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Semiclassical theory of shot noise and its suppression
in a conductor with deterministic scattering
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A scattering theory for nonequilibrium current noise in a degenerate electron gas at finite
temperature is developed, based on classical kinetic equations for the first two moments of the
Suctuating distribution function F(r, p, t) The. result is a, relation between the low-frequency-
noise spectral density P and the classical transmission-probability distribution function T(r, p).
At zero temperature, P = 0 if and only if T takes on exclusively the values 0 and 1. Shot noise
is thus suppressed by (classical) deterministic scat, tering in a, degenerate electron gas.

The discreteness of the electron charge causes Auctua-
tions in time of the electrical current flowing in response
to a time-independent voltage difFerence. These Huctua-
tions, which (unlike thermal fiuctuations) persist down
to zero temperature, are known as shot noise. A re-
cent theoretical development has been the derivation of
a relation between the noise spectral density P (per unit
frequency bandwidth) and the transmission matrix t of
the conductor. The zero-frequency, zero-temperature
shot-noise power of a two-terminal conductor (under con-
ditions of a small voltage difFerence V between the two
terminals) was found to be given by4 s

2

2eIyI Trt'gt(l —ttt)

in terms of the eigenvalues T„of the matrix product f, tt
(evaluated at the Fermi energy). This beautiful result,
tells us that shot noise is completely suppressed if all
eigenvalues are either 0 or 1. Experiments indicating a
suppression of shot noise in a quantum point contact (i.e. ,

a constriction with a quantized conductance) have been
reported by Li e] al.6

In this paper we derive the semiclassical correspon-
dence to Eq. (I), and to its finite-temperature form.
The resulting expression is valid whenever the electron
dynamics is governed by classical trajectories, in which
case it represents a more convenient starting point for
calculations than the fully quantum-mechanical formula.
Suppression of shot noise is obtained from deterministic
motion in a degenerate electron gas, which suggests that
the phenomenon should be observable in a much larger
class of conductors than the ballistic point contacts con-
sidered previously.

We apply the classical kinetic theory of non-
equilibrium fluctuations to a scattering problem in a

degenerate electron gas, in the spirit of Landauer's ap-
proach to electrical transport. The kinetic theory, due to
Ganzevich, Gurevich, and Katilius, describes the devel-
opment in time of the first two moments of the Puciu aiing
distribution function F(r, p, t) Both .kinetic equations
have the form of a Boltzmann equation. An alternative
to this method of moments is to start from a kinetic
equation for I'" itself, in the form of a Boltzmann equa-
tion with a randomly fluctuating source term. That is
the approach taken by Kulik and Omel'yanchuk, who
first noted the suppression of shot noise in ballistic point
contacts, but did not obtain the relation between noise
and transmission probabilities of present interest, .

The average (F)—:F of F (averaged over the time-
dependent fiuctuations) satisfies the Boltzmann equa-
tion

(
d—+8 F(r, p, k) = 0.

cA

The derivative

(with v = p/m), accounts for the classical deterministic
motion in the external (electromagnet, ic) force field j(r).
The scat tering term

SF(r, p, t) =— dp, W(p, p, ) [E'(r, p, &) —F(r, p, , i)]

describes the stochastic efFects of impurity scat tering
[with quant, um-mechanical transition rate W'(p, pi) be-
tween momenta p and pi]. We assume that the scatter-
ing is elastic, and disregard the electron-electron inter-
action. As discussed in Ref. 8, the correlation function
(b F'(r, p, i) 6 F(r', p', i')) (with 6F:—F —F) satisfies for) t' the Boltzmann equation in the first set of vari-
ables,
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—y 8) (6F(r, p, t)bF(r', p', t')) = 0.

The equal-time correlation is given by

(6F(r, p, t) bF(r'', p', t) )

= b(r —r') 6(p —p') F(r, p, t) [1 —h"F(r, p, t)] (6)

(d denotes the dimensionality of the conductor). The
term containing Planck's constant must be retained in
Eq. (6), since we are dealing with a degenerate electron
gas (for which by definition F h ").

