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The structural stability of the prototypical complex Al»W structure, relative to the Cu3Au struc-
ture, is computed for Al compounds with 3d and 4d transition metals. The calculated structural en-

ergy differences are on the order of an eV per transition-metal atom, have their largest negative
magnitude for the transition metals with nearly half-filled d bands, and have larger magnitudes for
the 4d transition metals than for the 3d metals. These results suggest that electronic effects are
more important than atomic-size effects. It is shown that a large part of the structural energy
differences is due to the presence of a Fermi-level nonbonding peak in the electronic density of
states {DOS) for the Cu3Au structure, which destabilizes that structure. The energy associated with
the nonbonding peak has comparable contributions from a term in the energy that favors large
unit-cell sizes, and from a local term that penalizes 90' bond angles around the transition-metal
atoms. A significant additional contribution comes from the appearance of the dip in the DOS
around the Fermi level for the Al, 2W structure. It is shown that the energetic factors developed
here likely contribute to the relative stability of binary Al —transition-metal icosahedral phases.

I. INTRODUCTION

The discovery' of icosahedral (i) phases some six years
ago in Al-rich transition-metal compounds has stimulat-
ed efforts to understand the structures of the crystal-
line compounds at similar compositions. This is because
the latter allow the underlying interatomic interactions to
be studied in a better defined, more tractable environ-
ment than is provided by the i phases, and because it is
believed that the crystalline compounds may provide
motifs which occur in the i phases as well. The latter
contention is supported both by experimental scattering
studies, which show strong similarities between the
local structures of the i phases and some crystalline struc-
tures, and by theoretical work ' which has shown that
models for the i phase can be obtained by continuously
"deforming" observed crystalline structures, via a six-
dimensional construction.

The "best" i-phase-forming Al-based systems are those
having transition metals with roughly half-filled d bands,
in columns VI —VIII of the Periodic Table. The crystal-
line structures formed by these compounds, " at Al-rich
compositions, are complex in the sense of having large
unit cells and point-group symmetry lower than cubic.
Some of the structures having particularly large unit cells
have been viewed as "rational approximants" to i-phase
structures. ' The complex crystal structures occur only
over a narrow range of d-electron counts, with none of
them occurring for transition metals in more than two
columns of the Periodic Table. In addition, with the ex-
ceptions of Al&Ru (which shares the Ni3Ti structure with
many transition-metal alloys) and the A16Mn structure,
which is formed by As6Ru, they occur only in Al —and
Ga —transition-metal compounds. "

The most systematic study of the origins of the struc-
tures of this class of compounds has been performed via

the "effective-medium" method. ' Here the energy of a
compound's crystal structure is determined by the energy
of embedding the atomic constituents in a uniform elec-
tron gas with a density determined by the "background"
density due to its neighbors. It was found that the
icosahedral packing that occurs in some of the complex
structures is associated with a preference of the
transition-metal atom for high background electron den-
sity; this occurs at the icosahedral sites because the
center-to-vertex distance of the icosahedron is 5% short-
er than the vertex-to-vertex distance. These results were
described in terms of a small effective atomic size for the
transition-metal atom in the Al host, and thus provided
ab initio support for atomic-size based theories of the
structures of the Al —transition-metal alloys.

The effective-medium treatment in effect associates the
transition-metal atoms with the electronic density of
states (DOS) which they would have in a uniform elec-
tron gas of an appropriate density. Thus the overall
width of the DOS is fairly accurate, but the detailed
structure is probably not obtained correctly. The struc-
ture in the DOS has been studied in both cluster and bulk
calculations. The cluster calculations' treated Mn atoms
at the centers of 12- and 32-atom icosahedra. Both calcu-
lations showed a peak in the DOS at the Fermi level,
which is expected to destabilize the icosahedral packing.
The peak was attributed to the high symmetry of the
icosahedral packing. This packing has no crystal-field
splitting for d states, since in a spherical-harmonic
decomposition of an icosahedral environment, the
lowest-order nonzero contribution' is from 1=6; d-state
crystal-field splitting requires' 1~4. However, the con-
clusion drawn from the calculations would appear to be
inconsistent with the stability of the A1&2Mn compound,
in which the Mn are icosahedrally coordinated by Al.
Subsequent band-structure calculations for the a-(Al-
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Mn-Si) compound instead showed a dip in the DOS in the
vicinity of the Fermi level. This was presumed to stabi-
lize the a-(Al-Mn-Si) structure. In addition, there have
been tight-binding calculations' using an underlying fcc
lattice; for Al-rich alloys these showed a peak in the DOS
around the Fermi level. On the basis of these results it
was argued that there should be no stable, highly coordi-
nated crystal structures for nearly half-filled transition-
metal d bands.

