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Self-consistent model of magnetoplasmons in quantum dots
with nearly parabolic confinement potentials
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We investigate the longitudinal collective oscillations of a two-dimensional interacting electron
gas (2DEG) confined to a disk (quantum dot) in a perpendicular constant magnetic field. 1Ve

show how the exact results known for a parabolically confined 2DEG change when the confining
potential and the electron number are varied. Considering reasonable corrections to a parabolic
confinement potential, we are able to explain all features of the far-infrared spectrum of quantum
dots observed in recent experiments.

The dispersion of magnetoplasmons in a two-
dimensional electron gas (2DEG) confined to a circular
disk has been measured by several groups and is well
described by the simple formula

cog = —,'(co + io,), co = (io,'+ 4~o,')'L', (1)
where co, = eB/mc is the cyclotron frequency of an elec-
tron of effective mass m in a perpendicular homogeneous
magnetic field B. For large disks, uo has been inter-
preted as a plasmonic frequency. For small "quan-
tum dots, "

wo has been related to a parabolic confine-
ment potential, V, „r(r) = &mioor, and the insensitiv-
ity of the measured dispersion to the number IiI of elec-
trons in the quantum dot has been interpreted as indi-
cation for a suppression of many-body effects. In recent
high-resolution experiments on larger quantum dots in
GaAs heterostructures with 25 and more electrons per
dot, Demel et alt. 3 observed an additional resonance with
a frequency co+ above the io+ of Eq. (1) at high magnetic
fields (B ) 5 T), and an anticrossing-type splitting of the
io+ resonance at smaller fields (B 1.2 T). The upper
mode io+ could be fitted by Eq. (1) using a plasma fre-

quency uo & uo, and the anticrossing was attributed to a
nonlocal interaction of the corresponding u' mode with
the ~+ mode. The physical mechanism which makes
the higher mode and the anticrossing observable is, how-

ever, not, yet understood,
Recently it has been realized that the dispersion rela-

tion (1) gives the exact far-infrared (FIR) resonance fre-
quency for dots with an arbitrary number of interacting
electrons, if the confinement potential is parabolic and
the FIR electric field radiated into the system is homoge-
neous over the dot size. s 7 Then, the center-of-mass (CM)
motion decouples from the relative motion (RM) of the
electrons in the dot. The homogeneous external electric
field excites only the CM motion which has precisely the

same energy eigenvalues, and thus the same dipole reso-
nance frequencies, as a single electron. The more compli-
cated resonance structures observed by Demel et al.3 on
a quadratic array with many ( 104) dots must, there-
fore, be attributed to either interaction effects between
different dots or to a nonparabolic confinement potential
for a single dot. Both perturbative methods and ex-
act diagonalization for few-electron systems have shown
that the interaction between dots decreases rapidly with
increasing dot separation and is unimportant for the ex-
perimental situation. Deviations from parabolic confine-
ment change the dipole selection rules for the CM motion
and, more importantly, couple the CM and the relative
motion of the electrons in the dot. In this Rapid Commu-
nication we want to demonstrate that a circular symmet-
ric correction (e.g. , oc r4) to the confinement potential
explains already the occurrence of a higher mode and a
weak N dependence of the main resonance frequency, as
observed in experiment. 3 To understand the anticrossing,
we have to assume that the dots are not strictly circu-
lar symmetric. A correction to the confinement potential
with square symmetry [e.g. , oc (z +y )], which in view of
the preparation procedure is likely to exist in the inves-
tigated dot systems, leads to the observed anticrossing
behavior.

Our arguments are based on numerical calculations
for circular symmetric dots and on an analytic, pertur-
bative treatment of deviations from the parabolic con-
finement. Here we can present only the basic ideas
and main results, details are left for a future publica-
tion. The numerical calculations treat the ground state
of the interacting electrons (10 ( W ( 30) in a dot in
the Hartree approximation and the FIR response in the
random-phase approximation (RPA). In the following we
assume a strong quantum confinement in the z direction
parallel to the magnetic field and perpendicular to the

