
PHYSICAL REVIEW B VOLUME 43, NUMBER 14

Extreme g-factor anisotropy induced by strain
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Magnetotransport measurements as a function of B-field orientation are studied on p-type
strained-layer (001) GaAs/InpppGapspAs/GaAs quantum wells at temperatures from 4.2 to 0.4 K.
It is shown that the two-dimensional holes are derived from the m~ =+

2 subbands and that the
Zeeman splitting between the m, = —,'and m~ = ——', states of the same Landau level depends on

the components of B perpendicular to the strained layer and not the total B. This g-factor anisot-

ropy is shown to be a consequence of the large unaxial strain in the Ino. 206ap. 80As layer.

The Lande g factor of electrons in semiconductor ma-
terials is of fundamental interest. It is the parameter that
determines the lifting of the spin degeneracy of electronic
energy levels in the presence of a magnetic field. In a
two-dimensional (2D) electron system, it is well known
that the Landau-level splitting is determined by the
magnetic-field component 8~ perpendicular to the sur-
face, while the Zeeman spin splitting dE —is proportional
to the total magnetic field B. Thus, by tilting a sample in
a magnet, the ratio of dE — to Landau splitting can be
varied continuously. This was first done in the magneto-
transport experiment by Fang and Stiles in 1968, ' and the
technique has since become an established method to dis-
tinguish spin from Landau splittings in 2D electron sys-
tems. It has been applied to determine the eff'ective g fac-
tor of 2D electron gases (2DEG) in a wide range of ma-
terials, including the Si metal-oxide-semiconductor struc-
ture, ' the InSb inversion layer, and the Al„Ga~—„As/
GaAs, the In„Ga~-„As/InP, the In, A1~ -„As/Inr-
Ga~ —~As, and the InAs/GaSb (Ref. 8) heterostructures.
So far, this technique has not been tested in experiments
on 2D hole systems. This is due to the inherent complexi-
ties of the energy structure of holes in these semicon-
ductors, arising from spin-orbit coupling and mixing of
the heavy- and light-hole bands away from the zone
center. ' The former splits the valence-band (VB) edge
into fourfold and twofold degenerate bands and, as a re-
sult, the hole eigenstates are no longer pure spin states.
The latter, in the presence of 8, gives rise to four Landau
ladders, each of which consists of a mixture of four
diA'erent harmonic-oscillator wave functions.

In this paper, we wish to report our experimental study
of the 8-field orientation dependence of the Shubini-
kov-de Haas (SdH) oscillations from the 2D holes in the
(001) Inp2pGapspAs/GaAs strained-layer quantum-well
structure. We find that, contrary to the 2D electrons,
hE —of 2D holes in the strain-split m~ =+

2 VB does
not depend on the total 8, but rather on its component
along the uniaxial strain, which is perpendicular to the

heterojunction interface. This observation suggests that
the g factor of the 2D hole gas (2DHG) is extremely an-
isotropic. The effective magnetic moment is oriented
along the interface normal; it cannot align freely with a 8
in the plane. of the heterojunction interface. We show that
this extreme g-factor anisotropy is a natural consequence
of the large strain along the (001) crystal symmetry axis
of the Inp 2pGap gpAs layer.

Our samples are from two p-type modulation-doped
heterostructures grown by molecular-beam epitaxy on
semi-insulating, (001)-oriented GaAs substrates. The
heterostructure consists of a 1.2-pm GaAs buffer layer, a
p type quantum well, and a GaAs cap layer. The
quantum-well structure is a 100-A undoped Inp 2pGap spAs
layer, sandwiched on both sides by an undoped GaAs
spacer and a 25-A Be-doped GaAs with a doping concen-
tration of 2&&10' /cm . The spacer thickness is 150 A for
one sample and 300 A for the other. The Inp 2pGap spAs
layer is thinner than the critical-layer thickness to avoid
dislocation formation. '' The samples are Hail bridges
and Van der Pauw patterns, and Ohmic contacts to the
2DHG are made by alloying an In:Zn mixture at 420 C
for 10 min in a hydrogen ambient. The magnetotransport
measurements are performed in a pumped liquid-helium
system and a He system, with 8 up to 10 T, using a rotat-
ing sample holder which can be tilted over an angle 8 up
to 90', with respect to the direction of 8.

