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InAuence of d orbitals on the nonlinear optical response of transparent transition-metal oxides
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The bond-orbital theory of linear and nonlinear electronic response in optically transparent ma-

terials, developed earlier for pretransition-metal halides and chalcogenides, is expanded to embrace
the transition-metal (TM) oxides. The extension requires an explicit recognition of the infIuence of
cationic empty d orbitals on electronic polarizability. Two competing mechanisms, involving, re-

spectively, virtual electronic excitations to the d orbitals and to the conduction-band "sp orbitals, "
are shown to be essentially additive for linear polarizability g"' and lowest-order nonlinear polari-
zability g' ', but not for g"'. The d-orbital contributions to linear and nonlinear response are found

0
to be negligible for bond lengths d ~ 2. 3 A, but to increase rapidly as a function of decreasing bond

0

length within each TM series to become dominant when d ~ 2.0 A. Numerical evaluations of non
linear refractive index n, , are presented for each series of TM oxides.

I, INTRODUCTION

In two earlier publications' a bond-orbital theory of
optical response was set out for binary pretransition-
metal halides and chalcogenides. This theory, inspired by
the earlier work of Harrison and co-workers for the
tetrahedral semiconductors, describes long-wavelength
electronic response as a perturbation of local bonding or-
bitals by an applied electric field. Each such orbital is
formed along a representative bond axis as a linear com-
bination of two unspecified atomic orbitals ~hM ) and
~hz ) centered, respectively, on the cation (M) and anion
(X) sites. Although these bond orbitals are not indepen-
dent in the high-coordination context of ionic materials,
they do contribute to electronic response in an essentially
independent fashion, a property which enables us to cast
the latter completely in terms of the parameters which
define the individual bond orbitals.

Since the bond-orbital theory is parametrized in terms
of matrix elements within and between ~hM ) and h~)
(which are then, in turn, empirically related to valencies,
bond lengths, ionic radii, and the like), the detailed na-
ture of the parent wave functions is never explicitly in-
volved. There is merely an implicit assumption that the
virtual electronic excitations which dominate this elec-
tronic response take place between a single filled valence
band and a single empty conduction band which can,
within the model, be derived from bonding and antibond-
ing combinations of a uniquely defined pair of atomic
wave functions, whatever their character. The theory is
most quantitative in materials for which the relevant
band widths are smaller than their associated mean band
gaps. In the opposite limit (e.g. , narrow band-gap sp
semiconductors) its predictions for high-order response
can sometimes fail even as to sign.

Since the theory works well for all the ionic
pretransition-metal compounds discussed in Refs. 1 and
2, the effective "two-level" scheme appears to be quite
adequate in that context. In addition, comparing the

measured Sellmeier gaps' E& with the known band struc-
tures for many of these materials makes it clear that ~hz )
must be associated almost exclusively with valence p elec-
trons on the anion, since a relatively narrow p band is the
only band in the energy regime =E~ below the conduc-
tion band edge. The conduction band, on the other hand,
is quite broad and contains admixtures of cationic s, p,
and for heavier cations, d-electron contributions. Since
energy levels =Ez above the narrow valence p band cor-
respond to the lower energy region of the conduction
band, it is probable that ~hM ) is largely of s character (s

electrons tending to dominate the band structure near the
bottom of the band and also the strongest exciton reso-
nances below it ' ) although the possibility of a significant
p-electron contribution cannot be excluded. However, in
spite of the fact that relatively narrow cationic d bands
completely overlap and admix with the lower energy por-
tion of the s/p conduction band in the heavier cation pre-
transition metal halides and chalcogenides, the evidence
of this paper will be that they do not measurably contrib-
ute to ~hM ). The reason is that their radial extent is not
sufficient to produce significant overlap and electronic in-

teraction with the anionic valence p orbitals at the equi-
librium bond lengths possessed by the pretransition metal
series.

In this paper we analyze the variation of long-
wavelength linear optical response @=no (where no is
linear refractive index) upon progression along each of
the respective cationic rows 4 to 6 of the Periodic Table,
i.e., from the pretransition metal insulators into the cor-
responding transition metal series. We restrict ourselves
to optically transparent (i.e., empty d-band) compounds
and, since most experimental evidence presently available
is for oxides, our interest centers upon the trends along
the respective 3d, 4d, and 5d oxide series: viz. ,

KzO, CaO, Scz03, TiOz, VzO&, . . . ,

RbzO, SrO, Yz03, ZrOz, NbzO~, Mo03, . . . ,

CszO, BaO, LazO3, CeOz, HfOz, TazO„WO3, . . . .
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Upon progression into the transition metal (TM) series
along each row, the equilibrium bond length decreases
and the empty d levels fall progressively below the con-
duction sp band. Both of these trends lead to a progres-
sive increase in dielectric response via virtual transitions
to the d levels. This "d-orbital" contribution to e is
found to rise from negligible values for bond lengths

0
d ~2.3 A to values exceeding the "sp-orbital" contribu-
tion for d ~2.0A.

In Sec. II the d-orbital "correction" to two-level bond
orbital theory is first isolated empirically by comparing
experimental values of TM oxide (linear) dielectric
response with the "sp-orbital" expectations of the pre-
transition metal theory. Section III formally extends
bond orbital theory to include a second cationic orbital
~h~ ), to be associated with d orbitals, and theoretically

justifies the additivity of "sp-orbital" and "d-orbital" con-
tributions to linear response which is implicitly assumed
in Sec. II. However, within the theory, such a linear
decomposition does not extend to third-order response (in
particular, as measured by the nonlinear refractive index
nz). Section IV demonstrates the manner in which n2
can be uniquely related to the separate contributions to
linear response. Using this formalism, Sec. V then re-
ports a numerical evaluation of n2 for the three separate
TM series of oxides, and carries out a comparison with
experiment which enables a determination of local field
factors to be made. The paper then concludes in Sec. VI
with a summary of the findings.