43 12 098 1991 The American Physical Society



43 SELF-CONSISTENT MODEL OF MAGNETOPLASMONS IN. . . 12 099

plane of the dots, and we neglect the extent of the elec-
tronic wave functions in the z direction. For an electron
confined in a circular symmetric potential V, „r(r) and
with gauge A = ~B( y, —z, 0), the angular momentum
I, = zp& —yp = i,hB/—Op is conserved with eigen-
values —hM and the energy eigenfunctions are, in polar
coordinates, of the form g(r, p) = exp( —iMp)CM„(r)
(M = 0, +1, . . .). For V, „r(r) = zmcuo~r2, the eigenfunc-
tions and energies EMn are well known,

with I~~ ~ a Laguerre polynomial& A = fi/m~, and
2EM„/ti=(2n+IMI+1)~ —M~, (n = 0, 1, . . .). States

I

with M() 0) and —M have the same radial wave func-
tion with mean square radius rM2„——2A (2n+IMI+1),
but the energy of the —M state is by Mh~, higher. For N
interacting electrons in this parabolic confinement poten-
tial, the CM moves just as an electron with N fold-mass
and N-fold charge, i.e. , with the same energy eigen-
values and eigenfunctions, but with a smaller amplitude,~ AcM ——A /Iq . In the Hartree approximation, we

do not exploit this knowledge and calculate the 4M„and
EM„self-consistently, together with the electron density
n, (r) and the resulting Hartree potential VH(r), which
adds to V, „r(r) in Schrodinger's equation. g Using the
self-consistent potential, we calculate the density-density
response function

) @M ( )C'M ( )@M ( ')@M. ( ')
M, n, M', n'

fM -fM
~ + EMn EM'n' + &g

where fM„ is the Fermi occupation number of the single-
particle state with energy Fpg„, and g ~ 0+. To sim-
ulate the FIR response of the dot, we calculate the
linear response to an external /ongifudinal (nonpropa-
gating) time dependent electric field E'" = —V'P'"'.
Within the RPA, this leads to a self-consistent poten-
tial P" = P'"' + q~'"d which, in the plane z = 0 of the
dot, satisfies the integral equation

d'q X' (k, q)4"(q) (4)

where planar Fourier transforms are taken. Knowing the
solution, we can calculate the power absorption from the
Joule heating,

P(~) =—
8~ (5)

with a small finite value of g (=0.03hu) in Eq. (3) to get
resonance lines of finite width. Collective modes (mag-
netoplasmons), defined as nontrivial solutions of Eq. (4)
for P'"' = 0, show up as resonance peaks in P(cu)

Due to the circular symmetry of the system the
eigenmodes have a well defined angular momen-
tum, P"(r, z = 0) = P"(r) exp( —iN&p) as is seen
from Eq. (3). Thus, in the Fourier transforms,
P'""(q, 0) = P'" (q) exp( —iN&p&), we choose gP"'(q) =
Q~& exp( —PQ2) with Q = ~2Aq, so that for Xz ——+1
the external field has circular polarization and, in the
limit P ~ oo, induces dipole transitions in the dot. For
the numerical calculations we take P = 60, choose GaAs
parameters, m = 0.067mo, r = 12.4, and calculate P(u)
for three difIerent confining potentials of the farm

I

from which the dispersion relations of Fig. 1 are obtained.
Thus, our consistent Hartree-RPA approach reproduces
the exact results for parabolic confinement very well. We
also find that the resonance spectrum is independent of
the electron number N, as it should. This is demon-
strated in Fig. 2 for B=O Similar r.esults were recently
obtained by Broido and co-workers, whereas a RPA
calculation which neglects the Coulomb interaction in
the ground state predicts strong N-dependent frequency
shifts. ~2

We also investigated corrections to the parabolic con-
finement by putting in Eq. (6) (a) 6 = 10 meV/A
and c = 0, and (b) b = 0 and c = 10 i7 meV/As.
In both cases the resonance spectrum becomes weakly
N-dependent, as is demonstrated for the Np ——1 mode
and B = 0 in Fig. 2. Moreover, for 8 & 1.5 T the

N& ———1 mode shows a splitting. The dispersion of the
main peak is indicated in Fig. 3 by the full circles, that
of the additional low-intensity side peak by open circles.