However, at this point, the relative importance of the
short-ranged interaction effects emphasized in the
effective-medium-atom approach, and the electronic DOS
effects, is not known. Furthermore, the precise origins of
the various peaks and gaps near the Fermi level, and
their connection with the long- and short-range orders,
has not been established. Our aim is to treat some of
these issues by performing a systematic series of ab initio
structural stability calculations for Al-rich compounds of
ail of the 3d and 4d transition metals. We choose as a
prototypical structural-energy different that between the
Al)2W and Cu3Au structure. The A1,2W structure' is
chosen as a representative of the "complex" structures,
and the Cu3Au structure as a representative of the "sim-
ple" structures which one might imagine competing with
the complex structures. The Al, zW structure consists of
a bcc array of Al icosahedra centered by transition-metal
atoms, and thus contains 13 atoms per primitive unit cell.
Thus it contains two important features which are
characteristic of many of the complex structures, namely,
a large unit cell and (partial) local icosahedral packing.
The Cu3Au structure, on the other hand, has all of the
atoms residing on a fcc lattice, with the transition-metal
atoms occupying a simple cubic sublattice containing a
quarter of the sites. Thus each atom is surrounded by a
cuboctahedron, and the primitive unit cell contains only
four atoms.

We find that the structural energy differences are too
large to be accounted for by atomic-size theories, and do
not display the variation with transition-metal d count
expected from these theories. Instead, the electronic
structure around the Fermi level plays a major role. In
those systems which favor the Al]2W structure the most
strongly, the competing Cu3Au structure has a nonbond-
ing peak in the DOS at the Fermi level, while the Al, zW
structure has a gap instead. We show, via a simple
square-band model, that the elimination of the nonbond-
ing peak in the Al&2W structure leads to a stabilization
energy comparable to the calculated ab initio structural
energy difference. We investigate the origin of the non-
bonding peak using an Anderson-lattice model. It results
from the "sparseness" of plane-wave electron eigenfunc-
tions in energy, which results from the small size of the
unit cell. This effect is enhanced by high rotational sym-
metry. These factors are both present in the Cu3Au
structure, and are reduced in the Al, zW structure. Thus
there is a component of the energy which favors the com-
plex structures precisely because of their complexity, rath-
er than because of short-ranged packing constraints.

An additional component of the stabilization energy
results from angular forces surrounding the transition-
metal atom, which of course involve the potentials of the

surrounding Al atoms. We investigate this effect via a
tight-binding model of the DOS. An approximate solu-
tion of this model using a scheme based on the fourth and
lower moments of the electronic DOS yields an angular
force, for nearly half-filled band transition metals, which
penalizes 90 bond angles. An analysis of the crystal
structures formed by the nearly half-filled d-band transi-
tion metals shows that such bond angles are always ab-
sent for their Al-rich compounds.

The organization of the remainder of the paper is as
follows. Section II briefly outlines the calculational
method and presents the ab initio total-energy results and
densities of states for the Al, 2W and Cu3Au structures.
Section III gives the model analyses, based on the
square-band model, the Anderson-lattice model, and the
tight-binding description. Section IV concludes the pa-
per by describing the relevance of our results to
icosahedral phases.

II. ab initio CALCULATIONS

Our ab initio calculations utilize the augmented-
spherical-wave (ASW) method. ' This is a fast linearized
band-structure method based on the atomic-sphere ap-
proximation. The speed was necessary here, because of
the size of the Al&2W unit cell and the large number of
calculations that were performed to ascertain the chemi-
cal trends. The approximations that are made in the
ASW method are suitable for closely packed structures,
such as the two that are treated here. Scalar relativistic
effects are included as described in Ref. 19. Exchange
and correlation effects are treated within the local-density
approximation, implemented with a functional of the
Hedin-Lundqvist form. We present only non-spin-
polarized results; spin-polarized calculations have been
performed for the cases (groups-VI through group-VIII
transition metals) where they should be largest, and they
are always small (~0.2 eV) in comparison with the scale
of the calculated structural-energy differences. We used
equal ASW sphere radii for all systems. In previous work
we have found that this procedure yields alloy heats of
formation which are in good agreement with experimen-
tal values for Al —transition-metal alloys and com-
pounds; ' in addition, the atomic-sphere approximation
gives elemental structural-energy differences which are in
good agreement with results from full-potential
methods.

For the Cu3Au structure, the lattice constant was
chosen which minimized the total energy. For the Al&2W
structure, the experimental lattice constants" were used
where they have been measured (Mn, Mo, Tc). For the
other systems, the lattice constants were obtained by in-
terpolating or extrapolating the dependence of the ob-
served lattice constants on the transition-metal atomic
volume.

Figure 1(a) shows the calculated structural-energy
difference:

AE =E(Al~~T) E(A13T) 9E(Al), ——

where A1,2T has the Al&2W structure and A13T has the
Cu3Au structure. For the A1,2W structure to form, it is
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sensitive to the choice of ASW sphere volumes. As a
check on the accuracy of the equal-volume procedure, we
have evaluated the structural-energy differences for a
representative set of six compounds (Sc, Y, Cr, Tc, Ni,
and Pd) using a complementary procedure which em-
phasizes atomic-size effects. (Cr and Tc are chosen as
representative half-filled d-band transition metals because
they have the largest negative values of b,E). In this pro-
cedure the sphere radii are chosen to make each of the
atomic spheres neutral, so that smaller atoms have smaH-
er sphere volumes. For all of the metals except Ni, the
effects on AE are less than 0.25 eV. Thus the large mag-
nitude of the structural-energy differences is unaffected
by the choice of sphere radii. The greater size of the
values for the 4d row, relative to the 3d row, is also
unaffected by the sphere radii. For Ni, AE is 0.57 eV
more negative for the neutral-sphere method. However,
even here the effect on the chemical trends is small.
Comparing the numbers for Cr (0.22 eV more negative)
and Ni, one finds that their difference is changed by 0.35
eV, which is only 25% of the difference in b,E (1.42 eV)
between these two systems.