II. COMPARISON OF TWO-LEVEL THEORY
WITH EXPERIMENTAL TM DATA

The theory of Ref. 1 leads to an expression for the
long-wavelength electronic response e of binary
pretransition-metal compounds MX„(where M is a me-

tallic cation and X an anion) of the form

e —1 =4~g,

=(lz~l' nd /4V~)(1+gb/d) (2.1)

where y denotes macroscopic polarizability. In this
equation Z& is formal anion valence, d is the MX bond
length (in A), V~ is molar volume (in cm ), g =1 for
halides and =0.65 for chalcogenides, and

6, /d = (d /2R~ )' —1, (2.2)

where R~ is the ionic radius of the cation. This formula
has an rms accuracy of 3.4%%uo over the 44 crystals detailed
in Ref. 1, for which the measured dielectric response e
varies between a low of 1.74 (for NaF) and a high of 5.28
(for MgSe).

Although derived ideally for materials in which the de-
gree of anionic symmetry is sufficient to retain the degen-
eracy of the three anionic p orbitals, Eq. (2.1) also retains
its essential accuracy for other wide band-gap
pretransition-metal compounds such as the alkaline earth
chlorides, bromides, and iodides, some of which possess
a very low symmetry anionic coordination. Necessary
(though not sufficient) conditions for the essential validity
of Eq. (2.1) seem to be a high coordination number ( ~ 6)

for either the cation or anion (or both) and a Sellmeier en-

ergy gap E& large compared to the width of the anion p
band (say ~3 eV). The former condition excludes crys-
tals possessing significant intraionic (e.g. , sp or sp ) hy-
brid bonds, while the latter condition is necessary to justi-
fy a representation which neglects the details of band
structure.

An additional condition, predicated by the two-level
nature of the model, is the assumption of negligible expli-
cit response contributions involving d-electron levels.
Since the series of TM oxides listed in the Introduction
all possess high cationic coordinations and Sellmeier gaps
~ 4 eV, they should provide an excellent monitor of the
infiuence (if any) of empty cationic d orbitals on dielectric
response as a function of decreasing bond length and in-
creasing (d ~p ) overlap. We quantitatively measure this
inAuence by recording the deviation of measured
response e from the two-level prediction of Eq. (2.1) as we
progress along the respective (3d to 5d) TM rows of the
Periodic Table. Accordingly we define a d-electron po-
larizability gd via the equation

e(expt) —1 =4m(X,~+Xd ), (2.3)

where e(expt) is the extrapolated long-wavelength linear
electronic response from direct measurements, and 4~y,
is the valence to sp-conduction band response defined by
the theoretical form of Eq. (2.1).

Experimental measurements of e are available in the
literature ' for almost all of the compounds listed in
the Introduction except the alkali metal oxides. We list
them, together with 4~y, , 4mgd, and the parameters d,
V~ (Refs. 17—25), and R~ (Ref. 26) necessary for the
evaluation of 4', via Eqs. (2.1) and (2.2), in Table I.
A few of the experimental e values (particularly for the
5d transition-metal series) are available at present only
for thin-film specimens. ' Since thin-film values are no-
toriously sample dependent, a few words concerning
these are in order. We have noted that the particular
thin films of Ref. 13, from which the relevant data are
taken, also include several compositions for which
single-crystal equivalent values of e are known. For the
latter the single-crystal values are consistently about 15%
larger than their thin-film counterparts. We have as-
sumed that the same remains true for those compositions
for which the single-crystal data are not yet available.
Values so deduced have been included in Table I in
parentheses.

From the raw data of Table I it is already clear that the
Eq. (2.1), which neglects explicit d-orbital response, is

quite accurate for bond-lengths d greater than about 2.3
A. For shorter d, significantly nonzero positive values of
gd develop and, for d ~ 2.0 A, gd generally exceeds p p.
We shall assume that the "excess" response 4~yd arises,
as implied by its symbolic designation, from virtual elec-
tronic excitations to d levels. However, in order to
confirm the implied additivity of the sp and d contribu-
tions to E, and to establish a theoretical form for pd, it is
necessary to develop a bond-orbital theory which goes
beyond the two-level scheme leading to Eq. (2.1). This
extension is developed in the following section.
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III. THE EXTENSION OF THEORY TO
INCLUDE d LEVELS

In the basic two-level bond orbital theory' a represen-
tative bonding orbital

~b, & =ux ~AX &+ul ~hM & (3.1)

is written as a linear combination of a single normalized
anionic orbital

~ hz ) and a single cationic equivalent

At this juncture we can only surmise that any one-
electron matrix elements between anionic p orbitals and
cationic d orbitals must be relatively small for d ~ 2. 3 A,
but increase rapidly with decreasing d at the shorter bond
lengths. We note, in particular, that the additional con-
tribution yd is absent for short-bond-length pretransition
metal compounds from rows 2 and 3 of the Periodic
Table (e.g. , LiF, MgFz, MgO, A1203, and Li20). ' Since
all these compounds have d ~ 2. 1 A we confirm that the
response labeled 4mgd is indeed attributable in some
manner to the presence of additional excitations and is
not some universal breakdown of bond-orbital theory for
short bonds.

~hM ). The extension to incorporate TM cations is ac-
complished by defining a second normalized cationic or-
bital ~hM ) and including it in the bonding orbital by re-
casting Eq. (3.1) in the form

~b, )=u ~h )+u ~h &+u' ~h' &. (3.2)

E+Eo ES+M
ES +M E —Eo

ES'+M'

0

ES'+M' 0 E +Eo —2Eo uM 0

(3.3)

in which the primed symbols are the "d-orbital"

Like
~ hz ) and

~ hM ), the orbital
~ hM ) remains

unspecified as to its detailed form; it is, however, assumed
to be dominantly of d character.

Paralleling the procedure for two-level theory, the
coefficients u and bond-orbital energy E are determined
by minimizing the one-electron energy
&bolHolbo&l&bolbo& with respect to the three u
coefficients. This leads to the stationary conditions

TABLE I. Bond-length d, molar volume V~, cationic radius RM, "sp-orbital" contribution to dielec-
tric response 4vrg, ~ [from Eqs. (2. 1) and (2.2)], experimental dielectric constant e', and 4rryd (defined as
e —1 —4~g,~) for the 3d, 4d, and 5d series of empty d-band transition metal oxides. Experimental
values e are for single crystals except for those in parentheses, which have been obtained by adjustment
(see text) from thin-film data.

