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Dynamic response of quantum dots
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The equilibrium properties and dynamic response of quantum-dot structures with and without
magnetic fields are calculated, starting from a confining potential of parabolic shape. Within our
analytical theory we can calculate all eigenmodes of the systems. Our calculation can explain the
experimentally observed mode spectrum of quantum-dot structures containing about 200 electrons
in a disk of radius R = 150 nm.

I. INTRODUCTION

Currently there is much interest in the investigation of
low-dimensional electronic systems derived from original-
ly two-dimensional electronic systems (2DES) in
Al Ga, As/GaAs heterostructures or similar systems
(see, e.g. , Refs. 1—4). Due to an additional lateral
confinement, quantum wires (1DES) or quantum dots
(ODES) are formed. These systems are called "quantum"
structures if this confinement leads to quantized energy
levels with level separation larger than kT. For wires, the
formation of thus quantized energy levels is usually
demonstrated with the method of magnetic-subband
depopulation in dc transport experiments. ' For example,
for a 500-nm-wide etched GaAs quantum-wire sample, a
typical subband spacing of 2 meV was observed. ' How-
ever, use of the dc transport experiment to determine
quantization is inherently not possible for dots. Thus op-
tical experiments which measure transitions between lev-
els seem to be a much more direct way to determine the
energy spectrum of quantum dots. However, as we will
show below, in such experiments also, quantum effects
are indicated only very indirectly. The reason for this is
that, in most of the currently investigated laterally
confined quantum structures, ' the confinement is elec-
trostatic and, as shown in a self-consistent band-structure
calculation by Kumar, Laux, and Stern has a nearly par-
abolic form for the external confining potential. (Also, in
etched structures, ' ' the electrons are confined by re-
mote donors in Al„Ga, „As and negatively charged sur-
face states and are separated by large 200—100-nm-wide
depletion regions from the geometrical boundaries. So, in
etched structures the confinement is also electrostatic. )

Thus a nearly parabolic confinement is a common feature
of many known quantum structures. This has important
consequences for the optical response.

For an external parabolic confinement, it can be
shown, with a rigorous quantum-mechanical calculation,
that the dipole excitation always occurs at the eigenfre-
quency coo determined by the curvature k =m'duo of the
external potential. ' The excitation is a rigid center-of-
mass motion of all electrons. This result is independent
of whether the radius of the dot R is larger or smaller
than the effective Bohr radius az and independent of the

number of electrons, N, as well. (This behavior has actu-
ally been observed experimentally by Sikorski and
Merkt, which is further experimental justification for
the parabolic confinement. ) Thus, for an external para-
bolic potential, the quantum-mechanical excitation is the
same as the classical plasma excitation.

In a recent investigation, very small quantum dots
with effective electronic radius of R =100 nm have been
studied which were prepared, starting from
Al Ga& As/GaAs heterostructures. The one-particle
energy separation of the discrete electron levels was
about 2 meV. The optical far-infrared (FIR) response in
a perpendicular magnetic field H exhibited a set of mag-
netoplasmon type of modes (see Refs. 2 and 10—15). In
contrast to earlier investigations in semiconductors, a
pronounced excitation of two modes by uniform high-
frequency electric fields and anticrossing of these modes
were observed. ' The excitation of such higher modes is
not allowed in a strictly parabolic confinement; thus in
these structures we have nonparabolic terms. The only
paper so far available that calculates higher modes is by
Fetter. ' He assumes a 2D disk with an abrupt density
profile, i.e.,

n„0+ r +R

Here R is the radius of the disk and n, the 2D charge
density. However, the "abrupt-potential" approximation
does not give the experimentally observed mode spacing.

So we present here another ansatz. Based on self-
consistent calculations and experimental results, in par-
ticular because of the fact that higher modes are very
weak, we assume that the parabolic confinement is a
good approximation. For this model we calculate classi-
cally the mode spectrum and assume that, due to small
nonparabolic terms, these higher modes become observ-
able without changing the mode spectrum significantly.
Screening is treated on the same footing as by Fetter.
Gur classical calculation allows us to determine the com-
plete mode spectrum of systems with parabolic
confinement. This information, which is very important
for the interpretation of the experiments, was not avail-
able from the earlier quantum-mechanical treatments '
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and random phase approximation (RPA) calculations. '

We find that the calculated frequency ratio of the higher
modes agrees very well with experiment for quantum-dot
samples containing N= 200 electrons.

