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Hall coefficient of the doped Mott insulator: A signature of parity violation
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We show that the Hall coefficient R~ of a doped two-dimensional Mott insulator is temperature
dependent in the state where long-range magnetic order vanishes. The Hall number n~ =R~ is

linear in the doping density at high temperatures and decreases monotonically with decreasing
temperature. At low temperatures R~ diverges, indicating the possible onset of a phase with

spontaneous chirality.

The properties of the normal phase of high-temperature
superconductors are well known to be unusual for normal
metals. ' Among these anomalous properties is the tem-
perature dependence of the Hall coefficient. In this pa-
per we show that this phenomenon occurs naturally in the
picture of the doped Mott insulator where long-range
magnetic order is absent and where strong interaction be-
tween electrons destroys the Fermi-liquid coherence. In
this case the relevant low-energy excitations are described
by a Hamiltonian for Bose and Fermi particles interacting
with a gauge field. We shall also argue that in this picture
the ubiquitous growth of R~ with decreasing temperature
is a precursor of parity and time-reversal symmetry break-
ing.

There is little doubt that the appropriate microscopic
model for high-T, materials is that of a doped Mott insu-
lator. ' In the absence of long-range magnetic order the
Mott insulator behaves as a system of fermions and bo-
sons coupled by a gauge field (p, a):
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(1)
where auxilary Fermi and Bose fields represent the real
electron c =b f, the gauge field ensures the constraint
c c ~ 1, and pF, pB are the chemical potentials of fer-
mions and bosons which are related to the electron chemi-
cal potential p by p =pF —pB. This Hamiltonian can be
formally derived from the canonical t-J model using the
slave-boson method ' in the heavy-hole limit. The inter-
nal gauge field a„=(p, a) appears after a Hubbard-
Stratonovich decoupling of the interactions between elec-
trons. In the opposite limit of light holes the slave-boson
theory predicts large renormalization of all interaction
constants, and the approach based on the Schwinger-
boson representation becomes more justified. In this
context a„reproduces the Berry phase acquired by a hole

moving in a slowly varying ferromagnetic background.
The Hamiltonian (I) implies the existence of Fermi quasi-
particles with a large Fermi surface, which is in good
agreement with photoemission experiments. ' The lattice
version of the theory (1) becomes unstable in the limit of
zero doping. "' However, this instability is removed at a
finite concentration of holes. '

Without loss of generality, we assume that the external
electromagnetic field A„=(@,A) couples only to the bo-
sons. The assignment of the electric charge to the bosons
is convenient but has no effect on the physical results. '
The gauge-field interaction described by the Hamiltonian
(1) yields the electrical and thermal conductivities which
are in agreement with the normal-state behavior of high-
T oxides.

Qualitatively, the model of the doped Mott insulator
defined by (1) corresponds to a system of holes moving in
a disordered spin background. The gauge field describes
the most important fluctuations of this background.
These fluctuations provide the scattering mechanism for
the charge carriers. In the presence of an external mag-
netic field the numbers of left-handed and right-handed
fluctuations are not equal. The scattering process be-
comes chiral, which results in an additional (tempera-
ture-dependent) contribution to the Hall effect. We em-
phasize that this effect is entirely due to the transverse
character of the gauge interaction between particles.

We now subject the system to a weak uniform magnetic
field H =Hz and compute the Hall coefficient Rtt =R~, /
H, where R~„=a„~/a„, is the Hall resistance. It is useful
to introduce the unphysical conductivities a and o. of
the Fermi and Bose subsystems, which are convenient to
treat separately. The physical resistivity tensor is the sum
of fermion and boson contributions; thus,

R, =(a ) '+(cr )
(2)
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To first order in H, the conductivities o retain their
zero-field values, ' ' while the Hall conductivity o.„y is
proportional to H. It is related to the (real-time) cur-
rent-current correlation function II„,(q) = —i(J„(—q)
&& J„(q)) as follows:

o.B F=—ImrIB F(ru q) = ImiIJ~(i' (co q) (3)1 B F &jiqi

N q

where the last equality follows from current conservation.
For noninteracting bosons or fermions Hjo is given by the
two diagrains shown in Fig. 1(a), which yields the classi-
cal result a„~(ro) =h"p~(m~ro) . Here h" is the aver-
age field acting on the particles (A =8 for bosons, F for
fermions), and pz is their density. The interaction with
the gauge field has two eAects. First, it dresses the propa-
gators and vertices in the diagrams of Fig. 1(a). This
eAect is described semiclassically by the Boltzmann equa-
tion and leads to the usual result a„"~ =h"p~(r~/m~)
where i~ is the relaxation time. Second, the gauge propa-
gator itself is modified by the magnetic field and acquires
a parity-odd component. The scattering by these chiral
fiuctuations of the gauge field gives an additional contri-
bution to the Hall coefficient. Such behavior is in contrast
with the usual electron systems where weak scattering is
modified negligibly by a weak magnetic field. This eAect
results in the anomalous temperature dependence of RH.