Material
units A

R~
A

Cao
Sco l. 5

TiO, (rutile)
Ti02 (anatase)

VO2. s

2.41'
2.11
1.96'
1.93'
1.83g

16.8
17.8
18.8
20.5

1.00
0.81
0.61
0.61
0.50

3.3'
3 7'f
6.3'
5.6'
5 3h

2.3
1.9
2.0
1.7
1.4

0.0
0.8
3.3
2.9
2.9

Sro
Yol. s

Zro,
Nbo2. s

Moo3

2.58'
2.28'

2.00"
1.96g

20.7
22.4
21.1

27.3
30.1

1.18
0.96
0.78
0.64
0.59

3.4'
3.6'

4.2'

5 3'
?

2.4
2.0
2.4
1.8
1.9

0.0
0.6
0.8
2.5
?

Bao
Lao, s

Hf02
Ceo2
Tao' s

VVO3

2.76'
2.54~

2.15'
2.34'
2.04q

1.87'

25.4
24.8
20.8
23.9
26.6
32.4

1.35
1.10
0.76
0.97
0.69
0.60

3.7
(3.9)
(4.3)
(4.0)
5.0'
4 9s, t

2.5
2.9
2.5
2.8
2.0
1.4

0.2
(0.0)
(0.8)
(0.2)
2.0
2.5

'Reference 17.
"Reference 26.
'Reference 7.
dReference 18.
'Reference 8.
Reference 9.
Reference 19.

"Reference 10.
'Reference 20.
"Reference 11.

Reference 21.
'Reference 12.

Reference 13.
"Reference 22.
'Reference 14.
~Reference 23 ~

qReference 24.
"Reference 25.
sReference 15.
'8 eference 16.
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equivalents of their unprimed "sp-orbital" counterparts
according to the definitions

(hMIHolhM ) —(h»laolh») =2EO,

& hM lao IhM &
—

& h» lao lb» ) =2Eo,
(h la, lh. &

= —M, (h la, lh &
= —I,

(h Ih )=S, (h' Ih )=S'.

(3.4)

(3.5)

(3.6)

(3.7)

The zero of energy has been chosen (arbitrarily) using the
condition

of Eq. (3.9), the matrix of Hc reduces to the form
E—ok+HO (where I is the unit matrix) in which

0 0 0

2N Eo XN SS Eo

0 NX SS Eo 2X Eo

Ho= 0 (3.13)

Since this is diagonal (if terms in SS' are neglected) with
eigenstates P;, we can now proceed to consider perturba-
tion by an applied field E directed along the bond axis x.
The required perturbation operator is

(hMla, lhM)+(h»la, lh») =0, (3.8) V = efxE— (3.14)

and the cationic orbitals are assumed to be eigenstates of
the cation in the absence of bonding such that
( hM lao I h~ ) and ( hM I hM ) are both equal to zero.

In the ionic limit (as defined in Ref. 1) the bonding or-
bital contains no cationic contributions, i.e., lho ) = lh» ),
E = —Eo. It results from the stationary conditions when

where e is electronic charge and f is a local field factor. '

Measuring x along the bond from the anion nucleus at
x =0 toward the cation nucleus at x =d we readily
deduce the matrix representation of V in basis
(i =1,2, 3) as

M =EoS, M'=EOS', (3.9)

$2=N( lhM ) —S lh» ) ),
y, =N(lh &

—slh. &),

in which the normalizing factors are

(3.10)

criteria which diagonalize the matrix in Eq. (3.3). It fol-
lows that in this ionic limit (and only for this case) the
lowest order perturbational response to an applied field
along the bond axis must be expressible as the sum of
terms corresponding to virtual excitations from lh») to
the appropriate antibonding levels associated predom-
inantly with the respective cationic sp and d levels. In
fact, if we work with a normalized orthogonal set of basis
wave functions (in place of lb» ), lhM ), and lhM ) ) it be-
comes analytically tractable in this limit to set up a con-
ventional time-independent nondegenerate perturbation
theory of dielectric response to any order in applied field
and to examine in detail the additivity (or lack of addi-
tivity) of this response in each order as regards sp- and d-
orbital contributions.

Consider the set of orbitals

V, ~
= V2, = NSLefE—„,

V, q
= V3i = N'S'L'e—fE„,

V/3 V32 = NN'( hM lxl—hM )efE

V22= —N (d —2S L)efE

V33 = —N' (d —2S' L')efE, ,

where

(3.15)

L =(hMlxlh» &/&hM lh» &, (3.16)

L'= &hMI xlh») /( h~h»), (3.17)

and terms in SS' have been neglected. Since (hM lxlhM )
is an intraionic term it is likely to have a value which is
small compared to d. Moreover it is consistent with the
spirit of the bond-orbital approach (in which interionic
terms are assumed to be dominant throughout) to set it
equal to zero within the model, making V23 V32 0.

The matrix equation for the perturbation of the zeroth
order ground state P, =

I h» I ) by V now takes the form

N= 1/(1 —S )' N'=1/(1 —S' )' (3.11) V(2 E2 —E + V22 0 0

We note that, while both excited states P~ and P3 are
properly orthogonal to the ground state, they are not
rigorously orthogonal to each other. In particular,

E3 —E+ V33 Q3 0

(3.18)

&y, ly, &= —NN'ss . (3.12) in which

Although it is quite possible to find a true orthogonal set
which also diagonalizes ao (for example, by defining
'P~ ~ $2+ a|It 3 and ~p3 ~ /&+ bed, and determining
coefficients a and b by requiring ( %'2

I %3 ) and
( 0 p I Ho I

0 3 ) to be zero) the algebraic complexity of this
scheme leads us to prefer working with the set P, , thereby
neglecting terms of order SS'.

