(M*/m)' P(x)]:
0

meD01: f d —
[xp gti( 2)x+g gt2, ( )x]:

~pi g (a 1ka2k 2ka 1k ) (C5)
kWO

which satisfy all the conditions imposed in (D2) and es-
tablish the required anticommutation relations. Howev-
er, although the unpinned Harniltonian remains covarient
under the transformation (Dl), the pinning part trans-
forrns to

—e ' '11(' g (x)]dx. (D4)

where Apin=~eaco . Here it should be pointed out that
now the order of the 1 and 2 operators is important since
we have implicitly performed the Klein transformation
(refer to Appendix D for more details), which makes
them anticommute. The total Harniltoiin, consisting of
the sum of Eqs. (C4) and (C5), can be easily diagonalized
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In order to get rid of the ct and P operators one intro-
duces the fermion operators with use of the relations

qe(x) expI t (~ 13)] y a e ikx —e k~i21 ~ 1

+L k~o

We note that these new 1 and 2 fermion operators now
anticommute as desired. We can then write the entire
Hamiltonian in terms of the fermion operators, for the
commensurability of (m /M*)'i, as

~0 g I
~cok(a lka lk a2k 2k )

k&0

1itz(x)=expI i—(tz —P)] —g azke'""e1

k&0
(D5) (a lka2k+a2ka 1k )]e

—~lkI
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