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Quasiparticle excitations in the mixed state of a type-II superconductor outside the vortex cores
are shown to fall into bands, and near H, 2 have a Landau-level type of structure. This leads to de
Haas-van Alphen oscillations in the quasiparticle magnetization. Most of the pairing comes from
states near the band edges and gives rise to a complicated structure of the order parameter.

There has been considerable interest recently in the
spectrum of quasiparticle (qp) excitations in the mixed
state of type-II superconductors. Scanning-tunneling-
microscope techniques have been used to study the local
density of states in the cores of the vortices. ' The bound
states, density of states, and scattering states of a single
vortex line have been studied theoretically by a number of
authors. The bound states in the cores of the vortex
lines are, to a first approximation, independent of the field
when the coherence length is small. The eff'ect of the
periodic lattice of vortex lines on these states has been dis-
cussed by Canel. If the temperature is not too low, most
of the excitations —for materials with a small coherence
length —will lie outside the cores; these excitations can
make a contribution to the thermodynamic properties of
the superconductor. In the present paper we study the
quasiparticle excitations above the gap outside the vortex
cores. They have an interesting structure and fall into
bands and near H, 2 have a Landau-level-type structure.
This leads to de Haas-van Alphen-like oscillations in the
quasiparticle magnetization. de Haas-van Alphen oscil-
lations in the mixed state have been observed by Graebner
and Robbins.

From the quasiparticle spectrum the order parameter
can be calculated self-consistently. Our results show that
most of the pairing comes from states near the quasiparti-
cle band edges. The order parameter also contains contri-
butions from higher Landau levels and thus has a more
complicated structure than that given by Abrikosov. '

Such contributions have been discussed by Markiewicz et
al. " but were based on some ad hoe assumptions about
pairing in the mixed state. de Haas-van Alphen oscilla-
tions in the critical temperature in the high-magnetic-field
limit have been studied by Gruenberg and Gunther' and
Tesanovic, Rasolt, and Xing. '

The quasiparticle excitations in a superconductor are
solutions to the Bogoliubov equations' for the amplitudes
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where eF is the Fermi energy. We first study the excita-
tions near H, 2 and we take the order parameter in the
Abrikosov form
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with —q/2(k~q/2. For simplicity we consider the
two-dimensional case. The modifications for three dimen-
sions are given below. When (3) are substituted in (1) we
get the set of equations

For simplicity we assume a square flux-line lattice with

q 2tr/I but this has little effect on the results. The
form (2) for i), corresponds to a vector potential
A -(O,Hx, O). K is the Ginzburg-Landau parameter. In
(1) we take the vector potential as that of a uniform field,
i.e., as above, and neglect its variation due to the vortices,
which is of order 5 . The order parameter is periodic in y
and we can write the solutions of (1) in the Bloch form
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As 6, is small the approximate solutions are
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where f„=e
In the absence of pairing (d =0) the solutions of (4) are

normalized harmonic-oscillator functions y [[x—2l (nq
+ k)]/2l ] of width J21 centered around x =2l (nq
~ k), and of energy e = (m+ —,

' )co, —eF where co,
=eH/m, c is the cyclotron frequency. They are thus
strongly localized as are the functions f„.In obtaining ap-
proximate solutions to (4), as 6«to, we can neglect mix-
ing of diAerent Landau levels through h, . If necessary this
could be included by perturbation theory. Also as the
functions in (4) are strongly localized a tight-binding ap-
proximation is suitable. From (4) we see that the strong-
est pairing will occur near the edges of the bands, i.e., for
k =0 the pairing occurs between u„and v„which have the
largest overlap, and for k =q/2 between u„and v„+). We
first examine these two cases.

(i) k=0. We only retain the amplitudes u„and v„in

(4) which become

where
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From (7) the qp energies and amplitudes are independent
of n and given by
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The quasiparticles thus have a Landau-level structure. In
three dimensions E is replaced by e k

=e +k, /2m„
where k, is the wave vector parallel to the vortex lines.
The energy-gap parameter d,I depends on the quantum
number m; in particular IO=2 ' and for large m,
I —I/(2trm ) '/'.

