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Tunneling and anticrossing of edge magnetoplasmons in a quantum-dot superlattice
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We calculate edge magnetoplasmons for a superlattice of quantum dots where a uniform magnet-
ic field is applied along the superlattice direction. The confinement is assumed parabolic. We find
(a) anticrossing of the edge magnetoplasmon modes and (b) splitting of the tunneling magneto-
plasmon branch. Similarities with experimental data for a quantum-dot array within a plane are
discussed.

During the past few years, both dielectric response and
transport properties of mesoscopic systems have been the
focus of considerable attention for theorists as well as ex-
perimentalists. In many experiments, ' some aspects of
the data are hard to explain in terms of the single-particle
picture or by considering the motion of the center of
mass due to the fact that electrons are strongly corre-
lated when the region in which they are confined and the
separation between quantum dots are small ~ Recently,
Demel et al. ' reported the observation of anticrossing be-
havior for the edge magnetoplasmons in a quantum-dot
array within a two-dimensional (2D) plane. To explain
their data, they used a classical disk magnetoplasmon
model and obtained good agreement between their theory
and experiment. This model does not, however, repro-
duce the anticrossing feature for the edge magneto-
plasmon branches since this is due to many-body effects.

The purpose of this paper is to present a detailed
analysis of a quantum-dot superlattice chain whose spec-
trum displays features similar to those in Ref. 1, although
the arrangements of the quantum dots in the two cases
are geometrically different. The reason for this is that
there are several aspects in common between the two sys-
tems. One is that the nonlocal many-body effects (intra-
dot Coulomb interaction) become important as the
single-particle confinement becomes stronger or the num-
ber of electrons within each quantum dot becomes larger.
Another is that the interdot Coulomb interaction distorts
the single-particle harmonic confining potential so that it
is no longer quadratic or symmetrical about the azimu-
thal axis in the case of 2D quantum-dot array. This dis-
tortion gets larger as the number of electrons within a dot
is increased or when the separation between quantum
dots is decreased. In our calculations, the self-consistent
potential is a sum of a single-particle potential and the
Hartree-Fock potential. Therefore, the original dipole-
prohibited transitions (
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quantum number) will be allowed and the oscillator
strengths of those modes which were forbidden will in-
crease with the degree of distortion and the amount of
level mixing, near-resonant anticrossing, or at large mag-
netic fields. We believe that the highest branch of the ex-
citation spectrum (co&+ in the notation of Fig. 2 in Ref. 1)
corresponds to the prohibited modes (b.m =0, —2).

Here, we consider a chain of quantum dots forming a
superlattice along the z axis. We assume a parabolic
confining potential —,'m*Qor in each plane. In cylindri-
cal coordinate, the Hamiltonian of a quantum-dot super-
lattice with a magnetic field B along the z axis is given by
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where m* is the electron effective mass. In this notation,
the superlattice electrostatic potential is
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R„(r) is the normalized radial wave function, and the
energy eigenvalues are

E„(k,)=(2n + ~m~+1)co+ co, + [1—cos(k, d)j,m 8'
t 2 ' 2

with co —= (Do+co, /4)' and W is the width of the energy
band, taking into account electron tunneling between ad-

where I =0,+1,+2, . . . , +~, L~ and L~ are the widths
of the well and barrier, respectively, and d =L~+L~ is
the period. The electron wave function is

~n, m, k, ) = e p(xim(b)R„(r)~k, ),1

27r

with

43 12 039 QC1991 The American Physical Society



12 040 BRIEF REPORTS 43

jacent quantum dots along the z axis.
With the use of linear-response theory, the random-

phase approximation (RPA), and the assumption that
only the lowest level is partially occupied and all the oth-
er excited levels are empty, we obtain the following
dispersion relation:

Det[5; y—o(q„co)F,' . (q, ) ]=0,
where 1 ~ i,j ~ 4 are composite indices, e.g. , Ii ) = In, m ),
where n is the radial quantum number. In this notation,
ll&=lo, —1&, 12&=lo, —2&, I»=10, », 14&=11,o&.
The noninteracting irreducible polarizability is

y;o(q„co) = [I(co)+I (
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Here, b = 8'sin(q, d /2). In the case of weak tunneling ( Ibl ((1),we recover the result in Ref. 7 by expanding Eq. (8b)
to the first order of b with the use of a Taylor-series expansion.