Three aspects of the results are relevant to establishing
the relative importance of effects due to effective atomic
sizes and electronic effects.

(1) The large energy scale of hE. The largest value is
for Al»Tc which has AE = —1.8 eV. Since the replace-
ment of the Tc by Al would cause AE to become positive

I I i i I I I I I

Sc Ti V Cr Mn Fe Co Ni Cu

FIG. 1. (a) Energy di6'erence between Al»W and Cu3Au
structures. Negative values indicate that Al»W is favored. (b)
Atomic volumes for 3d transition metals. Open circles: elemen-
tal volumes taken from King (Ref. 25). Solid circles: efT'ective

sizes obtained from energy-minimization calculations for hy-
pothetical A13T compounds. Squares: inverse of preferred elec-
tron density for transition-metal atoms in jellium, taken from K.
Jacobsen, J. K. Nefrskov, and M. J. Puska [Phys. Rev. B 35,
7423 {1987}].

A112Mn

l'

necessary (but not sufficient) that hE be negative; for the
Cu3Au structure to form with no Al &2W structure phase
at lower transition-metal concentrations, AE must be
positive. The calculated values are consistent with the
observed structures: Mn, Mo, and Tc form the Al»W
structure, while Sc and Y form the Cu3Au structure with
no Al»W structure. In addition, the most negative
values of AE in each rom are found for the group-VI and
group-VII transition metals, which form the Al, zW struc-
ture. In cases for which AE is negative but the Al»W
structure does not form, a third structure forms which
has a lower energy than either of the two treated here.
For example, A13Nb forms the DOzz structure. " Its ener. -

gy is estimated to be 0.8 eV to 1.0 eV per transition-metal
atom below the L 12 structure, ' and thus slightly
below that of the Al, 2W structure.

The main features of AE displayed in Fig. 1 are not

A13Mn

u 5—
r/}

—10 —5 0 5
E (ev)

FIG. 2. Electron densities of states for (a) Al»Mn in Al&2~
structure and (b) A13Mn in Cu3Au structure.
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(since Al|2W structure Al&2A1 does not form), this means
that each Tc atom changes the structural energy by
roughly 2 eV. In comparison, typical transition-metal
structural energy differences are 0.5 eV per atom. The
effective-medium calculations mentioned in the Intro-
duction yield a value of AE for Mn of only 0.1 eV versus
the present value close to 1 eV.

(2) The characteristic dependence on transition-metal d
count. For both the 3d and 4d transition metals, AE has
its minimum at a roughly half-filled d band. For compar-
ison we show in Fig. 1(b) elemental transition-metal
atomic sizes, as well as e+eetiue atomic sizes that we
have obtained from the calculated A13 T lattice con-
stants. In addition, atomic sizes derived from the pre-
ferred "background" electron densities in the effective-
medium method are shown. By each of these three mea-
sures, the atomic sizes have minima in groups VIII—X,
significantly to the right of the minimum in AE. If
atomic-size effects dominated, then AE should also have
an intlection point (zero slope) at the minimum of the
atomic sizes. Instead, at this minimum, AE is already
rapidly climbing. Thus it is unlikely that the atomic size

is the dominant effect driving the stability of the Al&2W
structure.

(3) The most negative values of AE occur in the 4d
transition metals. If atomic size were the dominant fac-
tor, one would expect the 3d transition metals to have the
most negative values of AE, since they have the smallest
atomic sizes.

Thus the simplest theory, that based on effective atom-
ic sizes, cannot explain the calculated structural-energy
differences. The characteristic dependence of AE on the
d-electron count suggests that electronic density-of-states
(DOS) effects may be important. Typical DOS results,
for the Al-Mn system, are shown in Fig. 2. In both the
Al, 2W and Cu»Au structures, the parabola due to the Al
nearly-free-electron states is clearly seen, along with a rel-
atively narrow peak resulting from the Mn d states. In
the Cu3Au structure, the DOS contains a very high peak
at the Fermi level. In the Al&2W structure, this peak is
split, and the DOS at the Fermi level is reduced relative
to its free-electron value. We will show that the peak in
the Cu3Au structure DOS has a major impact on the
value of AE. We will call it the "nonbonding" peak,

—5 0
E (eV) E (eV)

FIG. 3. Projected densities of states on transition-metal d orbitals for (a) Al&2T compounds in Al&2W structure and (b) A13T com-
pounds in Cu3Au structure.



12 180 A. E. CARLSSON

deferring until later the demonstration that this is actual-
ly the origin of the peak. The chemical trends associated
with the above features of the DOS are illustrated in Fig.
3, which shows the transition-metal d-projected DOS for
Al

& 2 T and A13T compounds, for T =Ti, Cr, Fe, and Ni.
As the d band goes from nearly empty (Ti) to nearly filled

(Ni), the Fermi level passes smoothly through the non-
bonding peak in the Cu3Au structure, and the quasigap in
the A1,2W structure. The transition metals for which AE
is the most negative are precisely those for which the Fer-
mi level resides in the peak in the Cu3Au structure DOS.