Figure 1 shows the dependence of the Hall resistance
p ~ and the diagonal resistivity p„,in the integer quan-
tum Hall effect (IQHE) regime, on 8, which is applied
perpendicular to the sample surface (i.e., 8=0'). The
sample has a 2DHG density pro=2. 5X10''/cm and a
low-field mobility p =2.5 x 10 cm /V s. At integer
Landau-level filling factors i, the data shows the charac-
teristic features of the quantized plateaus, h/e i, in p„~
and the vanishing of p„„,when the Fermi energy is pinned
in the gap between two adjacent levels. The occurrence of
these features at odd integers, i =3, 5, 7, and 9, indicates
the removal of spin degeneracy for 8 ~ 1.0 T. In contrast
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FIG. 1. Hall resistance p„~ and the diagonal resistivity p as

a function of magnetic field 8 at (a) T=4.2 K, (b) T=2.3 K,
and (c) T=0.4 K. Sample 1 has a spacer thickness of 300 A
and the 2DHG has a density of p2o=2. 5&&10 "/cm2 and a mo-
bility of 2.5x10 cm2/Vs.

to the 2DHG in the lattice-matched AI„Ga~-„As/GaAs
heterostructure, ' ' in which two sets of SdH oscillations
are reported, we observe only one set of oscillations, sug-
gesting that only one subband is populated.

We have also made cyclotron resonance (CR) measure-
ments on the same sample using an optically pumped,
linearly polarized, far-infrared molecular gas laser at 4.2
K. ' The effective mass from the CR is m*=0.15m, .
This hole mass is considerably smaller than the GaAs hole
mass of —0.35m, . For our sample structure, the
Inp2pGap 8pAs layer is under biaxial compression and the
fourfold degeneracy at the VB edge is split into a
m~. = +

2 doublet and a m~ = +
2 doublet. The estimat-

ed strain-induced splitting is —60 meV, ' and the
m~ =+

2 band with a light in-plane mass is expected to
be the uppermost VB. From the observation of a light in-
plane hole mass in our CR experiment, we conclude that
the 2DHG is in the m~ = +

& band of the Inp 2pGap 8pAs
layer. Our SdH data show that the 2DHG occupies one
single subband.

In the IQHE regime, the dissipation in transport at in-
teger fillings is thermally activated and the activation en-
ergy is a measure of the energy gap between the neighbor-
ing Landau levels. In Fig. 2, we show this thermally ac-
tivated behavior by plotting as a function of 1/T, on a
semilog scale, the diagonal conductivity cr„„(=p,/p„,
+p,~) of the sample at the i =3, 4, 5, 6, and 7 minima.
The straight lines are fits to the linear portions of the data
to cr,„(T)=o„e / . The activation energy 6, ob-
tained from the data at the odd integer fillings, is a direct
measure of the spin splittings at 8 =3.3, 2.0, and 1.43 T.
Our data yield 6 =13, 4.0, and 1.7 K which correspond to

FIG. 2. Semilog plot of o„minimum as a function of 1/T at
filling factors i 3, 4, 5, 6, and 7.
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FIG. 3. (a) p„vstotal 8 and (b) p„„vs8~ =8cos8 at four

diA'erent tilt angles 0. The data are from sample 1 at T=4.2 K
and 0 is the angle between 8 and the surface normal of the sam-
ple.

an effective g factor g~ ~5.7, 3.1, and 1.7, respectively
(from d =g*pa8, where pa is the Bohr magnetron). We
should also note that o „,obtained from the extrapolated
intercepts in Fig. 2, is -2e h, which is more than twice
the value reported for 2DEG in the Al„Gai—„As/GaAs
heterostructure. '

In Fig. 3(a), we show the SdH oscillations as a function
of 8 for four different tilt angles at T =4.2 K. For 8=0',
the dips in p„„at8=5.0, 3.33, and 2.5 T correspond to
filling factors i =2, 3, and 4 (as identified by their respec-
tive quantum Hall plateaus in p„~).As 8 is increased, the
dip positions shift to higher 8 according to 8~/cos8, but
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the absolute magnitude of p„„atthe minima remains un-
changed. This observation is surprising in that, in con-
trast to the weil-known 2DEG case, /3E —depends only on
8&, not the total 8. More specifically, if the splitting is
proportional to 8, p„„atthe i 3 minimum should de-
crease exponentially with increasing 8, following p,'"

-exp( gp—/38/2kT). Since the i 3 minimum at
8 =3.33 T at 8 =0' is observed at 8 =5.13 T at 0=49.5,
p

'" is expected to decrease by more than a factor of 2,
which is not the case in our experiment. In Fig. 3(b), the
same data are plotted versus 8& for a direct comparison.
It is clear that not only the positions of the p„,minima
stay at the same 8& for all 0's, but the entire SdH spec-
trum remains identical within our experimental accuracy
of 0.4%. Thus, /«.E —,as well as the cyclotron splitting of
the 2DHG, are determined by 8&, not by the total 8.