Using the basis set P;, and the ionic limiting conditions

E2 =2K E E =2%' E' (3.19)

and eigenvalue E and eigenfunction coefficients a; are
small quantities which may be determined to any order in
V by standard time-independent nondegenerate perturba-
tion theory. To third order we find values

V2 V2 V2 V V2

E E2



11 982 M. E. LINES

2 2

a1= —— +
2 2

+
3

+V12 V22 V13 V33

E3 E3

a2—

2 1

E2 E

V12 V12 V22+
E,
1 3 V12 2 V12 V22 V12 V13

3 2 2+- +
2 E E E

(3.21)

(3.22)

(1) e fS (d +6)
Xb) Sp sa

3e f S (d+6) (d —S 5/0 )
bs p 4E2 2sa

(3) e4f S d2(d +Q) D
+b, sp 4E3 'sa

(3.33)

(3.34)

(3.35)

in which a =(1—S ), E& is the sp-Sellmeier gap [equal
to E2 of Eq. (3.19)] and

D =4—5S —10S (6/d)-+(S/a) (5S —1)(hid)

a 3

1+—
2

+
E

3 V13
—2 V13 33 13 V12 2 1

3 2 2

+ +E3 E2E3 E3 E2

(3.23)

The perturbed normalized bond orbital ~b ) now takes
the form

(3.36)

which agrees exactly with the 2-level bond-orbital
findings in Eqs. (2.2) —(2.6) of Ref. 29 when the latter are
taken to the ionic limit (viz. , a =S, g = 1,
V2=EDS/a =SE, /2 in the representation of that pa-
per). The analogous formulations for "d-orbital"
response X(b"d follow from Eqs. (3.32)—(3.36) by the substi-
tutions S~S', E, ~E,'=E3, and L +L'=(1/2)(—d+6').

l» =(1+a))4(+a242+~343 (3.24)
IV. NONLINEAR RESPONSE IN THE TM OXIDES

(b ~ex ~(b ) =const+ g Xb"'E" .
n =1

(3.25)

Using Eqs. (3.21)—(3.25) the bond susceptibilities follow
in the form

2 2

fE X'"=2 +V12
x b (3.26)

fE.'X',"=4

2
V12V22

E2
2

2 2V12�V2-
2E

2 2
V12V13

2

2

4 2 2 4
V12 V13 V33 V13+-

E3

(3.27)

(3.28)

in terms of which linear and nonlinear bond susceptibili-
ties g'b"' can be defined according to

e cx~ (d +gb, )
2(1 —S )Es

(4.1)

Although the response decompositions represented by
Eqs. (3.29) —(3.31) become less valid as we deviate from
the ionic limit, they are expected to be entirely adequate
for the high coordination TM oxides of this paper since,
for their pretransition metal counterparts discussed in
Refs. 1 and 2, the anionic component of the bonding or-
bital ~(bo) of Eq. (3.1) is never found to be smaller than
uz =0.96. In discussing first- and third-order responses
for the TM oxides (second-order response is at most small
and extremely sensitive to structural details for these ma-
terials) we therefore assume the validity of Eqs. (3.29) and
(3.31) but in terms of the generalized (i.e., a ~ S ) response
functions of Eqs. (2.2) and (2.4) of Ref. 29 which are appl-
icable for both halides and chalcogenides. Specifically
these are

Clearly the responses gb" and g&
' are additive with

respect to the sp- and d-orbital contributions, and may
therefore be expressed as

4 2 3 2
(3) eaf dD (d+ ~)2

4(1 —S')'E'

in which

(4.2)

(1)— (1) (1)
+b +b, sp ++b, d

~(2) —~(2) +~(2)
s

(3.29)

(3.30)

in an obvious notation. Third-order response gb, on the
other hand, is not additive, but contains a cross term as

Xb Xbsp Xbd fXbspXbd(E2 +E3 (3.31)

Using Eqs. (3.15) and relating L to the parameter b, of
Eq. (2.2) via the equation2s

D =4—5a —10ga (b, /d ),
' 1/2

(4.3)

S 1 —q
1 —S

(4.4)

a = v /( v'+ v')'" (4.5)

and a is a measure of covalency (which can, in general,
range between an ionic limit of o. =5 and a covalent limit
a = 1) in the form

L =(1/2)(d+b, ),
we confirm the representation

(3.32) where

V2=M/(1 —S ), V3=E()/(1 —S )' (4.6)
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and

E, =2Vz/a . (4.7)

Analogous relationships are valid for g'b'& and g'b & if o,',

6, S, g, V2, V3, M, and Eo are all replaced by their
primed counterparts.

Summing over all one-electron bonds for a crystal with
formula unit MX, now provides an expression for linear
response of form'

Gny (d+gb, ) G'ny' (d+g'5')
V-V.

+
V.V,

f«—'+E' ')x",,', x", (4.16)

Transforming to the macroscopic polarizabilities g, and

Xz of Eq. (2.3) by summing over one-electron bonds in
the fashion

where a =(1—S ) and a' =(1—S' ). It follows that
X'b ', via Eq. (3.31), can be wholly related to linear
response in the form

'2 2

XI,
"= (D /2)X'b', p +, (D'/2)X'b'ga' s

where

y =o./S, y' =o,"/S', (4.9)

X, =(2z/3)(nNO/VM )XIb",

X~ = (2z /3 ) ( nNO /VM )X'b'q

(4.17)

(4.18)

and

18.2zfS, 18.2zf'S'

(1—S) (1—S' )
(4.10)

with z equal to the number of nn cations per anion and d
being measured in A, V2 in eV, and molar volume V~ in
cm . We note, in particular, that since only one of the
five d orbitals per cation strongly o. bonds to an anion p
orbital along a bond axis, there is no added degeneracy
factor to be included in the (d orbital) primed term of Eq.
(4.8).

The utility of the formalism for sp orbitals is manifest-
ed empirically by the observation that close agreement
with experiment is obtained for all binary pretransition
metal halides and chalcogenides' if

/z [1/2

6/V2 =d /4

(4.1 1)

(4.12)

and

b, =d [(d/2RM)' —I], (4.13)

2

X(3) — f (D /2)X() )e„~d

s
(4.14)

where Z~ is formal anion valence and RM is cationic ra-
dius. These empiric observations, when inserted into the
unprimed component on the right-hand side of Eq. (4.8),
then lead directly to Eqs. (2.1) and (2.2). Unfortunately,
analogous relationships cannot automatically be assumed
to hold for the d-orbital contributions. We shall probe
their d-orbital counterparts (to the degree possible with
the limited TM experimental information presently avail-
able) in the following section. Nevertheless, somewhat
surprisingly, we do already possess essentially all the in-
formation necessary to obtain reliable numerical esti-
mates of third-order nonlinear response throughout the
three separate TM series of oxides.