The calculated DOS distributions shown in Figs. 2 and
3 yield different physical pictures than are given in the
cluster and tight-binding calculations. The cluster calcu-
lations' found an enhancement of the DOS at the Fermi
level resulting from icosahedral packing, while our results
for Al, 2Mn show exactly the opposite, a quasigap. The
tight-binding calculations' had found, for the Al-Mn
system, a narrow peak which was relatively structure in-

dependent. We find that the value of the DOS at the Fer-
mi level depends very strongly on the structure. Howev-
er, our results are consistent with the ab initio results for
the a-(Al-Mn-Si) structure, which had also found a
reduction of the DOS near the Fermi level.

III. MODEL ANALYSES OF RESULTS

The ab initio results presented above, while arguing
against effective atomic size as the dominant mechanism
for stabilizing the Al&zW structure, do not explicitly tell
us which mechanisms are responsible. With this goal in

mind we describe in this section three simplified models
for analyzing the ab initio results. The first of these, a
square-band model of the DOS, allows us to estimate the
scale of the stabilization energy resulting from the ab-
sence of the nonbonding peak in the A1&2W structure.
The second model is an Anderson-lattice model for the
transition-metal d shells, which explains the origin of the
nonbonding peak. It allows us to assess the effects of the
geometric arrangement of the transition-metal atoms in

the Al host, temporarily ignoring the host's discrete
atomic structure. The last model assesses the effects of
the local packing of the Al atoms surrounding a particu-
lar transition-metal atom, via a tight-binding analysis.

0.0

—0.3

FIG. 4. Structural-energy difference for model density of
states (cf. inset). 1V& denotes d-band filling and Wo is half-

bandwidth for f~ =0.

A. Square-band model

On the basis of experience with many other systems,
one expects that a peak of the type seen in the Cu3Au
DOS plots in Figs. 2 and 3 should provide a destabilizing
contribution to the total energy, provided that the Fermi
energy is in the peak. In other systems, such Fermi-
surface effects can lead to reduced rotational symmetry
(the Jahn-Teller effect), a magnetic state, or a supercon-
ducting state. We will show that here, it contributes to
the formation of structures with large unit cells and re-
duced rotational symmetry. To obtain a very simplified
estimate of the magnitude of the peak contribution, we
use the following model DOS (cf. inset, Fig. 4):

5(1 f~)8' '+10f 5—(E), E & W

0 otherwise

Here f is the weight factor for the nonbonding peak, at
E =0. The electronic band energy for this DOS is readily
computed. For Nz & 5 one has

f Epq(E)dE = NqW[1 —Nq(1 —f )/10], Ng &—5(1 fp)—
el ——', 8'(1 f ), Ng ~ 5(1 —fp ). — (2b)

For Nz ~ 5 one uses Eqs. (2) together with the fact that E„(N&)=E,~(10—Nz) for the even band considered here. We
obtain the values of f in these expressions from Fig. 3, which shows that roughly two of the ten electrons that can be
accommodated in the d band are contained in the nonbonding peak. Thus we choose f„=0.2 for the Cu3Au structure.
For the Al&2W structure we choose f =0, since the DOS at the Fermi level is actually reduced relative to its free-

electron value (cf. Fig. 2). For calculating the structural energy differences, we choose values of W such that the second
moment

p2 —
—,
' E p~ EdE (3)

is taken to be the same in both structures. (The factor of —, removes the spin degeneracy included in p&). The motiva-
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tion for this choice is to emphasize effects due to the shape of the DOS, rather than its overall width as measured by
p2. The effects of changes in p2 are such as to favor one structure over the other at all band fillings. There is, in fact,
precise justification for calculating structural-energy differences at constant p2, provided that the differences in equi-
librium volume per atom between the two phases are not too large. The p2 constraint implies that (1 f —)W = Wo~,

where Wo is the half-bandwidth for f~ =0. Thus Eqs. (2) become

Nd—Wo(1 fp) —' [1 Nd(—1 fp)/—10], Nd &5(1 f )—
——', Wo(1 f„)'—, Nd ~ 5(1 f ). —

(3a)

(3b)

With the model thus specified we obtain the estimate of
bE shown in Fig. 4. Here, the unit of energy is the half-
bandwidth W for f =0. For values of W on the order of
3 eV for the 3d transition metals and 4 eV for the 4d met-
als, we obtain maximal values of b E of 0.75 eV for the 3d
metals and 1.0 eV for the 4d metals. These values ac-
count for 60% or more of the ab initio values; the larger
value of AE for the 4d metals is also consistent with the
ab initio trends. Finally, hE has its largest value for a
half-filled band, again consistent with the ab initio results.
Thus the presence or absence of the nonbonding peak
plays an important major role in determining AE.

