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Electronic properties of quantum-dot superlattices
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The electronic properties of a corrugated one-dimensional (ID) channel, forming an open-
quantum-dot superlattice, are studied. The miniband dispersion is calculated and the transmission
probability through the channel is analyzed as a function of the number of dots. Two further
features are predicted in addition to the existence of superlattice gaps originating from the period-
icity: the tunneling through the quantum-dot state before the first 1D channel is available for
transmission and the quantum-dot gaps.

I II1 III1 II2 III2 ...

FPPÃP/8

X

Inn L i
L~

LX2 Lg

nm

Since the paper of Esaki and Tsu, ' an enormous
amount of work has been produced in fundamental phys-
ics as well as in the applications of the two-dimensional
(2D) electron gas and analog systems. With the improve-
ment of the lithographic techniques, it has become possi-
ble to confine the carriers in additional directions and thus
create quasi-one-dimensional (1D) and quasi-OD electron
gases. Ballistic transport in high-mobility structures has
shown nice effects due the 1D quantization in narrow
channels. A natural extension is the construction of dots
(or open dots), which have been studied both experimen-
tally and theoretically. Recently, the effect of the cou-
pling among opened quantum dots has also been experi-
mentally investigated. '

In this communication we investigate a superlattice
consisting of an array of quantum dots connected by one-
dimensional channels. We consider a structure with
strong confinement along the z direction (the epitaxial-
growth direction) so that the system is in the electric
quantum limit with respect to quantization of motion in
this direction. The lateral confinement shows a periodic
variation on its width as shown in Fig. 1. The main
difference to the previous man-made superlattices is the

dimensionality of the continuum and of the states forming
the superlattice. Here, we have OD states embedded in-
side the 1D channel formed by the lateral confinement.
First, we calculate the miniband dispersion for the open-
quantum-dot (OQD) superlattice. The transmission
coeScient is then obtained for a finite number of quantum
dots. The features observed are well understood by map-
ping the miniband dispersion into the transmission chan-
nels. For high-purity samples, it is possible to obtain
ballistic transport through a large extension, enough to in-
clude several dots. ' In this case, the quantum features
will be reflected in the transport measurements. Our re-
sults give additional qualitative insight to the recent ex-
perimental findings in the ballistic transport measure-
ments through a finite number of OQD's. Ulloa,
Castano, and Kirczenow calculated the conductance for
a five-OQD structure. They associated the antiresonances
in the conductance with gaps originated from the periodi-
city of the dots. Here, we demonstrate the existence of
two diAerent kinds of transmission gaps and explain their
origin.

We focus on the conduction band and consider a typical
finite-square-well confinement in the z and x motions for
each region of the structure sketched in Fig. 1. We use
the envelope function approximation and consider the z
motion decoupled from the (x,y) motion. ' The zero of
energy is chosen at the edge of the ground z-related sub-
band and we neglect any further eNect from the z
confinement. To find the solutions we use the basis of
solutions obtained for the x-confinement well of the larger
regions (I and IV) [a (x)'s and respective eigenvalues
e 'sl. The solutions for the other regions (II1, III1, etc. )
are searched by projecting the Hamiltonian onto this basis
and they are written

M M

fus(x, y) = g (d, 'e' ' +e e
' ' ) g a„'(k, )a„(x),

FIG. 1. A schematic illustration of the confining potential
used in the calculations.

where M is the number of states considered in the basis,
8 =II,III, and I=1,2, . . . , N, with N being the number
of periods. k, 's are the eigenvalues and a '(kl)'s the
eigenvectors for a fixed energy s of the incident wave and
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for a given channel, obtained by solving the system

p2k2 M
J +g„—s an + Vt 2 am &anl Y(LN/4 x ) Y(Lxcu/4 x )1am) 0, n =1,2, 3, . . . , M (2)
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for the symmetric structure. Here, Y(x) is the unit-step
function [Y(x) =1 if x )0 and 0 otherwise], VI, is the
barrier height, and co =1,2. k~ may assume complex
values in order to include the evanescent part of the wave
unction in the barriers. With this approach, we may

modify the shape of the lateral confinement without the
necessity to generate a new basis at each step. We include
as many eigenfunctions in our basis as it is necessary to
obtain a desired convergence in the solutions. We find the
miniband dispersion by using the boundary conditions in-
side the unit cell (dashed line in Fig. 1) plus the Bloch
condition.