I

P

(a) (b)
FIG. 1. Diagrams for the polarization IIOJ. (a) Classical re-

sult. (b) Lowest-order corrections. Vector vertices are denoted
by j; scalar vertices, by p. The wavy line with a cross stands for
the parity-odd gauge propagator given by (6). Cross denotes
the interaction with the external magnetic field.

The leading correction to Hjo responsible for this phe-
nomenon is given by the diagrams shown in Fig. 1(b).

The effective gauge-field Lagrangian L,tr(a, A ) is given
in imaginary time by

d q FL,ir(a, A) = ——,', [aqII'a q+ (aq+Aq)II'(a q+A q)],(2z) ' (4)

which yields the a-field propagator &aq„a q, &
= (II

+II )„„'. In the absence of external fields, the nonzero
components of (aq„a -q, ) in the transverse gauge are

&eqe-q& = (rial ~ I+ v)

1

(r~~lml+v)(r lml+gq )
(7)

We determine the eA'ect of the a field on o y by comput-
ing corrections to the correlator Hjo produced by the prop-
agator (6).

To the leading order the corrections to Hjo are given by
the diagrams in Fig. 1(b). The wavy line with a cross
denotes a gauge-field propagator of the form (6), which

&aqa —q&=(r lcol+gq )

where v is the density of states, g is the diamagnetic sus-
ceptibility to the a field, and I ll & are the Landau damping
parameters for the longitudinal and transverse oscilla-
tions. Each of the quantities I, v, and g is the sum of bo-
son and fermion parts. In a weak magnetic field, both sys-
tems develop small Hall conductivities. We define cr

oxy + oxy which should not be confused with the physi-
cal Hall conductance R~ /R . A nonzero value of o adds
a parity-odd component to the a-field propagator:

D(r~, q) =&aqjy q& =a;,q, F(~,q-'),

where

F(ro, q 2) =&yqy q)&aqa —q&—

I

contains the fully renormalized o. These diagrams there-
fore represent the summation of the ladder series for o.„~,
which can be written as follows:

~' =~'"'+a ~xy xy B

~' =~'"'+a ~oxy ~xy aF & ~

The quantities aB F describe the efI'ect of the parity-odd
gauge propagator. The bare values o y characterize a
system where the inAuence of the magnetic field on the
scattering process has been ignored, i.e., the propagator D
has been turned off.

The bare Hall conductivity a„y is determined by the
mean magnetic field acting on the particles. The total
magnetic field acting on the bosons is the sum of the ap-
plied field H and the induced mean internal field h. Fer-
mions, on the other hand, are affected only by the internal
field. By minimizing the action for the effective Lagrang-
ian (4), it follows that h/H = —gB/(gB +gF ), where
gB,F 1/mB, F. If mF «mB, then h «H and o ~ is negli-
gible compared to o.

xy . The Bose susceptibility gB de-
pends on temperature, resulting in a weak temperature
dependence of the physical R y, as first noted in Ref. 15.
This eA'ect is sensitive to the shape of the Fermi surface. '

Here we neglect this small contribution to cr„y and consid-
er only the stronger temperature dependence due to
parity-odd scattering processes.

We evaluate aB F by dropping the small vertex and
self-energy corrections' in the diagrams in Fig. 1(b).
The bare-particle Green's functions are G(ie,p)
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-(&'« —g~) ', where g~ p2/2m —p, and the gauge propagator Djo(ico, q) is given by (6). For both fermions and bo-
sons the square and the triangle diagrams contribute equally to IIjo..

d dII o (O, k) = —2( —1) N, T' QG(i«, p+k/2)G(i« ic—o,p —q+k/2)JO (2z) '
p, (p+k/2);x G(i« —ico,p —

q
—k/2)G(i «p —k/2)D;o(ico, q)

F 2 d pd 1
IIjo (O, k) = —4( —1) N, T QG(i«, p+k/2)G(i«, p —k/2)G(i« —ico,p —q+k/2)Djo(ico, q)

(2z) ' 2&l

For fermions F =1 and «=(2n+1)zT; for bosons F=0 and «=2nrcT. The multiplicity factors N, are model dependent:
in the slave-boson approach N, =2, N, = 1, whereas in the Schwinger representation N, =1,N, =2. We find

r 1

II ' (0 k) =N (cr«k/16 nm ) dy(1 —y)y g ( —1) ' ' s e
s

w oo 2

&&pe"P" d(q )q F(co,q )exp — y(l —y) (10)