B. Anderson-lattice model

The origin of the nonbonding peak can be established
without taking into account the perturbations due to the
Al pseudopotential. Thus we begin by studying the fol-
lowing Hamiltonian:

c.k+K. When the s-d interactions Vk+K are "turned
on, " the energies of the d-wave functions are shifted by
interaction with the plane waves. In degenerate second-
order perturbation theory, ' the energy shifts 5ed are
equal to the eigenvalues of the matrix

~Hes (k) ~ k+Km k+K, m'

d ek+K)
(6)

Thus the largest contributions to the d-energy shifts come
from plane waves close in energy to c.d. On the other
hand, if a linear combination

~ gd ) =g C
~
k, m ) exists

which does not couple to any plane waves with energies
close to Ed, the energy associated with this linear com-
bination should only be shifted slightly. For a given k in
the first Brillouin zone, consider the four reciprocal-
lattice vectors K„K2, K3, and K4 such that the energies
c.k+K are closest to E.d. By elementary linear algebra, the
system of four equations in five unknowns

H= g Ek+R k+K)(k+K~
(~k+KIHlgd ))= g C Vk+R =0, i =1,2, 3,4 (7)

k, K

+Ed g lk, m)(k, ml

must have at least one nontrivial solution gd. The shift
b, Ed, estimated as the expectation value (Pd ~AH' ~gd ),

X g ( Vk+K ~k+K) (k, m~+H. c. ) . (4)
k, K, m

Here the
~

k+ K ) are plane waves with free-electron ener-
gies ck+K, k is in the first Brillouin zone, K is a recip-
rocal-lattice vector, ~m, k) =(1/N' )+Re'"' R, m ) is a
d-orbital Bloch wave (

—2~m 2) with energy Ez, and
the Vk+K are s-d hybridization strengths. Here the K
are the transition-metal sites and 1V is the number of
transition-metal atoms. Direct d-d couplings are ignored,
because the spacing between transition-metal atoms is
large enough ( 3.7 A) that indirect interactions mediat-
ed by the free-electron terms dominate. This follows
from the k independence of cd since

10

I

0

~d
(R, m~a~R', m ) = y e'k''R R'~=s

k
(5)

(1,1,0)

(a)

(1,1,1} (1,1,0)

To analyze the electronic structure of this Hamiltonian
we begin with the case Vk+K =0. In this case [cf. Fig.
5(a)], at each Bloch wave vector k in the first Brillouin
zone, one has five eigenfunctions ~k, m ) in the d complex,
as well as an infinite collection of plane waves at energies

FIG. 5. (a) Free-electron band model for A13Mn in Cu3Au
0

structure at 3.80 A lattice constant; dashed line denotes d-

orbital energy. (b) Ab initio band structure for A13Mn in

Cu3Au structure.
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will then be small because of the large energy denomina-
tors in Eq. (6).

Of course, there is no guarantee that
I gd ) is an exact

eigenfunction of the matrix 5H' . However, one can

rigorously show that 6H ' must have a small eigenvalue
associated with I1(d ). To see this we apply the variation-
al principle to t5H' ] . From Eqs. (6) one readily shows
that

(@d I~II "(k)'lqd ) =
m, m*, m", K, K'

m ~k+ K, m ~k+ K, m" ~k+ K', m" ~k+ K' m ~m '

(ed ek+K)(Ed 8k+K')
(8)

By Eq. (7) one need retain in Eq. (8) those reciprocal-lattice vectors K; with i ~5. The variational principle for the
lowest eigenvalue of a linear operator then implies that 5H' (k) has an eigenvalue which is less than or equal to the
right-hand side of Eq. (8). Since the eigenvalues of oH '~(k) are the square roots of the eigenvaiues of gH etr(k)2 tl ere is
at least one eigenvector whose energy shift satisfies

m, m', K, K'm, "
Cm Vk+ K, m ~k+ K, m " ~k+ K', m" ~k+ K', m ' Cm '

(Ed —&k+~)(&d —
&k+K )

1/2

(9)

where the prime denotes that only K; with i + 5 are in-
cluded. The right-hand side of (9) is simply the norm Iul
of the five-component vector whose mth component is

u
m', K

~k+K, m ~k+K, m'Cm'

(Ed —&k+X)

Since ICI =(g,c )'~ =1
ul ll&H "'ll, where

follows that

k+K, m k+K, m'

ek+z)
(10)

EE=2/Qpf, ( eF ),
where pf, is simply the free-electron density of states; the
factor of 2 accounts for the spin degeneracy in pf, . Typi-
cally, the minimum energy difference led —ek+Kl in (10)
would be (5/2)b, e. Thus a reasonable value for the width
of the narrow band is

2(
I V,

~
™= —,'I Vk+~, I'&pfe(EF»5hz

(12)

where ( I Vk+& I ) is a typical value of
I Vk+&

This effect is illustrated for the hypothetical A13Mn
compound in Fig. 5(b), which shows the ab initio band

and the norm
II II

denotes the largest absolute value of the
eigenvalues of an operator.

Thus at each value of k, there is at least one state
within an energy separation II5H ' '

ll of the bare d-state
energy c&. The width of the narrow band thus obtained
depends on the energy denominators in Eq. (10), which in
turn depend on the average energy splitting AE between
plane waves Ik+ K) that are neighboring in energy. The
number of such plane waves per unit energy, at a particu-
lar Bloch wave vector k in the first Brillouin zone, should
on the average be equal to the density of states per unit
cell per spin. Thus an average value of Ac. near the Fermi
level should be