In Fig. 2 we plot the miniband dispersion for two cases:
(a) an x-symmetric OQD superlattice and (b) an asym-
metric one, where one of the sides of the 1D channel is
Aat. As a consequence of the perfect symmetry, the mini-
bands in Fig. 2(a), originating from the even and odd-x-
related subbands, do not interact. They form two in-
dependent sets with the same qualitative behavior. We
concentrate our analysis on the even-x minibands [solid

I

line in Fig. 2(a)]. Basically, we observe the formation of
minibands by folding the Brillouin zone, creating direct
gaps. The first miniband, in particular, originates from
the coupling between the localized states of the OQD.
These states are confined by the lateral barriers and the
1D quantization in the channel, forming a small barrier
through which they can tunnel. In addition to these mini-
bands, there is the interaction between the 1D miniband
(without constriction) and the virtual-OQD states, creat-
ing anticrossing between those states at the virtual-OQD
states energy and, consequently, indirect gaps. At higher
energies, when the second 1D channel state is reached, the
interaction between the paths and the virtual-OQD states
generates a quite complex miniband structure with some
miniband minima outside the symmetry points. A similar
dispersion is observed for the minibands originated from
the odd-x-related levels (dashed lines). For the asym-
metric superlattice, the even and odd modes interact
among themselves and additional anticrossings are ob-
served.

To probe the electronic properties of the OQD superlat-
tice, we calculate the transmission coeScients through a
finite number of dots. We "close" the OQD superlattice
by two additional interfaces, linking the two wide regions
of Fig. 1. We calculate the wave functions per layer fol-
lowing the procedure described by Eqs. (1) and (2). The
coe%cients are determined by matching the wave func-
tions and the fluxes at the interfaces. This leads us to a
4(1V+1)M nonhomogeneous linear system of equations
which is calculated numerically for a particular incident

10mode. In Fig. 3 we plot the total transmission coef-
ficient, T =P~ „(q~/q„) I t„ l (here, q„ is the wave vec-
tor of the incoming mode, q is the wave vector of the out-
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FIG. 2. Miniband dispersion for a quantum-dot superlattice

with (a) symmetric dots and (b) the dots in only one of the
sides. Vb =600 meV, L, 1=500 4, L„q =800 A, L~, ~ =L,, q =500
A, d=LJI+L,
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FIG. 3, Total transmission coefficient as a function of the in-

cident energy for (a) a single-symmetric OQD (solid line) and a
single constriction (L =2L,, I+L~q) (dashed line). The separate
contributions of the even (dash-dotted line) and the odd (dotted
line) modes are also shown. L 2000 A; the other parameters
are the same as in Fig. 2.
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going mode, and t„ is the coefficient of the mth outgoing
mode for the nth incoming mode, ' and the sum is over
the propagative modes), as a function of the energy of the
incident electron for a symmetric single-OQD structure
(solid line) and the independent contributions of the even
(dashed line) and odd modes (dash-dotted line). The flat
channel —single constriction —is also shown. This is iden-
tical to the result obtained 5y other authors to interpret
the step quantization of the conductance observed by van
Wees et al. " and Wharam er al. ' The main qualitative
features in the transmission coefficient can be analyzed by
considering the transfer matrix approach. In this case, if
we call R and T the vectors defining the wave functions in
the left-wide and right-wide regions, respectively, we can
write

T=S2T S 'R=S2UI U 'S 'R. (3)

Here, T is the transfer matrix, I" is a diagonal matrix
formed by the eigenvalues of the transfer matrix, k's, and
U's are the unitary matrix of the transformation. S~ and
S2 are the matrixes relating the left-wide region and the
right-wide region to the more constricted one. The
transfer matrix eigenvalues X's can be mapped from the
miniband dispersion by the relation A. =e'~". Transmission
is only possible through the open channels, when ~k~ =1.
For ~k, ~~l, the electron wave function decays from one
site of the superlattice to the next. Now we explain the
two different kinds of transmission gaps: (a) the superlat-
tice gaps, associated with the periodicity of the structure,
and (b) the quantum-dot gaps, associated with the dimen-
sionality of the structure. The quantum-dot gaps are in-
direct gaps in the dispersion relation resulting from the
anticrossing between a virtual-OQD level and a precise k~
1D state. A single dot is therefore enough to open a
transmission gap since the Im(q) values are too large in
the indirect gaps to allow any transmission. The superlat-
tice gaps are the direct gaps in the dispersion relation.
For energies in these gaps, ~X,