This we can do because, by use of Eqs. (4.1) and (4.2),
we can directly relate g'b,' and g,' & to their linear coun-
terparts as

where No is Avogadro's number and the factor —,
' arises

from an angular average, the entire pretransition metal
theoretical development of Ref. 29 for the nonlinear opti-
cal coeScient n2 in compound MX„remains valid if only
the term (fd laE, ) Dx, is replaced in it by its expanded
equivalent, from Eq. (4.16), viz. ,

J= -'
DX, +.fd

aEs DX,
a 'Es

3VMf
(Es '+E's ')X,pXy

nXoze
(4.19)

or

fd
aEs Dyj+ Dfd

a'Es

—0.346 (Es '+E's ')X,pXg, (4.20)
nz

0

if d is expressed in A, Es and Es in eV, and V~ in cm .
Accordingly, the extension of Eq. (3.14) of Ref. 29 for use
with TM oxides is (in cm /erg)

n2—
4' 10 "fJ(gq )

(4.21)

n2(aU)=T, +Tz —T, z,
where

(4.22)

T, =f (20/no)(d/E, ) (D/a )(4vrX, ),
T„=f (20/no)(d/E, ') (D'/a' )4~X~),

T, q=f (0.55VM!nnoz)(Es '+Es ')

(4.23)

(4.24)

which is relevant for linearly polarized light propagating
with the electric field at an angle of direction cosine Pb
with respect to bond b. For the TM oxides it is most con-
venient for comparative purposes to express n2 as an an-
gular average (i.e., (P& ) =

—,
'

) in the form

2
(3) efd

+b, d a'Es
(D'/2)Xb q (4.15)

X(4~X, )(4n.Xq), (4.25)

in units of 10 ' cm /erg, where no is linear refractive in-
dex.
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V. NUMERICAL

4~&.,Es' 4~Xd Es'
e(co) —1 = +E2 g2 2 EI2 g2 2

s ~ s
(5.1)

In order to predict the numerical nonlinear properties
of the TM oxides via Eqs. (4.22) —(4.25), it is necessary to
deduce from the linear response measurements the
separate values of the bond-orbital parameters Es, D, and
5 and their primed equivalents. The Sellmeier gaps Es
and Es are related to the frequency dependence of linear
electronic response e(~) on approach to the long-
wavelength limit according to the relationship

Thus, the Es(eff) values for the oxides at the beginning of
the TM series (e.g. , CaO, SrO, BaO), for which yd «y,~,
are essentially equal to Es. On the other hand, for those
oxides further into the series [like TiQz and VzO&, with
Es(efF) =5.5 and 4.4 eV, respectively] ' the Es(eff) values
are closer to Es since, for them, gd )p p.

Since the energy gap between the valence p bands and
conduction sp bands is known to vary little right across
the respective TM series, it is sufficient for our purpose to
take the Es values for CaO, SrO, and BaO as representa-
tive for the respective series, i.e., '

Unfortunately the published data on E(co) for the TM ox-
ides is usually analyzed (if at all) in terms of a single
efFective Sellmeier gap E, (eff), i.e., by writing

Es(3d series) = 10 eV,

Es ( 4d series ) = 8. 5 eV, (5.4)

(e—1)Es(efF)
e(co) —1 =

Es(eff) —A' co
(5.2) Es(5d series)=7 eV .

4~y, 4~yd

Es~( eff) Es Es
(5.3)

The effective gap is therefore related to the real gaps via
the equation

FromEqs. (5.3), (5.4), and Table I it follows that Es —4.6
eV for Ti02 and =3.7 eV for V20~. The effective
Sellmeier gaps Es(effl presently known for single-crystal
(TM) oxides are (in units of eV)

5. 5 (TiQ2, rutile)(Ref. 7), 5. 5 (TiO~ anatase)(Ref. 7), 4.4 (VzO5)(Ref. 10),

8. 9 (Y2Q3)(Ref. 11), 6. 8 (Nb~0~)(Ref. 14), 7. 5 (Taz05)(Ref. 14), 4. 5 (WO, ) (Ref. 16)

For the subset of these with yd )y, (see Table I) the
above method enables reasonably quantitative estimates
of the d-orbital Sellmeier gap Es to be obtained. These
have been calculated and are plotted as a function of
bond-length d in Fig. 1. For the oxides with larger d
values, Es cannot reliably be obtained in this manner.
However, it is known from band-structure computa-
tions that the center of the relatively narrow d band in
CaO lies about (12+1) eV above the valence p band, sug-
gesting a value Es=12 eV when d =2.4 A. Including
this information in Fig. 1 now suggests an approximately
linear dependence of Es on bond length of the form (in
eV)

Es=15(d —1.6) (5.5)

which, once the Lorentz factor f is known, determines S
for the TM oxides (~ZX~ =2) directly from a knowledge
of d and Es (both of which we now possess). Values of
a =&2S and of D Iof Eq. (4.3)] then follow immediately.

0
with d in A. We note, in particular (Fig. 1), that this ex-
pression also accounts closely for the peak to peak
valence to d-band gaps in the density of states curves for
SrTi03 and KTa03. '

For the unprimed bond-orbital parameters, a combina-
tion of Eqs. (4.7) —(4.12) now leads to the relationship
(with Es in eV and d in A)

145zfS'
(1—S')~Z ~'"d"

4myd = 18.2zfna' (d+g'6')
(1—S' )VM V~

Defining from this equation a parameter U' according to

4wgd = U'nd /V~, (5.8)

we may immediately evaluate it for the TM oxides by
utilizing the gd values of Table I. As a function of bond-
length d, we observe (Fig. 2) that it decreases monotoni-
cally from values =9 at d =1.8 A to values essentially
equal to zero for d ~ 2. 5 A. Using the relationship

I

We give them numerically, for the case of f =1, in
Table II. Other unprimed bond-orbital parameters like g
(which never deviates from the range 0.65+0.01), Vz, V3,
M, and Eo follow directly from Eqs. (4.4) —(4.7).

To complete an enumeration of nz from Eq. (4.22) also
requires at least a limited knowledge [specifically
D'/(1 —S' ) ] of the values of the primed bond-orbital pa-
rameters. Unfortunately, since there is at present almost
no experimental information on linear response for TM
halides or chalcogenides other than oxides, our
knowledge of "d-orbital" response parameters will
remain less than complete. However, a number of in-
teresting deductions can be made from the existing data,
from which D'/(1 —S' ) can be evaluated with adequate
precision to enable numerical estimates for n2(av) to be
completed.