V, „r(r) = ar + br + cr (6)
0+
0.0

I

0.5
I

1.0
I

2.0

with a = 50 x 10 s meV/A. 2. For b = c = 0, this is
a parabolic confinement with h~o ——3.37 meV and, for
%=30, the electron density profile we calculated has
a radius of approximately 10 A. For both Nz 1and-—
Nz ——1 we find in this case a single peak of P(u)

FIG. 1. The excitation spectrum in the case of parabolic
confinement and an external dipole field. o: the Nz ———1 and
+: the N& ——+1 mode fromm the calculation. The dashed lines
are the exact results AEy =- A~y.
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with eigenvalue —h(M+ I). This holds with and without
the Coulomb interaction, v(r; —r&) = e /z~r; —rz ~, which
acts only on the RM. In general, the Coulomb repulsion
is less effective in more extended states, and, e.g. , the
ground state ~tp, cip) of the RM occurs with increasing B
at increasingly positive lo values. A correction br to the
confinement potential adds a perturbation

3.5— AH = b) r = bNR + Hg2+ His+ Hp4 (7)
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FIG. 2. The excitation spectra for B = 0.0 T and N„=
+1 as a function of the electron number N in the case of
the following: o, parabolic confinement; ~, ar + br; and +,
ar + cr confinement. Values for a, b, and t." are in text.
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FIG. 3. The dipole excitation spectrum in the case of (a)
ar + br and (b) ar + cr confinement. Position of strong

(~ ) and weak (o) absorption peaks for the Nz ———1 mode and
of the peaks for the N„= +1 mode (+) from the calculation.
The dashed lines are u = 2u .
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This structure continues to higher B values than shown
in Fig. 3. A slight increase of the B = 0 resonance fre-
quency with increasing N was also obtained by Broido,
Kempa, and Bakshi. An additional resonance was, how-
ever, not found, probably because the corresponding cal-
culation was done for too few electrons (N = 6), so that
the deviation from the parabolic confinement potential
did not become effective.

For a deeper understanding of the RPA results, we

consider the symmetry of the system. For N electrons in
a circular symmetric parabolic confinement potential, the
energy eigenstates can be taken as products ~M, n; f, n) =
) M, n) (I, o.) of eigenstates (M, n) and )I, n) of energy and
angular momentum of the CM and the RM, respectively,
and they are eigenstates of the total angular momentum

t;o the Hamiltonian H, which has nonzero matrix ele-
ments only between states with the same total angular
momentum. The terms H& are of order p in CM co-
ordinate R, = P. i rz/N and of order v in the relativeg=1
coordinates r' = rz —ri (j = 2, 3, . . . , N). In principle,
the first term, bNR, which affects only the CM motion,
yields already a blue shift of the fundamental dipole tran-
sitions and a coupling of the dipole active state ~1, 0) to
the inactive higher state ~l, I). However, for reasonable
values of the blue shift, the oscillator strength of the ad-
ditional higher mode comes out much to small. More-
over, the matrix elements (M', n'~bNR ~M, n) scale with
increasing electron number N as NAcM oc N and be-
come small, whereas the eigenvalues of the unperturbed
CM Hamiltonian are independent of N.

The next term of Eq. (7), H22, is the sum of two contri-
butions. One couples states ~M, n; t, ci) differing in both
angular momentum quantum numbers M and l by two
units, LM = —Al = +2. The other,

H~2 = 2bNR —) r' — —) r'.
, (8)

"2=2 "2=2
couples only states with the same I and the same l. The
CM parts of its matrix elements, (M', n'~2bNR ~M, n),
are independent of N. The matrix elements of the term in
square brackets in Eq. (8) with the RM states ~l, ci) can be
estimated to be of the order r&, the mean square radius
at the Fermi energy. We estimate this for noninteracting
electrons at B = 0, and obtain r& —E~/m~p oc Ni~2.
In the subspace of states ~M, n; lp, cip) with ~lp, cip) the
ground state of the RM, which is su%cient to calculate
the corrections to the dipole transitions from the ground
state to first order, Hq2 acts on the CM motion just as
an additional parabolic confinement potential. As a con-
sequence, we get a blue shift (oc Ni~~) of the resonance
frequencies, but no additional mode. If we consider a cor-
rection cx r to the parabolic confinement potential and
use the same type of arguments, we obtain a blue shift
proportional to N. This qualitatively explains the RPA
results shown in Fig. 2. In second-order perturbation the-
ory, H2& leads to a higher mode, but also H22 —H22 and
H$3 come into play, and the calculations become rather
cumbersome. There is, however, no doubt that circu-
lar symmetric deviations from the parabolic confinement
lead to additional dipole transitions.