The parabolic confining potential is

V(r)= Vo+ —,'kr'-, (2)

and has a 2D density distribution (see below),

um condition has the form

V (r) =e(p(r)+ n (r) =EF .
207

(10)

Here V(r) is from (2), q&(r) is from (6), and m * is the elec-
tron eA'ective mass.

We rewrite (10) in terms of dimensionless variables and
have

n (r) =n (0)(1 v!—R )' (3) eR 1 n(r ') 2, m cts
V(r) z

+ f d r'+ — n(r)=const,
o Jv —v'/ 2 R

II. EQUILIBRIUM PROPERTIES OF AN INDIVIDUAL
ELECTRON DISK

A. Classical situation

Let us consider first the classical situation, when the
total number of electrons in a dot, N, is large enough so
that

N»1 . (4)

Under these conditions the equilibrium density distribu-
tion n (r) follows from the equilibrium condition

Here Vo and k characterize the potential and n(0) is the
electron density in the center of the disk.

The actual experimental structures that will be dis-
cussed here and compared with our theory consist of 500
nm X 500 nm deep-mesa-etched Al Ga& As-GaAs
boxes with rounded (radius =100 nm) corners. The elec-
trons are confined in the middle of the boxes by remote
donors in the Al Ga& „As and by charged surface states
at the etched side walls. The latter separate the electrons
from the geometrical edges by a large lateral depletion
length of about 150 nm. Thus, the confinement is electro-
static and the parabolic confinement is actually quite a
suitable assumption. Nevertheless it is worthwhile to
consider for comparison also quantum dots with the
abrupt density profile n (r) [Eq. (1)].

ag/R «1 . (12)

In Ref. 3 the ratio a~/8 is small, i.e., 4X10 for a dot
(a) with N=200 electrons and R= 160 nm and 10 ' for a
dot (b) with N=25 electrons and R =100 nm. So, in first
approximation, quantum corrections can be neglected.

III. CLASSICAL PLASMA OSCILLATIONS

The problem of classical plasma oscillations can be for-
mulated as the following eigenvalue problem for the elec-
tropotential &p( ,xyz, t) in a given plasma mode:

y(x, y, z, t) =y(x, y, z)e

Acp =0,
(13)

(14)

2~e6n(x, y)le, x +y &R

0 x +y ~R (15)

JE-I a'
e 6n (x,y) = —(ico) ', j;=o.;k(r, H, co)Ek, (16)

E Ek

Rr= —,n =n . (11)
R

Here az =eh /rn e is the Bohr radius. Thus quantum
corrections are small if

V(r)+ep(r) =ER,
e 2~ R n (vl )vl

y(v)= —f de f dr,
e o o

'
/r —ri/

2~f n (r)dr =N .

(5)

(6)

Bc@
Ek =—,x, =x, x2=y, i, k =1,2,

Xg

cr;k(r, H, co) =o;k(H, co)(1 r IR )'—
6n «n(r), r &R . (18)

23N R3 3' e
2~82'

2 1/3
37Te

4g
E —V =N'"F 0

(8)

Certainly the classical distribution n (r) has the form
presented in (3) and (8) if the temperature is r=O.

8. Thomas-Fermi approximation

To estimate the quantum corrections, we use the
Thomas-Fermi approximation. In this case, the equilibri-

Here e is the dielectric constant, FF is the position of
the Fermi level. The solution of Eq. (5) with V(r) from
(2) gives n (r) [Eq. (3)], with

Here the electron disk with density distribution n (r) [Eq.
(3)] is in the (x,y) plane, the magnetic field H is directed
along the z direction, 6n (x,y, t) is the density perturba-
tion, co is the frequency, j; is the ith component of the
electron current in a disk, and o;k (H, co ) is the corre-
sponding conductivity in the center of the disk. The radi-
al dependence in the determination cr;k(r, H, co) [Eq. (17)]
corresponds to the classical determination of n (r) in Eq.
(3).