Firstly, by combining Eqs. (2.3) and (4.8) —(4.10), we
can write
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TABLE II. Values of the valence to sp-conduction band Sellmeier gap Ez (in eV), the mean number z
of cation nn of an oxygen anion, overlap S, "covalency" a, and parameters b, /d of Eq. (2.2), D of Eq.
(4.3), and D/a for the 3d, 4d, and 5d series of TM oxides, where a = 1 —S .

Material

Cao
ScOi s

TiO, (rutile)
TiO, (anatase)
VOz. s

10
10
10
10
10

6
4
3
3

2.4

S'

0.34
0.36
0.37
0.37
0.38

0.49
0.51
0.53
0.53
0.54

0.10
0.14
0.27
0.26
0.35

2.7
2.5
2.2
2.2
1.9

3.0
2.8
2.5
2.5
2.2

SrO
&Oi. s

ZrOz
NbOz s

8.5
8.5
8.5
8.5

6
4

3.5
2.4

0.34
0.36
0.36
0.39

0.49
0.51
0.51
0.55

0.05
0.09
0.18
0.25

2.8
2.6
2.4
2.0

F 1
2.9
2.8
2.4

BaO
LaO) s

Hfo,
CeOz
TaOz. s

WO3

6
4.7
3.5
4

2.6
2.0

0.34
0.35
0.33
0.34
0.36
0.36

0.48
0.49
0.47
0.48
0.50
0.52

0.01
0.07
0.19
0.10
0.22
0.25

2.8
2.7
2.6
2.7
2.3
2.3

3.2
3.0
2.9
3.0
2.7
2.6

'These values are calculated assuming no local field enhancement (i.e., f = 1). For f%1, they scale ap-
proximately as 1/f '~' from which D and D /a' can be recalculated via Eq. (4.3).

E' =2( V' + V' )' =2V' /a' (5.9)

CaO

in Eq. (5.7) we obtain, via Eq. (5.8), the form

36.4zf a' F
E

(5.10)

2.0 2.2
d (A)

2.4
I

2.6 0—

FIG. 1. The known d-orbital Sellmeier gaps E& as a function
of mean bond-length d (solid circles) for the TM oxides. Also
shown (open circles) are the best theoretical estimates from
band theory (Refs. 30 and 31) for SrTiO„KTa03, and CaO (see
text), The solid curve gives the best linear fit to the combined
data.

l.6
I

1.8 2.0
I

2.2
d (A)

I

2.4
I

2.6

FIG. 2. The parameter U' of Eq. (5.8) as evaluated for the 3d
(solid circles), 4d (crosses), and 5d (open circles) TM oxides.
The solid line is a guide to the eye and suggests a functional
variation of U with bond-length d which is essentially indepen-
dent of the d-electron principal quantum number.
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in which

(1+g'6'/d)
(1 —S' )

(5.11)

therefore, Eq. (5.12) is adequate.
We note that the one-electron matrix element V2 fol-

lows from o.' via (in eV)

Since U', z, and E,' are now all known as functions of d,
only this factor F now stands between us and an evalua-
tion (at least for f =1) of the "d-orbital" covalency pa-
rameter a' as a function of bond length. Let us first con-
sider the tentative assumption

(1+g'6'/d) (1+gb, /d)
(1 —S') (1 —S )

(5.12)

/
/

/
/

X/

~j ~

I
I

0.8 )

0.2 0.4

0.0
1.6 1.8 2.0 2.2

d (A)

2.6

FIG. 3. The d-orbital covalency parameter o, ' as a function of
bond-length d for the 3d (solid circles), 4d (crosses), and 5d
(open circles) TM oxides calculated for f =1. The solid line is

merely a guide to the eye. The dashed line exhibits the d-

dependence of the anion p-orbital to cation d-orbital matrix ele-
ment V2 as deduced from the solid line via Eq. (5.13). For f%1,
both a' and Vz scale approximately as 1/f ' '-.

for which I' varies within the range 1.1 to 1.7. It assumes
a not grossly difT'erent radial extent for wave functions
hM ) and ~hM ) with the same principal quantum num-

ber, and leads to values for cx' as a function of d as shown
in Fig. 3. It is apparent from the figure that a', at least
within the context of oxides, is a similar function of bond
length for each of the TM series. In particular, for
d ~2.0 A this measure of "d-orbital" covalency reaches
values =0.5 comparable with the unprimed o. values of
Table II. It therefore seems likely that the approxima-
tion of Eq. (5.12) is adequate in this region. Clearly,
however, as d increases to values in excess of 2.4 A, the
covalency measure u' becomes progressively smaller than
its unprimed equivalent, implying that here the radial ex-
tent of hM ) becomes progressively less than that of
~hM ) and that the assumption of Eq. (5.12) is likely to be
much poorer. However, since d-electron contributions to
both e and n2 become negligibly small at larger d values,
and o, '~0, errors accruing from the assumption Equa-
tion (5.12) are relatively inconsequential in estimates of
electronic response in this limit. For present purposes,

V2 =Fsa'/2=7. 5 (d —1.6)a', (5.13)

D I

1 —S'
4 —5a' —10g'a' (b, '/d)

1 —S' (5.14)

clearly approaches, independently of f, a value of four at
large bond lengths, for which o." (and therefore S' also)
goes to zero. Our absence of knowledge of the magnitude
of 6' in this regime is therefore of no consequence. At
shorter bond lengths for which u'=o. , it is safe to assume
that 6' and u'/S' approach values not greatly diAerent
from their unprimed counterparts. We therefore approx-
imate g'b, '

by gh, and a'/S' by cz/S = Zz ~', in terms
of which Eq. (5.14) can be recast as

D'

1 —S'
4—5a' —10gct' (b, /d )

1 —(a' /2)
(5.15)

Taking n' values from Fig. 3, 6/d values from Table II
and setting g =0.65, now enables us to obtain numerical
values for D'/(1 —S' ). They are given, together with a'
and Ez, for each of the individual TM oxides in Table III.

