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We derive the pseudopotential for an atom in which all the electrons are subject to a Hartree-

Fock exchange potential arising from the core electrons, and a Kohn-Sham exchange-correlation

potential arising from the valence electrons, When this ionic pseudopotential is transferred to a

crystal, the self-consistent valence exchange-correlation potential has the simple form
Vx'2 Vxc(p»i). We show by explicit calculations of the lattice constants, cohesive energies, and

bulk moduli of Na and GaAs that this pseudopotential is of similar quality, but has certain com-

putational advantages over, a strictly local-density-approximation (LDA) pseudopotential with

Vxc Vxc(piotai) Vxc(p,«,). It is far superior to the LDA pseudopotential with VPP-Vxc(p, .)).
In constructing norm-conserving ionic pseudopoten-

tials' for use in condensed-matter calculations, one first
constructs an atomic pseudopotential and then subtracts
off the valence-electron contribution to that pseudopoten-
tial. It has long been known that because of its nonlinear
dependence on charge density p, the local-density approxi-
mation (LDA) for the valence-electron exchange-cor-
relation potential Vx'c was not simply a function of p„l.
However, to the extent that the atomic and condensed-
matter valence charge densities were similar in the core
region, it was assumed that the error in taking
Vx'c =Vx»c(p»i) was small. Louie, Froyen, and Cohen2
(LFC) showed, however, that an ionic pseudopotential ob-
tained in this manner was highly nontransferable in two
completely different cases: They showed that Si and Mo
pseudopotentials obtained from paramagnetic valence
configurations resulted in large total-energy errors when
applied to spin-polarized configurations, and they showed
that the lattice constant and bulk modulus of Na were
vastly different for pseudopotentials obtained with two
different atomic valence configurations. They showed that
these transferability problems disappear when Vx'c is tak-
en to be Vxc(p&, &,~)

—Vxc(p„„).This corresponds to us-
ing the full exchange-correlation (XC) potential and add-
ing (to the ionic pseudopotential) and subtracting (from
the self-consistent valence potential) the same function,
and thus must remove all transferability problems associ-
ated with taking Vx'tt to be Vx'c (p»~).

In performing ab initio molecular-dynamics calcula-
tions, it becomes somewhat unwieldy to carry around all
the core charge densities. Furthermore, these calculations
use three-dimensional fast-Fourier-transform integrations
over a rather coarse mesh, and, therefore, the inclusion of
sharply peaked core and total charge-density functions
might be expected to cause numerical errors (although
this may be circumvented by using a partial core, as de-
scribed in Ref. 2). We noted a recent calculation for
liquid sodium in which an ordinary LDA pseudopotential
was used; this pseudopotential was such that when it was
used for solid Na, it resulted in an 11% error in the equi-
librium lattice constant. Thus, it occurred to us that a
pseudopotential based on a Hartree-Fock (HF) atom
would have a separable exchange potential and might be

transferable to a crystal or liquid where the pseudopoten-
tial would represent a Hartree-Fock core, but where the
valence electrons would be treated in the LDA. It then
occurred to us, if we recalculated the atomic valence elec-
trons by letting them (i) be subject to the Hartree-Fock
potential from the previously calculated HF core func-
tions (now taken to be rigid), and (ii) interact with each
other via the LDA, their treatment would be closer to that
in the solid or liquid; thus the pseudopotential obtained
from the mixed HF-LDA atom would be more transfer-
able thereto. Because of the nonlocal nature of the ex-
change operator, the Hartree-Fock core and valence func-
tions are slightly admixed. This causes the HF potential
resulting from the core functions to have an extremely
long-range tail, which becomes very tedious if not impossi-
ble to treat correctly, especially when the Kleinman-
Bylander (KB) separable form of the pseudopotential is

used. Therefore we finally chose to construct the pseudo-
potential from an atom in which a11 the electrons experi-
ence a Hartree-Fock potential arising from the core elec-
trons and an LDA potential (exchange-plus-Wigner
correlation) from the valence electrons. Shirley et al.
have constructed pseudopotentials from atoms in which a
Hartree-Fock-exchange plus an LDA-correlation poten-
tial arises from all the electrons. It is well known that
the LDA overestimates correlation and underestimates
exchange, so it makes sense to combine them; it is not so
clear that a LDA correlation when added to a HF ex-
change is an improvement. In any event, the Shirley pseu-
dopotential would be more appropriately used for dimers,
where the same valence HF-exchange LDA-correlation
potential can be used, than in condensed-matter calcula-
tions where an LDA exchange-correlation potential is
used.