(ii) k =q/2. In this case the largest coupling occurs be-
tween u, and v„+)through the term f2„~)in (4) and an
identical set of qp energies to (9) is obtained.

For k =0 or q/2 we have highly degenerate sets of solu-
tions (6) for each value of m corresponding to the
different values of n When . the interaction between these
states is taken into account these solutions form bands.
As the states u„and v„arestrongly localized we can take
a tight-binding form (6) for the solutions and only keep
nearest-neighbor coupling between different n values. For
k =0 this leads to the set of equations replacing (7),

where y is the mth normalized harmonic oscillator func-
tion. It should be noted that f2„is large where u„and v„
are large. When (6) is substituted in (5) and we multiply
on the left by y(") and integrate we get the equations
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where [ ] means the coefficient of s t in the expan-
sion of quantity in the bracket. These overlap integrals
decrease exponentially with ~2n n'( and the n—earest-
neighbor approximation is a good one. We can take
u„,b„—exp(2trink /q) ( —q/2 & k„&q/2) and the excita-
tions form bands with energies

The bandwidth is of order hI~' and is much smaller than
the cyclotron frequency.

We now consider how the qp excitations are modified
when k&0 or q/2. It is clear from (4) that for k&0 the
overlap of u„and v„is reduced. Supposing k is small, we
can take approximate solutions

u„(k)=ay [x —21'(nq+k)],
'+6, ' I"'+I"'cos

q
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v„(")=by [x —2l (nq —k)].
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Using the same methods as above, it is easily shown
that the quasiparticle energies are now

usual BCS form

Em, kx, k 8m+5 Im + Jm cos
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with ek =k /2m, —eF and Ek =(@k+6 )'/. The band
gaps occur when k=G/2 where G =(n~, n~)2'/d is a re-
ciprocal lattice vector. To a first approximation, the band
gap is

~G I( Y—G/21@'I v G/2) I

x Iexp[-,' (s —t)' —rk/q(s —t)]l where

Thus for kAO the energy gap is reduced by the factor
exp( —4+k /q ) and the quasiparticles are approximately
electrons or holes. A similar result to (14) applies when
k —q/2 except that I (2k/q) is replaced by
I (i —2k/q).

To summarize, we have obtained the following picture
for the excitations outside the vortex cores. The quasipar-
ticle energies fall into bands labeled by the Landau level
m Within each band m, the states are labeled by k and,
k with —q/2 & k„,k & q/2 (and k, in d=3) and the en-
ergy only depends very weakly on k and k through the
energy gap A . The bands have a width d and are thus al-
most flat and separated by co,. The number of states in a
band is 2L /2irl =2L H/po, where L is the area of the
metal and the 2 in the numerator comes from spin. This is
twice the number for a Landau level in a normal metal be-
cause the flux quantum in the superconductor is $0
=2'/2e. At lower fields H —H, ~

this picture is
modified. Again suppose that we have a square Aux lat-
tice with a spacing d between the vortices so that
Hd =&0. Owing to the lattice periodicity we again ex-
pect energy bands with the number of states per band (in-
cluding spin) to be 2L /d =2L H/po. The order param-
eter 6-kF/rn, g is now much larger than the magnetic en-
ergy co, —1/m, d for high K materials. (The opposite is
true near H, q. ) In this case for the quasiparticle states
above the gap, it is appropriate to start with a free-
electron picture and treat the periodic magnetic field and
variations in h, as a perturbation. For high-E materials, h,

is constant except in regions of dimension ( which we
neglect. We suppose that the Aux lattice is formed by su-
perposing flux lines at the positions p „=(md,nd). In a
gauge in which 6 is real, the vector potential due to a vor-
tex at the origin is

P'= A p+ A . (19)
m, c 2m, c

The terms linear in A give zero and we find

8'g =- ~O/2 d2peiG Pg ~2d 2
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If we approximate the unit cell by a circle of radius
d & X and cut off the integral at the lower limit p =g we
find

bG i I inGC I ~
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This gap is of order co„the cyclotron frequency, and de-
creases as the reciprocal lattice vector G increases. The
band gaps are thus similar to those found near H, 2. The
bandwidths are of order kF/md and larger than the gaps.