We now possess all the numerical data necessary for an
evaluation of nz(au), via Eqs. (4.22) —(4.25), excepting
only the local field factor f. We shall calculate first as-
suming f = 1, which was the value found to be valid for
the pretransition metal halides. Numerical values for
n~(au), together with the individual component values
for T, , Td, and T, d are all given in Table III. We note
that as we progress along each TM series toward higher
cation valence, the term T,z (which arises from virtual ex-
citations to cationic sp levels) progressively decreases,
and the term Td (due to virtual excitations to d levels) in-

creases. The "cross-term" T, d is never more than about
15% of T, +Td and is usually much less. Since T, and
Td are explicitly proportional to f [see Eqs. (4.23) and
(4.24)] the n2(au) values so calculated are essentially in
units of 10 ' f cm /erg.

The values of f can, in principle, be obtained by direct
comparison with experiment. In practice the procedure
is hampered by a paucity of experimental data for TM
oxides, coupled with uncertainties concerning the varia-
tion of n 2 with optical polarization and propagation
direction (which is often undocumented in the literature)
and the lack of a universally acknowledged reference
standard among experimentalists. The best data avail-

and can therefore be deduced directly from Fig. 3. We
sketch it as a function of d in that same figure. It reaches
peak values of about 1.5 eV that are only slightly small-
er than their unprimed counterparts ( Vz=Esa/2)
which, in turn, range between =1.7 eV for the 5d TM
series to =2.6 eV for the 3d series. However, to this
point, all these values u, V2, u', Vz in absolute terms still
rest on an assumed absence of local field corrections. For
f%1 they would scale approximately as f

The d-orbital function required for the evaluation of
n2, namely,
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TABLE III. Values of the valence to d-band Sellmeier gap Ez (in eV), d-band covalency parameter a', ratio D'/(1 —S' ) of Eq.
(5.15) and, in units of 10 "cm'/erg, the three terms Tp, Td, and Tp d of Eqs. (4.23) to {4.25) which, in combination T,p+ Td Tp
combine to form the nonlinear refractive index n&{aU).

Material

Cao
ScOl 5

TiOz {rutile)
Ti02 {anatase)
VOq q

&s

=12
7.6
4.6
4.7
3.6

~0
0.29
0.50
0.48
0.46

D'/{ 1 —S' )

4
3.6
2.6
2.8
2.8

Tsp

4.4
2.5
1.5
1.3
0.9

Td

~0
2.3

12.4
11.6
18.2

sp, d

=0
0.3
1.4
1.2
1.7

n2{au)'

4.4
4.5

12.5
11.7
17.4

Sro
&Oi. s

ZrO,
NbO~ 5

~ 15
10
8.4
6.0

~Q
0.30
0.29
0.54

4
3.7
3.6
2.4

7.4
4.4
4.2
2. 1

~0
1.2
1.9
5.8

~0
0.3
0.4
1.4

7.4
5.3
5.7
6.5

Bao
La01 q

HfOq
CeOz
TaOq~
WO3

=17
=14

8.2
=11

6.6
3.9

~Q
~0

0.30
0.17
0.49
0.53

4
4
3.6
3.8
2.9
2.6

12.9
11.6
6.6
9.4
4. 1

2.4

~0
~0

1.9
0.3
5.0

12.5

=0
=0

0.4
0.1

1.2
1.8

12.9
11.6
8.1

9.6
7.9

13.1

'All these values except E~ are obtained by assuming the absence of any local field enhancement (i.e., with f = 1). For f41, a' and
S' scale approximately as 1/f ' ', T~, Td, and nz(av) approximately as f' and T~ d approximately as f'. The parameter D'/(1 —S')
is relatively insensitive to f

able at present for our purposes are those of Adair
et al. Our prior analysis of these data for the pretransi-
tion metal halides has been reported in Ref. 29.

In order to remove any uncertainties concerning abso-
lute values, we scale both the theoretical findings (Table
III) and Adair's measurements (Table IV of Ref. 35) to
that of a representative halide for which we have evi-
dence that f =1 is a good representation. Choosing
this halide to be NaC1 (any other would have sufficed
without significantly affecting the results to follow) we
adopt as our "unit" reference point that experimental
value n 2

= 1.59 X 10 ' cm /erg from Adair et al. and
the theoretical value n2(av)=(3/5)n~, =4.4X10
cm /erg from Table I of Ref. 29. A direct comparison of
relative n2 values (experiment versus f =1 theory) are
shown in columns 1 and 2 of Table IV for a selection of
halides and for CaO, SrO, YO& 5, ZrOz, and Ti02. Also
included in the tabulation are the pretransition metal ox-
ides MgO and A10, 5 and indirect experimental estimates
for NbO2 5 and TaO2 5. The NbOz 5 estimate is obtained
by extrapolation from measurements on Nb-doped sili-
cate glass while that for Ta02 ~ follows from data on
KTa03 (Ref. 36) assuming ni in this compound to be
dominated by its Ta02 5 component. Note that a similar
estimate for W03 cannot be made from n2 data on
CaWO4 (Ref. 35) since W in CaWO4 is tetrahedrally
bonded with an effective Sellmeier gap =9 eV, close to
double that of octahedrally bonded WO3.

Since the experimental values are obtained at a wave-
length of 1 pm, the theoretical values should be adjusted
for frequency dependence to this same value (or,
equivalently, to fico=1.24 eV). At frequencies for which
~' «E~ /A' and co' «E~'/A', a nonlinear response
n2(ai) which is dominated by T, varies with frequency

25fLd (no —1)
n2(av) = 1p

noEs(eff)
(5.16)

approximately as [LEs/(Es —A' co )], while one dom-
inated by Td varies correspondingly as
tEs /(Es fi ra )] . T—he required frequency shift for the
materials of Table IV is negligibly small except for TiOz,
Nb02 ~, and Ta02 5 where it has been included in the per-
tinent values of that Table.

We see clearly from Table IV that while the f = 1

theoretical values are close to experiment for the halides,
they are significantly smaller than experiment for the ox-
ides (both in the case of pretransition metal and TM cat-
ions). Recomputing n2(av) for each oxide as a function
of f now enables us to calculate those values of the local
field enhancement factor f which would bring the theory
and experiment back into agreement. These values are
shown in column 3 of Table IV. A pattern emerges as
follows: f= 1.0 for the pretransition metal halides,
f = l. 3+0. 1 for the pretransition metal oxides and those
TM oxides for which T, dominates the nonlinear
response, and finally f= 1.9+0. 1 for the TM oxides dom-
inated by "d-band" response.