RH =RH 1

1 —a8
(12)

where RH =o„~ /(a, „) H=l/8 is the Hall coeKcient
for a system without parity-odd gauge interactions; 8 is
the doping density. In deriving (12) we have neglected
Q zy which is sm al 1 compared to o'~~~ . As discussed
above, RII corresponds to the semiclassical value of the

where P is the inverse temperature and the function
F(co,q ) is related to the parity-odd gauge propagator by
(6). This expression for IIjo is valid for any F(co,q )
which is even in co and of order (1/co) for large co.

The calculation of IIjo is simplified if we reduce the
gauge propagator to the static form defined by F(co,q )= (I/vgq )bo „. This approximation is valid at low
enough temperatures T&&1/g mo. In this temperature
range the one-loop expressions I & =pF/zq and
@=1/12xmF imply that, for the statistically important
boson-scattering processes with co = T, q = (ma T) 'j,
only the co =0 contribution should be retained since
I &(co(»gq . This is the same temperature range where
resistivity is linear with temperature in the framework of
this approach. [The longitudinal damping term in (7) is
always negligible compared to v=mF/z. ] The definition
a~ F =limk p [IIjeo' (O, k)jo«j k lthen yields'

N, Tn/i (0)a8=
2

11
8n vg

where ng(«) = [exp[(«pg)/Tl —1 I
' is the Bose distri-

bution function and ns(«) =ting(«) jc)«. A similar calcu-
lation for fermions gives an exponentially small result
aF cx:exp( pF/T), but hig—her-order corrections may be
of order (T/p~) 'j, the latter being a measure of how
strongly the fermions are scattered by the gauge field. In
any case, the fermionic contribution is small at low tem-
peratures and will be ignored. On the other hand, Eqs.
(8) and (11) imply that cr ~, is enhanced at low tempera-
tures and becomes very large at T—T,o =ply/mg.

Combining (2), (8), and (11), we obtain the following
expression for the Hall coe%cient of the system:
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FIG. 2. Hall number nH as a function of temperature for two
doping densities, 8l 0. 1 and 82 G.3, in dimensionless units of
particles per two-dimensional plaquette. The unit of tempera-
ture is To 2~5 /(lorna), where lp is the lattice spacing.
Characteristic Bose temperature T,o is taken to be T,0
=2mb 8/ma, and free-boson temperature dependence of pa is
assumed.

I

Hall conductivity and is independent of temperature. The
only source of temperature dependence in (12) is the
quantity ao. Figure 2 shows the dependence of the Hall
number nH =RH ' on temperature and doping density
(equal to the density of bosons), with RH given by (12),
az given by (11),and RH = I/b.

The results shown in Fig. 2 have two noteworthy
features. First, nH gro~s monotonically with increasing
temperature. This is caused by an increase in the number
of low-energy bosons. The solid portions of the curves
denote the region where the corrections to nH are small
compared to 8, i.e., where a linear-response calculation of
cr„J is expected to be valid. We also note that the average
slope of the curves in this region increases with increasing
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doping. These results are fully consistent with the behav-
ior of nH in high-T, materials as observed in La2 —„Sr„-
Cu04 and YBa2Cu 307. Moreover, recent measure-
ments' show that the curvature of the nH(T) curves at
high temperatures is negative, in agreement with the
present theory.

Enhancement of the Hall coefficient can be obtained
quantitatively and transparently for the high-frequency
response. At high frequencies (cortt»1) each particle
samples the local value of the fields in both time and
space. The Hall conductance is then given by a&
=(ptt(p)(h+H))/(mttra), where the average is over the
distribution of internal fields h, and we have emphasized
the dependence of the local density of bosons on the local
value of the scalar potential. In the presence of the exter-
nal field H, the internal field h becomes correlated with p
as follows: (hp) = —cT/(gv). Thus, performing the aver-
age we get an enhanced value of the Hall conductance:

att = [ptt (0)H —(cr/gv) dptt/dp]/(mtt co )

The parity-odd gauge field propagator can be nonzero
even in the absence of an external magnetic field. This
occurs when parity and time-reversal symmetries are vio-
lated spontaneously. Large renormalization of the Hall
coefficient at low temperatures indicates a large suscepti-
bility of the system to parity-violating perturbations. The
results presented here predict spontaneous symmetry
breaking at T—T,o where az =1. Conceivably, higher-
order corrections soften this singularity, while retaining
the instability.
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