0
structure for a lattice constant of 3.8 A. For this case we
have b.E=2 eV from Eq. (11). By fitting the d-projected
density of states similar to those shown in Fig. 3(b) to a
Lorentzian shape, we obtain 1 eV as a typical value of
Vk+K . Thus we expect for the narrow band a width of
roughly 0.2 eV, consistent with the calculated widths.
The nonbonding effect is particularly large along the
high-symmetry (vr/a, ir/a, ri) direction shown in Fig. 5.
Along this direction, the 12 lowest-energy free-electron
wave vectors have the form k+ K =(+sr/a, +sr/a, q).
The small group of each vector k+K has eight elements
generated by 90' rotations about the z axis, and reAection
through the x and y axes. The (x —y ) d orbital belongs
to the representation which is odd under the 90' rotations
but even under the rejections, while the plane waves
k+K belong to other representations. Therefore the
(x —y ) d orbital couples to none of these plane waves,
leading us to expect an extremely narrow band; this is
confirmed by the calculated band structure, which shows
a bandwidth of less than 0.1 eV in the direction plotted.
Thus the large nonbonding peak is due to both the small
real space unit -cell, which leads to a large value of b E

I
cf.

Eq. (11)], and the high point group symmet-ry, which fur-
ther eliminates possible s-d couplings.

Both of these contributing factors are reduced in the
Al&2W structure. The unit-cell size is more than three
times larger than that of the Cu3Au structure, which
gives Ac=0. 6 eV. The rotational symmetry is reduced,
because the fourfold axes in the cubic group of the
Cu3Au structure become twofold axes in the reduced
group of the A1,2W structure. %'e then expect to see a
much smaller density of states in the region within a few
tenths of an eV of the band center, as is seen in Fig. 3(a).

Thus compounds of Al with transition metals in
columns VI and VII should be stabilized by large unit-
cell size and low point-group symmetry. Both of the fac-
tors are present in all of the observed crystal structures.
All of them have at least 12 atoms per unit cell, and in
most cases symmetry lower than cubic. In fact, with the
exception of the Al&zW and a-(Al-Mn-Si) structure com-
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pounds, the symmetry is tetragonal or lower.
Additional support for the stabilizing mechanism dis-

cussed above comes from the previously mentioned ab in-
itio electronic-structure calculations for the a-(Al-Mn-Si)
structure. These showed a dip in the density of states in
the vicinity of the Fermi level. In addition, the experi-
mentally observed absence of magnetic moments on Mn
in the a-(Al-Mn-Si) and A16Mn structures suggests that
they have a reduced Fermi-level state density. Finally,
we note that a somewhat similar mechanism seems to
operate in stabilizing transition-metal alloy complex
phases as well. ' In comparison with the fcc structure,
these complex phases have a reduced average density of
states in a relatively broad region around the Fermi level.
However in the transition-metal alloy case, the fcc struc-
ture does not display nearly as sharp a peak such as the
one seen here. This is probably because in the purely
transition-metal case, there is a larger density of d states
available for hybridization.

For the purposes of modeling the Al-rich transition-
metal compounds and alloys, it is useful to establish the
relative importance of the two factors discussed above,
unit-cell size and reduced point-group symmetry. We
have made some progress in this direction by considering
a hypothetical Al»T structure in which the atoms occupy
the sites of a fcc lattice, and the transition-metal atoms T
are arranged on a bcc lattice. This structure has the large
unit-cell effect, but not the reduced point-group symme-
try. Thus the energy difference

bE =E (A1,~T) —E (A13T)—12E (Al)

should indicate the importance of the unit-cell size effect.
We have calculated this energy difference for the transi-
tion metals with nearly half-filled d shells. The lattice
constant corresponding to the minimum energy for the
Cu3Au structure was used for each of the three calcula-
tions entering AE. The energy differences are given in
Table I. For the group-VI and -VII metals, AE corre-
sponds to 30—50'1/o of the nonbonding peak contribution
as estimated from Eq. (2), or 20 —30% of the Al&2W
versus Cu3Au energy difference. For the group-V and
-VIII transition metals, the unit-cell size effect appears to
be practically negligible. Thus, in these cases a large part
of the effects of the nonbonding peak comes from other
causes, such as the symmetry of the local environment.
To treat this effect, one could include the effects of the Al
pseudopotential by adding perturbing terms to Eq. (4).
At present, we see no straightforward way of treating the
effects of these terms. Therefore, we defer discussion of
the local-environment effect to the next subsection which
evaluates them within a tight-binding context.

TABLE I. Energy difference AE between hypothetical Al»T
compound and combination of A13T and Al.

C. Tight-binding model

The effects of the symmetry of the transition-metal lo-
cal environment are most easily explored via a tight-
binding analysis. The characteristic angular dependences
of the relevant wave functions are immediately apparent
in the Hamiltonian, and can be directly translated ' into
angular forces which discriminate between various possi-
ble local environments. As a basis set, we use the d orbit-
als on the transition-metal sites, and s and p orbitals on
the Al sites. This gives a Hamiltonian of the following
form:

(13)

Here i and j denote atomic sites; p and v are orbital in-
dices which describe s and p orbitals on Al sites and d or-
bitals on transition-metal sites. Here the c;„are single-
site energies which on transition-metal sites have the
value cd, and on Al sites have the values c, or c . The
h,I".' are interatomic couplings whose angular dependence
is determined by the Slater-Koster relations for two-
center integrals. We will, for simplicity, focus on the
effects of only the o. couplings. For our analysis, which
focuses on the effects of changes in the angular environ-
ment, rather than on the effects of the local density of
neighbors, it will not be necessary to specify the form of
the radial dependence of the couplings. The results will
depend only on the Slater-Koster relations and estimates
of the d-band width.