The variables in the system (13)—(18) can be separated
in elliptical coordinates,

[y(x,y, z)], =q, (o, r, e)=P '(~).g' ~(io )e™e,
0&v&1, 0&cr& co, j~m, (19)
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x =R [(I+cr )(1—r )]' cose,

y =& [(1+0')(1—r')]' sine,
z =Ro~,

(20)

2.0

1.5

where P/ (x) and Qz~ (x) are Legendre functions of the
first and second kind, respectively.

Using these variables and the determination of 0;k(17)
in a Drude model,

idion (0)e ~ co n (0)e

C3
lt

j p3

3

05

eH
CO C

m c

we have, from (13)—(19), '

—[~2+[j(j+1)—m ]Q ] =m Ai
~j,m

(21)

0.0
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u) 1 o) ) (( H-0 )

LJ~—

z 2~e n(0)
t m*RLj

2I ((j +m)/2+1)I ((j —m)/2+ 1)
I'((j+m)/2+ —,

' }I((j —m)/2+ —,')
(22)

FIG. 1. The three lowest eigenmodes, co», co2&, and co33 of a+ + +

quantum dot with parabolic confinement.

2&0 ~y
NJ' RL

m (23)

In the limit 0.„=0,the dispersion law (21) and (22) coin-
cides with the one from Ref. 17:

Here, I (x) is the gamma function; j —I is an even in-
teger. If o.,„=O, we find, from (21) and (22) the result of
Tal'yanskii, '

mechanically for quantum wells with parabolic
confinement and quantum dots. ' ' The quantum-
mechanical calculations show that this statement is also
correct, with inclusion of quantum corrections. The
quantum-mechanical calculations ' only provide the
lowest, the dipole, mode co&&. Our calculation also deter-
mine the frequencies of the higher modes which is impor-
tant for the interpretation of the experimental results.
We express these frequencies as the ratios of co22 and co33
relative to co».

22~n (0)e
[

. .
) z]

em *RL. (24)
co&2/co&& =3/2 and A@33/co)) =15/8 . (28)

General properties of the dispersion Iaw (22) have been
discussed in Ref. 17. But in the experimental situation
(Ref. 3), the really interesting part of this dispersion fol-
lows from (22) with the additional condition

J =m

As a result, we find

(25)

co—= 1/ jA +co, /4+co, /2 . (26)

The three lowest modes, co», co22, and co33, are depicted in
Fig. 1. From (26), (22), and (8), we can first determine the
frequency of the lowest plasmon mode and (at H=O) find

cubi )
—k /m (27)

This important result shows that for the harmonic
confinement the frequency co» does only depend on the
curvature of the bare external confining potential. It is
not sensitive to the number of electrons, N, and the static
one-particle screening, if many electrons are "filled" into
the dots. The same results have also been obtained classi-
cally for quantum-wire structures and quantum

1 /2

co33(H =0)+
1/2

CO 67= co»(H =0)+

These ratios are not sensitive to the radius of the disk, R,
nor to the total number of electrons, N. [Note that in a
quantum-mechanical treatment beyond Refs. 8 and 9, one
expects that, if for an infinitely small perturbation of the
harmonic confinement coupling to higher modes becomes
allowed, co22=2~&& is only correct for one electron per
dot. Already for n=2 electrons, cozen/co» decreases and
approaches, with increasing number of electrons, the
classical limit (28}.]

From (26) we find that with increasing magnetic field
all modes split into two resonances, one with positive, the
other with negative H dispersion (see Fig. 1). This leads
to a mode crossing, e.g. , crossing between the co33 and ~,+,

mode occurs at H* with a corresponding cyclotron fre-
quency co,*. At the crossing point, we have the condition
[see (26)]
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w2

Q2
co„(H =0)

co33(H =0) —1
co„(H =0)

co33(H =0)
2 +1

co„(H =0)

2

. =0. 133 . (29)

The crossing frequency cu33 11 is equal to
1/2

1+ +—= 1.20 .
4 2co„(H =0) (30)

The corresponding position of the crossing frequency
6733 ] f between A@33(H) and co„(H) in the case of the
abrupt density profile, n (r) from (1), is [see Fig. 1(c) of
Ref. 16]

CO 33, 11

co„(H =0) (31)

The numbers obtained with (30) and (31) are quite
different. So the ratio co33 fi/cl)i;(H =0) can be used to
analyze the equilibrium density distribution n (r) in a
quantum dot.