F '(q, ) is given by
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where the Green's function is calculated as
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K,. ( x), I, ( x)are the modified Bessel functions. e, =4ireoe„
is the background dielectric constant and ~&0=6—co, /2,
copo 2co cog co3O =co +co, /2, and co4O

=2co. The Fermi
wave vector is kF ~n 1D /2, where n 1D ~a n 3D and2

n 3D is the 3D electron density, and the renormalized
magnetic length a is given by a =l0 +lH, where
I0 —=A/2m *00 and lH —=Ac /e8.

A straightforward calculation shows that for 8'=0,
i.e., no tunneling effects, the four branches of magneto-
plasmon modes with anticrossing are given approximate-
ly by
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plot of the magnetoplasmon excitation spectra as a func-
tion of magnetic field 8 for a quantum-dot superlattice.
Here the electron energy bandwidth 8'=0 and the other
parameters used in our calculation are q, =1.01X10
A, e„=12.5, d =21,0=296 A, m =0.067m„n3D=5.2 X 10' cm, and A'00= 3.68 meV. The single-
particle excitation spectrum is split into branches. An-
ticrossing occurs at relatively low magnetic field, similar
to the experimental results reported in Ref. 1.
These are labeled co& (b, m = —2, hn =0) and
co)+ (b, m =+1,b, n =0). The highest branch is

co2+.Am =0, An = 1 and the lowest branch is
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Here, we only include the coupling of the resonant modes
in Eq. (1 la) and neglect all the other mode-mode cou-
plings in Eqs. (11b) and (1lc). Clearly the effect due to
nonlocal interaction is evident from the depolarization
shift displayed in Eqs. (lib) and (1 lc). Also, the an-
ticrossing feature is described by Eq. (1 la). Figure 1 is a

Magnetic Field (I)

FIG. 1. B dependence of edge magnetoplasmon excitations
for a quantum-dot superlattice. Here, the notations ~&+ corre-
spond to the transitions An =O, hm =+1, and co&+(~& ) to the
transitions An = 1,hm =0 (An =0,Am = —2).
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co& .b, m = —l, b, n =O. These modes (~bm ~%1), which
are forbidden for a parabolic confining potential, are al-
lowed due to the level mixing and the deformation of the
confining potential caused by nonlocal effects which were
treated here in the self-consistent-field approximation.
Both the resonant energy and the resonant position' are
sensitive to the nonlocal effects (i.e. the single-particle
confinement AA0 and the electron number within each
quantum dot). The degeneracies of co, + and co2+
branches at zero magnetic field are lifted. At large mag-
netic fields, the normal branches (positive B dependence&
develop into inter-Landau-level cyclotron modes, while
the anomalous branches (negative B dependence) evolve
into intra-Landau-level edge modes.

When there is electron tunneling between adjacent
quantum dots, each branch is split into two. In order to
compare quantitatively with the results in Ref. 2, we only
give the splitting of the lowest branches cu&+ which are
given approximately by

(irico, ) =(A'co, o) + —,'( 3 I", +BI", )

(13a)
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FIG. 2. B dependence of tunneling edge magnetoplasmon ex-
citations for a quantum-dot superlattice. The notations ~1+
correspond to the transitions An =O, b m =+1, and m, + to their
split tunneling branches, respectively.
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Here, we have neglected the coupling between the co, +
mode and the co& mode in deriving Eqs. (13a) and (13b).
Figure 2 is a plot of the tunneling branches for co&+ and

co& . To simulate weak tunneling, we take 8'=0. 5 meV,

q, =4.04X 10 cm ', and all the other parameters are the
same as in Fig. 1. These results suggest that the addition-
al branches (co,+ in our notation) found in the experi-
ments of Lorke, Kotthaus, and Ploog arise as a result of
the strong coupling between quantum dots and the
transfer of electrons between the dots. From Fig. 2, we
know that the splitting is reduced at large magnetic field.
This is due to the depletion of electrons in the lowest lev-

el, i.e., kF is reduced as 8 increases from zero. Also, the
degeneracy of the co, + modes at zero magnetic field is lift-
ed. The upper branch will develop into inter-Landau-
band cyclotron modes, while the lower branch will evolve
into intra-Landau-band edge modes. For us to demon-
strate this splitting analytically in Eqs. (13), we have used
the weak-tunneling expansion for the irreducible polari-
zability. A more accurate treatment must involve next-
nearest-neighbor hopping. In conclusion, the present cal-
culations show that a single-particle model is not ade-
quate for accounting for anticrossing. Our theory also
explains quite nicely that the split branches in the experi-
ments for a quantum-dot array are due to many-body
effects and tunneling.
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