Our analysis of the angular forces is based on a mo-
ment analysis of pd, the DOS projected on a transition-
metal d orbital. The moments are defined by

p„=—,
' I (E —

ed )"pd(E)dE,

where the factor of —,
' "undoes" the spin degeneracy con-

tained in pd. For example, pa=5 and, as mentioned
above, p2 describes the average width of the d complex.
In Sec. III A it was found that the calculated structural-
energy differences depended strongly on the contribution
of the nonbonding peak at roughly the center of the d
band. The lowest-order moment that describes it is p4.
It may be thought of as describing fluctuations in E, and
is thus minimized (at fixed pz) for a bimodal DOS having
only two 6 functions with equal weights. For DOS hav-
ing large contributions at the center of the band, as well
as in its outer regions, p4 is larger. A small value of p4
typically results in a reduced DOS at the Fermi level. If
all lower moments are equal, this is preferred for ba~ds
which are nearly half-filled. For nearly ulled or empty
bands, a large value of p4 is preferred, since such a DOS
has broader tails.

The connection between p4 and the angular forces is
based on the rigorous real-space formulation of p4.

Cr
Mn
Mo
Tc

—0.33 eV
—0.34 eV
—0.29 eV
—0.48 eV

p4(i)= g g g hp~ h, k'ihkiI'h;, ",
p j,k, lv, g, g

where p&(i) corresponds to the projected DOS on site i
Our main concern will be with the self-retracing paths in
which the second hop leads back to the transition-metal
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atom. We will denote this part of p4 by

p,"'(i)= y y y hP, hg.hg9$P .
p J k V~YJg

(15)

The local angular environment inAuences p4
' via the an-

gular dependence of the hopping integrals. Since the
electronic-band energy depends on p4, and p4 in turn de-
pends on the local angular geometry, one can derive '

a connection between this geometry and the band energy.
This connection is based on linearizing the dependence of
the band energy on p4, and takes the form of an angular
three-body effective potential:

BE,i
V3"(i,j,k) =p~ '(ijk)

BV4
(16)

where the derivative is taken at fixed p2 and i is the
transition-metal site. The normalization of V3 is such
that the structural energies per transition-metal atom i
have the form g. k V3 (i,j,k). In Eq. (16)

p4'~'(ijk) = g hp~ h;"hghg' (17)
P ~~'9 0

is the contribution to p4' '(i) from the path through j and
k, and the derivative BE,&/Bp4 is obtained from a model
DOS with parameters which are adjusted to obtain the
correct moments. The derivative is evaluated in a refer-
ence environment, which we choose to be the icosahedral
one (f~ =0); using a cubic reference environment changes
strength of the potential by only 10%. We use the model
DOS used above [cf. Eq. (1)] to describe the effects of the
nonbonding peak. This gives the following dependence of
f on p2 and p4..

for all j. Assembling these values, and recalling that
p0=5, we obtain from Eq. (19) that V3 (ijk)=(0 0.72
eV) [Pz ( cos8 ) ] .

V3 is plotted in Fig. 6. The most important feature of
this interaction is the peak at 90; minima are seen at 55'
and 125'. As shown in Figs. 6(b) and 6(c), the peak at 90'
makes a contribution that favors the Al&2W structure
over the Cu3Au structure. The contribution of the angu-
lar interaction to the structural-energy difference is found
to be 0.20 eV per Mn atom, which accounts for roughly
30%%uo of the contribution of the nonbonding peak. Thus
this effect is somewhat smaller than the unit-cell size
effect discussed above.

Geometric analysis of other observed structures of Al
compounds with group-VI and -VII transition metals
supports the presence of an angular potential which pe-
nalizes 90 bond angles around the transition-metal
atoms. Histograms of the bond angles present in the u-
(Al-Mn-Si) and A16Mn structures' are shown in Fig. 7.
Few bond angles within 15' of 90' are seen. In compar-
ison, the Cu3Au structure, which is formed by A13Sc and
A13Y, but not by the group-VI and group-VII com-
pounds, has many such bond angles. The latter transition
metals, such as Co and Ni, form structures' with bond
angles which are not precisely 90', but are closer to 90

—o.as

2
P29=1——

P&o
(18)

Here po=5 is the total weight of the band. From Eqs.
(3b) and (18), using the chain rule for derivatives, we ob-
tain for a half-filled band (Nz = 5)

BE,) BE„Bfp" =-.'IVp~/(p5 0) .
Bp, Bf, Bp,

We note that W =+3p2/po, ' thus we obtain
BE,

&
/Bp4=9/4&3 pz~ /p4po . Finally, one can show

that if only cr couplings are kept, then p4' '(ijk) has ' a

simple analytical form

p4 '(ij k) =h;, h;k [P2(cos8;~k ) ]

50—

(b)

where 0, k is the angle between the ij and ik bonds. Thus
we obtain the following expression for the three-body in-
teraction:

V3 (ijk)= —,'&3[P2(cos8, k)] (h, h, k )p2~~2/(p~03~2) .