We have made similar measurements on another sam-
ple having p2o=5. 2x 10''/cm and p =2.2x 104 cm2/Vs.
The data taken at 2.5 K for three different 8's are plotted
as a function of the total 8 in Fig. 4(a) and of 8~ in Fig.
4(b). At 8=0', when 8 is perpendicular to the interface,
the i =7 and 5 minima occur at 8 =3.0 and 4.2 T, respec-
tively. At 8=48.5', these same minima occur at 8 =4.5
and 6.3 T. If hE —is determined by 8, not 8&, the p,„at
these minima should decrease by two and four times that
at 0 =0 . Again, the SdH spectrum, when plotted versus
B~ [Fig. 4(b)], is identical for all 8 and it indicates an ex-
treme g-factor anisotropy.

It is well known that exchange interaction is important
in /«E —in transport and the value of g* is enhanced from
its bare band-structure value. "' However, the origin
of the observed anisotropy can be understood, quite apart
from the exchange enhancement, by considering the ener-
gy structure of the VB edge of the strained Inn 2oGao soAs
layer. If the uniaxial strain direction is ~, which is along
the (001) crystallographic axis normal to the Inn 2p-

Gao soAs layer, the strain Hamiltonian of the VB, given by

H, =(a+ —,
' b)e —b g J; e;; — dg[J;, J/le/,

i I 3 i,j

commutes with j, =J. r. ' Since the strain is large in our
samples, the degeneracy of the VB at k =0 is split into
two pairs of Kramers doublets, having definite spin eigen-

Sample 2
T= 25K

(a)

5000

states with eigenvalues of j,: mJ ~
2 or mJ=~ 2.

This splitting will be further increased by the quantum-
well confinement. 2o For Blls (i.e., 8=0'), the spin Ham-
iltonian, Htt xgopa(J 8), of the holes also commutes
with j,. ' Here, g0 is the free-electron g factor and x is a
Luttinger VB parameter. As a result, each doublet is fur-
ther split into two levels, either mJ + &, —

2 in one en-

ergy band or mJ = + 2, —
2 in the other. The Zeeman

splitting is the energy difference between two spin-split
states of the same Landau level. ' The effective g factor,
defined by hE —=gpb8, is equal to 3xgp for the m=~ —, band

J

For B in the plane of the strain layer, i.e., BJ r or
8 90', the problem is more complicated. However, if
the magnetic energy associated with the Luttinger Hamil-
tonian is small compared to the strain energy d„separat-
ing the mj +' —,

' and mj = + —,
' states at k =0, it is con-

venient to continue using the mJ = + 2, +
2 representa-

tion (corresponding to J along r), and project the 4x4
Hamiltonian matrix onto two 2 x 2 submatrices in the
space of the (&3/2, p —3/2) and (&1/2, (I1 —1/2) functions. The
form of the matrix for Hr3with Bll(010) or (100) is

B3 (T)

FIG. 4. (a) p„„vstotal 8 (b) p„„vs8~ for three different tilt
angles. The data are from sample 2 which has a 150-A spacer, a
p2o 5.2x10 "/cm2, and a j«2.2x10 cm /Vs at T=2.5 K.
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In our samples, h, ,&) Am, or gp~B. The contribution of
the off'-diagonal submatrices to the eff'ective Hamiltonian
in each subspace can be expanded in terms of I/6, . To
first order, the contributions of the off'-diagonal subrnatrix
in Hg to the eAective Hamiltonian in the mJ = ~

2 space
is of the order (icpsB) /2«1„which vanishes in the high-
strain limit. Consequently, the projection of Hg in the

I

mJ = ~
2 subspace is zero and AE — 0. Another pos-

sible source of Zeeman splitting for 8~v is the higher-
order q term in the spin Hamiltonian, which is negligible
in both GaAs and InAs. Therefore the g factor of the
mJ = +

2 2DHG is extremely anisotropic. Exchange
enhancement mill not change this result.

The above argument follows from the existence of a
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large uniaxial strain in the quantum-well layer and the
preferrential population of the 2DHG in the m~ + —',

band. Consequently, the phenomenon should be observ-
able in other strained-layer 2D hole systems, such as the
Si/Si„Gel — system. However, this extreme g-factor
anisotropy is uniquely associated with the 2DHG in the
mi = ~

& bands, not in the mj = ~ 2 bands. Finally, we
should note that since the activation energy is a measure
of the enhanced splitting, it will be difficult to infer tr

directly from our data.
In summary, we have studied the 8 orientation depen-

dence of SdH oscillations of the 2DHG in the (001)
GaAs/Inn 2oGao soAs/GaAs strained-layer quantum-well
structure. We find that /5E —of the 2DHG in the strain-
split mi ~

2 VB depends on 8 perpendicular to the

heterojunction interface, not the total 8. This g-factor an-
isotropy is shown to be a consequence of the large strain
splitting of the VB at k 0 due to the biaxial compression
in the Ino, 2oGaosoAs layer. Similar work has recently
been reported by Martin et al. on the Ga| —„In„Sb/
GaSb and by Glaser et al. z on the Si/Sil —„Ge„strained-
layer structures. These authors have independently come
to the same conclusion.
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