To understand the anticrossing, we need a state with
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an energy dispersion which crosses that of the dipole ac-
tive state

~

—1, 0; lp, np) near B = 1.2 T. Obvious candi-
dates are those with a CM part ~M, 0) where M & 2. For
M=2, the energy crossing occurs at u, = up/~2, which
for heep 3 meV, yields just B = 1.2 T. Coupling of

~

—1,0;lp, crp) with ~2 0; lp, crp) requires, however, a con-
finement potential that lacks inversion symmetry (e.g. ,

oc zs). This has no experimental justification. Coupling
with, e.g. , ~2, 0; lp —3, n) is possible by a circular sym-
metric correction cr6. The high energy of the RM in this
state excludes, however, an anticrossing.

In the quadratic array of dots investigated by Demel et
aL, a correction oc (z2y~ —r4/8) to the confinement po-
tential is very likely to exist. In the decomposition analo-
gous to Eq. (7), the pure CM part couples

~

—1, 0; lp, crp)
with

~
3, 0; lp, np ), which has the same energy for

2~p/~3. With h~p -3 meV, this yields B = 2.0 T, and
the corresponding matrix element is too small (oc N i)
to make this anticrossing observable. The term corre-
sponding to H22, however, couples

~

—1, 0; lp, crp) to a
state of the form ~l, 0; lp + 2, a), and the couphng ma-
trix element does not become small with increasing ¹

Without Coulomb interaction, ~1, 0;lp + 2, crp) would be
degenerate with ~3, 0; lp, np). For the interacting system,
however, ~1, 0; lp+ 2, np) has a lower energy, since its RM
part has a larger spatial extent, , and leads to an anticross-
ing at a lower B value than 2.0 T.

To get information about the energy dispersion of ex-
cited eigenstates, we calculated the collective RPA re-
sponse of the parabolically confined system to external
fields with different angular rnomenta Nz. The results
are shown in Fig. 4 and reveal the unique role played
by the dipole transitions (Nz ——+1) which leave the state
of the RM invariant. All other modes have lower fre-
quencies than expected from the single-particle picture,
indicating that excited states of the RM are involved.
The pure CM transitions with Nz 0, +2, and +—3 have
dispersions u=u, u + u„and z(u + u, ), respectively,
and are not excited (note m=6. 74 meV at B = 0). Our
interpretation is that, for N& ——+2, the main transitions
go to final states of the form

~
+ 1,0; lp + 1, n), and the

weaker ones (with increasing dispersion near 4 meV) to
~0, 0; lp —2, n). Similar, for Nz +3, the final s—tates are
of the form

~
+2, 0; lp + 1, cr) for the main transitions, and

two weaker transitions to states with higher angular mo-
mentum of the RM are resolved. The monotonically de-
creasing branch with Nz —3 crosses the increasing dipole

12—

10—

8-

4—

0
w a w 0

~ a
0 ~OS

o o0 00 0 0

00 a

~ ~ ~ ~
g

0

I

0.5
I

1.0
B (T)

I

2.0

I'IG. 4. The excitation spectra for the following: +, the
Nz —0; o, the Nz ——+1; &, the N„= +2; and o, the
NJ, ——+3 modes. The NJ, ——0, +2 modes are shown with
small symbols, but the symbol size for N„= —3 indicates the
relative strength of the absorption.

branch with N&
——1 near B=1.2 T. The corresponding

final states, ~2, 0;!p+1,n) and
~

—1,0;lp, crp), are coupled
by the perturbation (z y —r /8) discussed above. This
leads to an anticrossing near B=1.2 T, which should be
observable in the dipole excitation. For the parameter
values of Fig. 4, an anticrossing due to the pure CM ex-
citation to the state ~3, 0; lp, n), which is not seen in the
RPA, would occur near the higher magnetic field B=2.2
T.

In summary, our RPA calculations together with an-
alytic arguments provide a good qualitative understand-
ing of the recent I"IR experiments by Demel ei a/. A
circular symmetric correction, that makes the confine-
ment steeper than the parabolic one, leads to a blue shift
of the dipole modes increasing slightly with the electron
number N in the dot, and in addition to the appearance
of a higher mode. To explain the observed anticrossing,
one needs a deviation from the circular symmetry. In all
cases the coupling of the center of mass and the relative
motion by the deviations from the parabolic confinement
potential is essential.
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