We now apply the kinetic theory to the two-terminal
scattering geometry of Fig. 1. Two electron reservoirs,
in equilibrium at chemical potentials p~ and p2, are con-
nected by ideal leads to a conductor. We assume free
motion in the leads (X = 0 = W in the leads), with
specular scattering at their boundaries. The current I(t)
through a cross section S~ of lead 1 is given by

I(t) = e dy dpv F(r, p, t)

The z coordinate is along the axis of lead 1, and y is
a vector perpendicular to the z axis. The current has
average I and fluctuations bI(t)—:I(t) —I We assum. e
stationarity, i.e., a time independent I (and F). The
noise spectral density per unit frequency bandwidth, in
the limit of zero frequency, is given by the time integral
of the current-current correlation function,

FIG. 1. Schematic drawing of a (disordered) conducting
region (hatched), connected by ideal leads to two electron
reservoirs (at chemical potentials p, i and p2). A cross section
of lead 1 is indicated by 8&.

=4e cB Gy dy' dp dp' v v' g,

where we have abbreviated y = (bF(r', p', t)6F(r, p, 0)).
We need to determine y for t & 0, and for points r' =
(z, y') and r = (z, y) on Si. It is convenient to consider
separately the incoming states (p ) 0) and the outgoing
states (p ( 0).

Electrons with p~ & 0 reach reservoir 1 without further
crossing of Si. Thus, y contains only a term proportional
to h(t),

g(p ) 0) = b(r' —r —v't)b(p' —p)F(r, p)[1 —h"F(r, p)] = h(t)&(y' —y)&(P' —P)F(r, P)[1 —h"F(r, P)].

Electrons with p ( 0 can be reflected back from the con-
ductor into the reservoir through Sq. I,et R„denote the
probability that the electron with initial coordinates x, y
on Si, and initial momentum p, returns after a, time t„
to a point z, y„on S~, with final momentum p„. The set

of possible return paths is denoted symbolically by (n}.
The total reflection probability R(r, p) for an electron
starting from r, p on Si equals P&„)R„. The correla;
tion function y for p~ ( 0 contains terms proportional to
R„b(t —t„), in addition to a b(t) term as in Eq. (9):

X(p. & o) = ~(t)~(y' —y)~(p' —p)+ ) R-~(t —t-)~(y' —y. )~(p' —p. ) iF(r, p)[1 —h"F(r, p)].")

The average distribution function I" in the lead can be
expressed in terms of the average distribution functions
F in the reservoirs (n = 1, 2). Since the reservoirs are in

equilibrium, I" is the Fermi-Dirac distribution in phase
space,

F (r, p) = h "f(E—p ),

where f(z) = [1 + exp(z/kT)] . The energy E of
the electron is a constant of the motion in the conduc-

tor, where all scattering is assumed to be elastic (in-
elastic scattering in this formalism occurs only in the
reservoirs ). All electrons in lead 1 with p ( 0 originate
from reservoir 1, so that

F(r, p) = h f(E —pi), if p~ ( 0. (»)
An electron at r, p in lead 1 with p ) 0 may have orig-
inated either from reservoir 2, with transmission prob-
ability T(r, p), or from reservoir 1, with probabihty
1 —T(r, p). One thus has
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F(r, p) = h "f(E—pq)T(r, p)+ h f(E —pi)[1 —T(r, p)], if p & 0.

On substitution of Eqs. (9)—(13) into Eq. (8), and carrying out the integrations over t„y', and p', we obtain the
result

P =4e dy dp )v~)h "(e(p~) 2[f2T+ fi(1 —T)][1—AT —fi(1 —T)]+0(—p~)(2 —R)fi(1 —fi))

OO

= 4— dE(2E/m)'/ hp
h o

w/2

dy cos P( 2i [f2T + fi(1 —T)]
x/2 2Ã

x [1 —f2T —fi(1 —T)] —(~ —T)fi(1 —fi)) (14)

[abbreviating f = f(E —p )]. In the second equality
we have eliminated R in favor of 1 —T by using current
conservation. The unit-step function is denoted by 8, p
is the density of states (p = m/2+6 in two dimensions,
in the absence of spin degeneracy), and P the angle of p
with the z axis. The angular average of p is written down
for the case d = 2, and should be replaced by a spher-
ical angular average in the case of a three-dimensional
conductor.