Without claiming anything more profound than coin-
cidence, these values can all be cast in the form
(0.75+0. 1)fL, where fL =(@+2)/3 is the Lorentz local
field factor. This empiric observation, coupled with the
fact that n2(av) is almost always dominated separately by
T,„or Td of Eqs. (4.23) and (4.24), now enables us to offer
a very simple expression for n2(av) which appears to
have at least semiquantitative validity for all the pretran-
sition metal and TM halides and chalcogenides discussed
to this point. It is, in cm /erg,
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Material

NaC1

n2 (expt) " (theor)

TABLE IV. Nonlinear refractive index n2 (at 1 pm) scaled
down to n2 (NaC1) =1, from experiment (Ref. 35) and from the

f= 1 theory of this paper. Also shown are the values of the lo-
cal field enhancement factor f which are required to produce
agreement between theory and experiment, and the Lorentz
values fL of this same parameter.

Since it is quite possible that the local field parameter f
could adopt different numerical values for the (p d ) and

(p~s) based interactions which, respectively, dominate
the primed and unprimed contributions to electronic
response we have not recast Tables II and III to incorpo-
rate the estimate f=3fL/4 explicitly. We shall, howev-

er, give a final tabulation of n2(av), via Eq. (5.16) and its
frequency-dependent analog (in cm3/erg)

LiF
NaF
KF
KC1
NaBr
KBr

MgO
Cao
SrO
A101 q

YOi. s

ZrO2
Ti02
Nb02,
Ta02. s

0.16
0.21
0.47
1.26
2.05
1.84

1.0
3.3
3.2
0.8
3.4
3.6

35.0
12.0'

+ 18.0'

0.16
0.22
0.35
1.17
1.69
1.85

0.5
1.0
1.7
0.25
1.2
1.3
3.6
1.6
2.0

1.0
1.0
1.1
1.0
1.1

1.0

1.2
1.4
1.2
1.4
1.3
1.3
2.0
1.8

~ 1.9

1.31
1.25
1.28
1.39
1.53
1.45

1.65
1.76
1.78
1.69
1.87
2.07
2.77
2.43
2.33

25fr d (no —1)Es(eff)
n2(av) = 10

no[Es(eff) fi ro —j
(5.17)

1 m /W—:(3no10 /40ir)cm /erg, (5.18)

in which no is the long-wavelength limiting value of re-
fractive index.

VI. SUMMARY

for the complete series of 3d, 4d, and Sd TM oxides. It is
shown in Table V, and values are quoted both for the
long-wavelength electronic limit and for the vacuum
wavelength A, =1 pm. For each case, numerical values
are quoted both in esu (cm /erg) and mks (m /W), the
conversion factor being

'See text.

where Es(effl in eV is the common "one-parameter"
Sellmeier gap as defined in Eq. (5.2) and bond-length d is
in A. For the materials of Table IV, the representation of
Eq. (5.16) has an rms accuracy (for relative values) of
+25%, with a maximum error of 50%, over values which
span a range of more than a factor of 200 in magnitude.

This paper extends the two-level bond-orbital theory of
electronic response in pretransition metal halides and
chalcogenides to the three levels required for a discussion
of the optically transparent transition metal (TM) oxides.
The extension recognizes the increasing importance of
virtual transitions from the filled valence band to the
empty cationic d band on progression along each of the
3d, 4d, and 5d TM series (e.g. , from CaO to Sc203, TiOz,
and VzOs in the 3d series). The "d-orbital" contributions

TABLE V. Final numerical estimates for the angularly averaged nonlinear refractive index n2(au),
from Eq. (5.18). They are given for the complete list of TM oxides at the long-wavelength limit A,~ ~
(electronic contribution only) and at k = 1 pm, and are expressed in both esu (cm /erg) and mks
(rn /W).

Material
units

n2(au)(k~ ~ )

10 ' cm /erg 10 m /W
n, (au)[A, =l pmj

10 ' cm /erg 10 ' rn /W

Cao
Sc01,
TiO, (rutile)
Ti02 (anatase)
VQ2. s

1.0
1.3

14
10
12

2.3
2.8

24
17
22

1.1
1.4

17
12
17

2.5
3.0

29
21
31

SrO
YO1.s

ZrQ2
Nb02 5

1.8
1.5
2.2
6

4.0
3.3
4.5

11

1.9
1.6
2.4
7

4.3
3.6
5.0

12

BaO
La01 5

HfO2
Ce02
TaO2,
WO,

3.7
3.7
3.3
3.3
5

9

8
8

7
7

10
17

4.2
4.2
3.7
3.7
6

13

9
9
8
8

11
24
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to linear response e=nti (where no is linear refractive in-
dex) are found to be negligible for bond lengths d ~2.3
A, but to increase rapidly with decreasing bond length to
exceed the "sp-orbital" conduction band contribution
when d ~2.0 A. The eA'ect is due primarily to the rapid
increase in overlap of the valence anionic p orbitals and
lowest energy cationic d orbitals at the shorter equilibri-
um bond lengths. The lowering of the d band relative to
the conduction sp band on progression along a TM series
also plays a significant role, but only at the shortest bond
lengths.

The two competing mechanisms, viz. , virtual excita-
tions to "d-orbitals" and to conduction band "sp-
orbitals, " are found to be essentially additive for linear
polarizability g"' and for the lowest order nonlinear po-
larizability y' ', but not for g' ' where a small, but not
negligible, cross term is present. By relating the three
y' ' terms to the components of linear response, we are
able to numerically evaluate the third-order electronic

response (in the form of the nonlinear refractive index
n2) for each series of TM oxides. The only remaining
"unknown, " namely, the local field enhancement factor
f, is then determined by direct comparison of theory with
experiment for n. 2 in cases where the latter is known.
The implied values, namely, f=1.3+0. 1 for the "sp
orbitally dominated" oxides, and f=1.9+0. 1 for the "d
orbitally dominated" oxides compare with the f=1.0
found in an earlier discussion of pretransition metal
halides. Since all these values fall into a general range
f=3fL l4, where fL = (no+2)/3 is the Lorentz value, it
proves possible to set out a common theoretical form for
n2 which covers all the above series of compounds. This
very simple representation [Eq. (5.16)] appears to be rms
accurate to about +25%%uo over n2 values which span a
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