I

0 30 60 90 120 150 180

8 (deg)

(19)

For Al-Mn, taking S o=3 eV as in Sec. IIIA, we have
(p2/po)=3 eV; for f~=0 (the reference-environment
value), (pz/p4po) =0.55 from (18). If nearest-neighbor in-

teractions are assumed to dominate p2, the h;~
=

—,', p2

FIG. 6. (a) Angular three-body potential for Mn in Al. Al-

Mn-Al bond angle denoted by 8. (b) Bond-angle distribution of
transition-metal environment in Al»W structure. N3(0) denotes
number of Al-Mn bond pairs, separated by angle 0, surrounding
Mn site. (c) Bond-angle distribution of transition-metal envi-

ronment in Cu3Au structure A13T compounds.
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20 (a)
we cannot give a real-space formulation of the stabiliza-
tion energy associated with it.

10—
IV. CONCLUSIONS: RELEVANCE

TO ICOSAHEDRAL PHASES

0 (

(b)

10—

pL
30' l f

(c)
J ( )

20—

10—

than those of the group-VI and -VII transition metal
compounds.

D. Other contributions

The factors which we have treated so far account, in
combination, for roughly 50% of the ab initio structural-
energy differences. We cannot establish at this point
whether we have underestimated the effects of these fac-
tors, or other factors make significant contributions. We
have not treated radial factors such as those included in
the "effective-medium" calculations ' discussed above.
It is possible that these are larger than the "effective-
medium" estimates. Since these estimates are based on a
uniform electron gas, they presumably do not completely
account for the covalent-bonding effects which must be
present in the Al —transition-metal interaction. In addi-
tion, the presence of the quasigap in the Fermi-level DOS
in the ab initio calculations may make a large contribu-
tion (beyond the elimination of the nonbonding peak).
The integrated reduction in weight due to the quasigap
amounts to roughly two electrons, or approximately the
same as the weight of the nonbonding peak. This would
suggest a contribution of the same magnitude as that of
the nonbonding peak. However, we do not at present
have a theory describing the origin of the quasigap, and

0 30 60 90 120 150 180
8 (deg)

FIG. 7. Bond-angle distribution of transition-metal environ-
ment for (a) icosahedron center Mn site in A1-Mn-Si, (b)
icosahedron Mn vertex site in Al-Mn-Si, and (c) Mn site in
A16Mn. %3{6)is broadened to simplify visualization of distribu-
tion.

So far we have isolated some of the energetic factors
which are responsible for the stabilization of the A1,2W
structure in Al —transition-metal compounds. We will
conclude this paper by speculating on the importance of
these factors in icosahedral (i) phases. The behavior of
the DOS near the Fermi level, which we have emphasized
in our analysis, appears to be an important factor in the
formation of quasicrystals "' and in discriminating be-
tween stable and metastable quasicrystals. The latter
conclusion is based on electronic specific-heat measure-
ments of nearly-free-electron i phases, which found that
stable i phases have much lower values of the DOS at the
Fermi level than metastable ones. Our analysis suggests
that the i phase, with its lack of both translational and
rotational symmetry (at most a finite number of sites ac-
tually have strictly icosahedral symmetry), should have a
lower Fermi level DOS than simple competing structures
with cubic symmetry, such as the Cu3Au structure, if the
d band is nearly half-filled. This should provide a stabil-
izing contribution for the i phase. The observation that
binary Al —transition-metal i phases form most easily for
transition metals with nearly-half-filled d bands supports
this contention. As a caution, however, we note that the
above energy terms do not appear to be necessary for the
formation of i phases, which can form even with the
late transition metals, where these terms are less impor-
tant, and may even change sign.

In addition to illuminating the stability of i phases, the
present results also have implications for their structure.
Nuclear magnetic resonance and magnetic susceptibili-
ty measurements for the Al-Mn i phase have suggested
a distribution of magnetic moments on the Mn sites. On
the basis of the Stoner theory of magnetism, this should
be associated with a distribution of values of the DOS at
the Fermi level (in a preceding paramagnetic state). Ac-
cording to the results of Sec. III C, such a distribution
might be due to a distribution of local site geometries.
For example, those having symmetry close to cubic might
be expected to have higher values of the DOS, and others
to have lower values. Broad distributions of Mn site
geometries are certainly present in all existing models of
the i phase. Of course, variations in the local density of
Al atoms surrounding the Mn atoms would also lead to
variations in the Fermi-level DOS. At present we see no
way to experimentally distinguish between the angular
effect and the local-density effect.

It would be desirable to include the types of terms dis-
cussed in Sec. III in atomistic simulations of quasicrystals
and their formation. Most existing simulations of rapidly
quenched structures have relied on radial interac-
tion. ' ' ' Even at this level, it has been argued that a
measure of local icosahedral packing is naturally present
in undercooled liquids. Here we have seen that angular
forces couple very strongly to various types of local struc-
tures which could be found in such liquids; their effect on
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local icosahedral packing may well be larger than those
of the radial terms. Also, since the sign of the angular
terms varies fairly rapidly across a transition-metal row,
angular forces should be very useful in studying chemical
trends in liquid and quasicrystal structure. In the ab-
sence of ab initio schemes for handling these systems, the
study of such trends is likely the most proAtable way of
obtaining an understanding of the metastability and sta-
bility of i phases.
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