To write Eq. (14) in a more transparent way, we define
the average ( )E, over y and P at energy E, by

w/2

(T(r, p))E = (2E/ )'/ hp dy — o QT(r, p).
s, -~/2 2&

AVith this notation, and after a rearrangement of terms,
Eq. (14) takes the form

P = Py+Pp,
OO

dE (T(» p))E[fi(I —fi) + f2(1 —»)]h

OO

4kTG for the thermal noise in equilibrium. 2

At zero temperature, f = e(p —E). Hence, Pi —0,
while P2 —Pshat » g»e»y

2

P.t,o, = 2e) V)—„(T(r,p) [1 —T(r, p)])Ep,

to linear order in eV = /Ji —p2. Classical de/ermin-
istic transport corresponds to 8 = 0 in the Boltzmann
equations (2) and (5). In that case, the transmission
probability T(r, p) takes on exclusively the values 0 and
1, so that P,t, q

—0. Conductance quantization is thus
not required for the suppression of shot noise, nor is the
absence of backscattering a requirement. In the opposite
s/ochastic regime of diffusive transport, T(r, p) (( 1, so
that Ps~, &,&

——2e)V)G = 2e)I) equals the noise power of a
Poisson process ("full shot noise"). Deterministic motion
between two reservoirs at zero temperature violates the
assumption of uncorrelated current pulses on which the
Poisson process is based, so that the noise remains below
the full shot-noise level.

At nonzero temperature and nonzero applied volt-
age, the noise power crosses over from the thermal form
(17) to the shot-noise form (19) when kT eV. This
crossover is described by the formula

OO

Pi;i e.ma = 4—„dE(T(r, p)) Ef(I —f) (17)

By averaging Eq. (7), and using Eqs. (12) and {13),one
readily obtains the linear-response conductance

e2
G= ——

h
dE (T(r, p)) E „ (18)

In view of the identity f(l —f) = kTf', Eqs. (17)—and
(18) are in accord with the Nyquist formula Pqi,„

This is the required classical correspondence to the re-
sults of Lesovik4 and Buttiker. I et us examine several
limiting forms of Eq. (16).

In equilibrium, /ii —
/12

——EF, so that fi —fq ——

f(E —EF). I.Ience, P2 ——0, while Pi ——Pt, i,«.~,~
is given

by

2

P = — 4kT(T(r, p)T(r, p)) E,6

eV&
+2e V cosh

) (T{r,p) [1 —T(r, p)])E, ,2kT)

(2o)
which follows from Eq. (16) by evaluating the energy in-
tegral (for kT, eV (( EF, and assuming that (T)E and
(T )E are approximately E independent in the int, ervals
kT and eV around EF).ii Equation (20) describes the
efFect of thermal averaging on the shot-noise power. A
nonzero temperature has another, indirect, eA'ect on shot
noise through inelastic-scattering in the conductor (ne-
glected in this, and other, scattering theories). A fi-
nite inelastic-scattering length tjn much smaller than the
length I of the conductor, decreases P,], t by a factor of
L/I;„(being the number of uncorrelated segments in the
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conductor), while Pth„~ remains essentially unaffected.
It would be of interest to study the eA'ect on the noise of
inelastic scattering from additional (zero-current draw-

ing) reservoirs connected to the conductor. This coulcl
be done by using the multiterminal formulas of Ref. 5.

Comparison of Eq. (19) with Eq. (1) implies the clas-
sical correspondences

lim Trt tt(E) = (T(r, p))~,h~O

lim Trt ttt tt(E) = (T(r, p)T(r, p))~ .

The limit (21) follows also from a comparison of Eq.
(18) (at zero temperature) with the Landauer formula
G = (e jh)Trt tt. A direct proof of the limit (22) is
complicated by the fact that the oA'-diagonal components
of the matrix (t tt)„= P„t„&t' „do not vanish as
6 ~ 0, but nonetheless have no obvious classical inter-
pretation. [These oA'-diagonal components do not appear
in Eq. (21).j We surmise that a transformation from a
basis of transverse modes (which has for each mode an
h-independent uncertainty Ay in the rJ coordinate), to a

wave-packet basis (for which both Ay ~ 0 and Ap„~ 0
as h ~ 0), will diagonalize the matrix t tt in the limit
h —+ 0, but we do not have a satisfactory proof of this.

In summary, we have presented a semiclassical scat-
tering theory of current noise, which relates the noise
power P to the transmission probability distribution
function T(r, p). The zero-temperature equivalence P =
0 M T(r, p) = 0, 1 for all states at the Fermi energy,
provides the classical correspondence to the quantum-
mechanical criterion T„= 0, 1 for the suppression
of shot noise, and identifies deterministic scattering as
the semi-classical origin of this eA'ect. An experimen-
tal demonstration of this theoretical result could be ob-
tained from noise measurements in a high-mobility two-
dimensional electron gas, in which macroscopic scat terers
have been introduced artificially by selective etching or
by gate electrodes. The scattering potential can then be
made to vary slowly on the scale of a wavelength, so that
classical deterministic scattering prevails. Suppression of
the low-temperature shot noise is predicted, even if the
potential causes strong backscattering.
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