~

—1, the decaying of the
electron wave function is slow. For a finite structure with
few dots, transmission is still possible. Effectively, by
comparing Fig. 2(a) and Fig. 3, for the single-OQD struc-
ture, we observe that the transmission gaps are dominated
by the quantum-dot gaps. The only superlattice gap
present is associated with the gap between the OD cavity-
bound state and the 1D continuum (1.94 meV & s& 2.59
meV) —the conductance threshold for the single-con-
striction case. This sharp resonance from the OD-1D-OD
tunneling allows transmission before the first 1D channel
is open for transmission and originates the first miniband
in the multidot structure (Fig. 4). When the number of
dots increases, superlattice transmission gaps open as a
consequence of the relation k =e' q in Eq. (3), since for
those energies the q s are all imaginary and the incoming
wave decays more rapidly with N. Most of the superlat-
tice gaps are already transmission gaps for the 10-OQD
structure. For a structure showing a large number of dots,
the diff'erent origins of the gaps are indistinguishable from
the transmission point of view.

When the second 1D path is energetically available, the
transmission increases and reaches a value close to 2,
reflecting the existence of two branches in the energy
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FIG. 4. Total transmission coe%cient as a function of the in-
cident energy for the 10-symmetric-OQD structure for the (a)
even modes, (b) odd modes, and (c) the contributions of both
even and odd modes. The parameters are the same as in Fig. 3.

dispersion in Re(q). Now the anticrossing between the
OD and 1D states eliminates only one of the paths keeping
the other path open, and the transmission falls to 1 instead
of 0. Once the gaps in transmission are mell defined in the
multi-OQD, we observe between them a number of oscil-
lations equal to the number of dots. They are related to
the Bloch-type states, in a tight-binding band, formed by
the overlap of the quasibound states in the constrictions of
the superlattice. Whenever the gaps from the even and
odd mode overlap, the transmission coefficient drops from
a value close to 2 to 0. For the asymmetric case, the
transmission coefficient changes according to the mini-
band dispersion shown in Fig. 2(b). New gaps open due
to the anticrossing between the even and odd minibands.
However, the analysis of the total symmetric OQD struc-
ture still helps to understand the main features in the
transmission coefticient in terms of the miniband disper-
sion.

So far, we have considered the case of sharp interfaces.
This approximation might introduce effects due to the
reflections of the interfaces, creating Fabry-Perot-type os-
cillations in the transmission coefficients. These eff'ects
are difficult to observe experimentally in actual samples
because of the smoothness of the self-consistent poten-
tial. ' The sharp interfaces in our model introduce
scattering of the incident waves into different subbands. '

We can approach the quasiadiabatic case and destroy the
Fabry-Perot structures by smoothing the sharp interfaces.
This is achieved by replacing each modulated region
(Il, illi's) by a series of regions with a fixed step in the y
direction, following a Gaussian shape once the step goes to
zero. Although we do not obtain full adiabaticity, the
Fabry-Perot oscillations for a 1500-A single constriction
disappear completely. In the case of the quantum dot,
when the previous four interfaces of the sharp structure
are replaced by 20 interfaces, separated by 100 A in y,
there is no qualitative change in the transmission. This
demonstrates the observed structures are associated with
the rniniband dispersion.

A direct comparison between our results and the experi-
mental results is somewhat difficult. The potential profile
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of the actual structures is determined by the self-con-
sistent charge transfer. The conductance measurements
are obtained by varying the applied gate voltage that
defines the structure. Both the Fermi energy and the
geometric structure change. In addition, for real struc-
tures the relation between the gate voltage and the
geometry is not well defined. Also, because the structure
is small, charging eA'ects, ' which are present in transport
measurements, might have the same scale in energy as the
miniband dispersion. Recently, Kouwenhoven et al. ob-
served very clear gaps in the conductance as a function of
the gate voltage for a 15-asymmetric-dot structure in the
presence of a magnetic field to enhance the adiabaticity.
They also observe the oscillations between the gaps, asso-

ciated with the finite number of dots in the structure, as
confirmed here. Haug et al. have observed similar results
for three- and four-dot structures.
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