We compare with experiment the lattice constants,
cohesive energies, and bulk moduli obtained for Na and
GaAs using our HF-LDA pseudopotential and the LFC
and ordinary pseudopotentials. We first calculated eigen-
values and eigenfunctions for the Dirac-LDA and Dirac-
core HF, valence LDA atoms. We then used the Vander-
bilt procedure for constructing pseudopotentials that
were as similar as possible (e.g., identical cutoff radii r, )
so that whatever dN'erences we found could be attributed
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to how exchange and correlation were handled. If one is
interested in the semilocal form of the pseudopotential,
this is straightforward, but results in diA'erent (for
diAerent angular momenta) fairly long-range tails due to
the core HF potential. A similar but local tail arises in
the LFC ionic pseudopotential from the subtraction of
Vxc(p««) from Vxc(p«, ,~). The nonlocal KB (Ref. 5)
ionic pseudopotential is written as

l8v~(r) yl (r))&yI (r)Bv~(r) l

VNt =Vr r +
I,m & elm I ~vl I Ã(m &

where Vr (r) is an arbitrary local pseudopotential, Bvl(r)= V~(r) —Vt. (r) with V~(r) being the semilocal pseudopo-
tential, and yl (r) is the atomic eigenfunction of the V~

pseudopotential Hamiltonian. For maximum transfera-
bility, ' the bvI(r) should be as short range as possible,
which means that Vt. (r) should be no longer range than
VI(r). (By the range of Vi and Vt we mean the radius
over which they differ from the real ionic potential;
whereas, the range of BvI is the radius over which it is
nonzero. ) Since the real ionic potential is l dependent
(due to the HF core) over a greater range than V~ ordi-
narily would be, this presents a small problem. One way
to handle it (hereafter referred to as HF-LDA) is to con-
struct an atomic potential

v = Vc..i+ Vxc(p,.i)+f"--, (2)

where f,",„,is any local core exchange. It could be taken
to be an average of the I-dependent HF core exchange po-
tentials, but we chose f,"„,= [V„(p«t;i)—Vx(p„i)}LD& be-
cause the latter is of shorter range. Then v is pseudized in
the standard manner, but using the Dirac-HF-core,
LDA-valence eigenfunctions and eigenvalues. Since this
semilocal pseudopotential VI is based on the local atomic
potential v, the construction of VNi proceeds as usual.
Another choice (hereafter HF-LDA*) is to accept the
long-range l dependence of VI and choose Vq to become
equal to the Coulomb potential beyond some radius, so
that the tails on the 6'vI arise from HF core exchange only,
and thus may be invested with some physical significance.

We have performed the calculations for Na listed in
Table I. In all cases except one, the Vanderbilt cutoff ra-
dii are r, =rz =1.7 bohrs, and in all cases except one, the
plane-wave kinetic-energy cutoff was 15.174 Ry when
a =7.984 bohrs with the same number of plane waves
used for all a. This results in between 240 and 259 plane
waves at the 40 special k points'' sampled in the irreduc-
ible wedge of the Brillouin zone (BZ). The HF-LDA ion-
ic pseudopotentials are displayed in Fig. 1. Vi is shown as
a dashed line that follows V~ until just before it crosses V„
and then it joins smoothly with V, . A similar VI was
chosen for the LDA and LFC pseudopotentials. This in-
sures that the 8'vl do not change sign, and thus prevents
the denominator in Eq. (I) from becoming small relative
to the numerator, which can cause reduced transferabili-
ty ' and even "ghost" states ' in extreme cases. In the
HF-LDA case, Vz starts out identically, but well past
the minimum in V, it joins smoothly to the ionic Coulomb
potential (which is almost 2/r at that point. )

Expt.
[HF-LDA (3s )]
HF-1 DA (3s')
HF-LDA (3s 'i )
HF-LDA* (3s ')
HF-LDA* (3s'")
LFC (3s ')
LFC (3s'/')
I.DA (3s')
LDA (3s ')
HF-LDA (3s')r,
HF-LDA (3s ')L'
HF-LDA (3s')LP

7.984
8.235
8.233
8.232
8.241
8.241
7.785
7,780
7.672
7.543
8.233
8.263
8.208

1.113
1.0785
1.0781
1.0801
1.0757
1.0770
1.1342
1.1388
1.1538
1.1954
1.0766
1.0692
1.0930

6.8
6.78
6.80
6.80
6.82
6.83
8.00
7.99
8.33
8.10
6.78
6.93
6.98

The experimental values listed in the first row of Table
I are taken from Kittel. ' The lattice constant and
cohesive energy are low-temperature results, whereas the
bulk modulus is room temperature. There are two sets of
low-temperature elastic constants listed by Huntington'
that result in bulk moduli on either side of that in our
table. The second row lists a fully converged calculation
with a kinetic-energy cutoff' of 60.696 Ry. Comparison
with the third row shows that the 1S.174-Ry-cutoff calcu-
lations are essentially converged. Comparison of rows
3-10 shows that the HF-LDA, HF-LDA*, and LFC
pseudopotentials are highly transferable in the sense that
the results obtained are almost independent of whether
the pseudopotential is obtained from a 3s' or a 3s'

V
(Ry)

~Ct oh~)

FIG. 1. The s and p HF-LDA pseudopotentials of Na. The
local pseudopotential was chosen to lie along the dashed line
connecting the s and p pseudopotentials.

TABLE I. Comparison with experiment of Na lattice con-
stant, cohesive energy, and bulk modulus calculated with several
pseudopotentials.

a (bohrs) E„h(eV) 8 (10' ergscm ')
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10 TABLE II. Com aromparison with experiment of GaA
h ergy per atom, and bulk modulu

with several pseudopot t'opo entia s.
mo u us calculated

a (bohrs) E„h (eV) 8 (lo' ergscm )

Expt.
HF-LDA
LFC
LFC(PC)
LDA
[HF-LDA1

10.683
10.688
10.597
10.604
10.393
10.754

3.35
3.886
4.047
4.031
4.046
3.945

7.55
7.47
6.94
6.89
6.36
6.98

I
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