IV. COMPARISON WITH EXPERIMENTS

Symmetry considerations, similarly as given below,
show that for a harmonic confining potential, (2) and (3),
a uniform high-frequency field (dipole excitation) can
only excite the mode with j =m =1. In the experiments
in Ref. 3 also higher modes are observed. Possible origins
for such excitations are (a) deviations from a circular
shape of the actual quantum dots. The nominal geometry
of the dots in Ref. 3 is a squarelike one with rounded
corners. As a result the general expansion of the
confining potential V(r) should contain the angular
dependence

V(r, e)= Vo+ 'kr + 'qr + 'q—r cos(4—B) . — (32)

For this angular dependence of V(r, e), the coupling be-
tween co» and ~33 modes becomes possible. The matrix
element

(&»(r, e)~ V(r, e)~q»(r, e))
~|cosecos(3B)cos(4B)de&0 (33)

0

is nonzero and this is a possible explanation for coupling
between the modes m» and ~33 The mode co22, however,
does not couple for the potential (32). The same reasons
( ( 'pi i ~ V~ Ip33 )%0) can be used for the interpretation of
the experimentally observed anticrossing between modes
co11 and m33 in a magnetic field. But in this case, the per-
turbation theory above should be modified. Another pos-
sible origin for the excitation of higher-index modes are
(b) interactions between dots, e.g. , if these are arranged in
a quadratic array and (c) deviation from a parabolic
confinement. It has been shown ' that, even for a circu-

larly shaped potential, coupling to higher modes becomes
possible if, e.g. , r terms are included in the potential.
Under such conditions, the anticrossing behavior that is
observed in the experiments can also be explained, at
least qualitatively. Experimental evidence, i.e., the fact
that the strength of the anticrossing increases with de-
creasing dot radius, suggests that this last effect, (c), is the
dominant contribution (see Ref. 3 and for more details
Ref. 4).

In the experiments there is a possibility to determine
without any fitting directly the value co&&(H=O) and the
position of the crossing point, co33 11 For the two sam-
ples one finds

(a) (R =160 nm, X =200) ' =1.25,
co„(H =00) (34)

(b) (R = 100 nm, X =25) ' = 1.5 .
co„(H =0) (35)

Using these experimental numbers and the determina-
tions (30) and (31) we can see that the frequency ratio of
sample (a) with N=200 agrees very well with our para-
bolic model. Sample (b), however, has a significantly
different mode spacing.

We finally would like to give expressions for the radii
in the two approximations. For the parabolic case, the
radius R can be estimated, using the relations co» [Eq.
(27)] and R [Eq. (8)],

3n e X
4 ek

3~e X
4~m *~»

(36)

For the abrupt-density-profile approximation, we have'

27Te n
n, =

m "ecgi, (H =0) nR
(37)

In our calculations, we have neglected dissipation.
This is justified for the experiments in Ref. 3 since there
one always observes sharp resonances and has thus the
high-frequency condition co~)) 1. In this case, dissipa-
tion can be introduced within a Drude model. The for-
mulation is well known for the lowest mode. ' In the
high-frequency regime, dissipation determines the
linewidth and causes a very small frequency shift, which
can be neglected for the interpretation. Dissipation
causes interesting filling-factor-dependent effects in the
low-frequency regime and under quantum Hall-effect con-
ditions. However, in the experiments in Ref. 3, there is
no filling-factor-dependent feature both in resonance po-
sition and linewidth, and so we have not treated these
effects here.

It is clear that, beyond our model, for smaller struc-
tures deviations from the parabolic confinement and
quantum corrections (R =aii) must be treated on the
same level of approximation, in particular to explain the
experimentally observed anticrossing and the different
mode spacing in the smaller dots [sample (b)]. However,
such treatment is a very difficult task and also not avail-
able so far from fully numerical calculations in a system
with a small number of electrons. Such effects are
beyond the scope of our paper.
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V. CONCLUSIONS

%'e have calculated the equilibrium properties and the
complete excitation spectrum of the dynamic response
for an electron disk starting from a classical e1ectron sys-

tern in a harmonic-oscillator potential. Our theory ex-
plains the resonance frequencies of different experimen-
ta11y observed modes in dot structures containing X)200
electrons in a disk of radius R & 160 nm.

*On leave from Institute of Solid State Physics, 142432 Cerno-
golovka, Moscow District, U.S.S.R.
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