We now discuss some consequences of these results. As
the quasiparticles near 0,2 have a structure similar to the
Landau-level structure of electrons in a uniform field, we
would expect the quasiparticle magnetization to exhibit de
Haas-van Alphen-like oscillations. Because the spacing
of the levels (9) is determined by the cyclotron frequency
ni, =eH/mc the period will be the same as in a normal
metal. In order to calculate the oscillating part of the free
energy due to the quasiparticles we approximate (14) by
E =(e2+82I ) '/, i.e., neglect the variation of the gap
with k and k. For large m, I~ —1/(2am)' and the gap
gets small which has an important effect on the amplitude
of the de Haas-van Alphen oscillations. ' In the d=2
case the quasiparticle contribution to the free energy per
unit area is

A =X'curlH = Ko(p/X) ( —y, x),0

2z'A. p F = g g~ ——ln 2 cosh
1 2 PE

2n'I2 m P
(22)

where A. is the penetration depth and E is a Bessel func-
tion. We want to solve the Bogoliubov equations (1) with
this vector potential in each cell. Of greatest interest are
the band gaps which form at the zone boundaries. To esti-
mate these, as discussed above, we begin with a free-
quasiparticle picture and treat the vector-potential terms
in (1) as a perturbation. d, is taken to be real and con-
stant. The unperturbed solutions of (1) are then of the

(—1)'F.„=,', g, I(p)cos
Sz l p=& p

(23)

where

where p =1/kT. Using the Poisson summation formula'
the oscillating part of F is
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I(p) =P deexp
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where f(0) =1 and f(x) =(trx/2) 't2x»1. F„,is of the
same form as in a normal metal but the eff'ect of the gap is
to reduce the amplitudes in the case where Ph & 1. This
effect is quite small because the gap is small in the high
Landau levels. Thus the quasiparticle magnetization in
the mixed state exhibits oscillations with amplitude de-
creasing with increasing A.

%e have assumed that the order parameter is of the
Abrikosov form (2). Actually, we should make a self-
consistent calculation of the order parameter from the
quasiparticle spectrum

/J. (r) =guru, v, [1 —2f(E )], (2S)
a

where a labels the qp states (including those in the core of

(24)

t

the vortex lines). From this formula we see that the main
contribution to the pairing near H, q comes from states
near the band edges k=O, q/2 where both u and v are
simultaneously large. The self-consistent order parameter
contains contributions from all the Landau levels (9) and
will thus have a more complicated structure than the
Abrikosov form which only includes the lowest Landau
level. The lowest level will dominate at sufticiently high
fields. A more complicated form for 6 than (2) will not
have much effect on our results.
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This work was supported in part by the National Science
Foundation under Grant No. 4-20508.

'H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles, and J.
V. Waszczak, Phys. Rev. Lett. 62, 214 (1989).

2C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Lett. 9, 307
(1964).

J. Bardeen, R. Kummel, A. E. Jacobs, and L. Tewordt, Phys.
Rev. 187, 556 (1969).

4L. Kramer and W. Pesch, Z. Phys. 269, 59 (1974).
5J. D. Shore, M. Huang, A. J. Dorsey, and J. P. Sethna, Phys.

Rev. Lett. 62, 3089 (1989).
sU. Klein, Phys. Rev. B 40, 6601 (1989);41, 4819 (1990).
7F. Gygi and M. Schluter, Phys. Rev. B 41, 822 (1990).
sE. Canel, Phys. Lett. 16, 101 (1965).
J. E. Graebner and M. Robbins, Phys. Rev. Lett. 36, 422

(1976).
'oA. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957) [Sov.

Phys. JETP 5, 1174 (1957)].
''R. S. Markiewicz, I. D. Vagner, P. %'yder, and T. Maniv,

Solid State Commun. 67, 43 (1988).
'zL. W. Gruenberg and L. Gunther, Phys. Rev. 176, 606 (1968).
' Z. Tesanovic, M. Rasolt, and L. Xing, Phys. Rev. Lett. 63,

2425 (1989).
'4For a discussion, see P. G. de Gennes, Superconductivity in

Metals and Alloys (Benjamin, New York, 1966).
'5I am grateful to P. Coleman for this remark.
'6R. B. Dingle, Proc. R. Soc London Ser. A 211, 500 (1952).


