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Structural model for pseudobinary semiconductor alloys
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Using the Keating valence-force-field model with large periodic supercells, we analyze the
structural relaxations of pseudobinary III-V and II-VI semiconductor alloys. We quantitatively
predict the dependence of bond lengths and second-neighbor distances on alloy composition, and
show that the multimodal distributions of second-neighbor distances may be explained in terms of a
simple set of local geometries. Intrinsic alloy broadening of bond-length distributions is also calcu-
lated and compared with experimentally measured values.

I. INTRODUCTION

In regions of solid-solution miscibility, the properties
of two constituent materials may be significantly varied
as alloy composition changes. This is particularly true
in semiconducting systems such as the binary alloys of
group-IV elements and pseudobinary alloys of III-V and
II-VI compounds. For example, the composition-
dependent band gap of Si Ge& „ranges from 0.66 to
1.11 eV with X. In the same manner, the wavelength at
which a Ga~In& ~Asap& ~ solid-state laser emits may be
changed with composition. However, many alloy proper-
ties have a nonlinear dependence on composition which is
difficult to predict quantitatively without accurate
structural characterization.

Structural analysis of semiconductor alloys originated
with x-ray difFraction experiments used to determine the
crystal structure and the dependence of lattice constant
on composition. These studies showed the formation of
zinc-blende alloy crystals with a lattice constant varying
linearly between the values of the end-point compounds
(Vegard's law). However, extended x-ray absorption fine
structure (EXAFS) studies revealed a bimodal distribu-
tion of bond lengths in a number of these materials,
pointing to additional complexities in their local struc-
ture. This finding had significant ramifications for studies
of electronic structure, ' and spurred new interest in the
distortions of atoms in pseudobinary alloys from their
ideal zinc-blende positions.

The electronic properties of semiconductor alloys are
altered by the existence of these atomic distortions.
Models neglecting this, such as the virtual-crystal ap-
proximation (VCA) or the coherent-potential approxima-
tion (CPA) with strictly diagonal disorder, can only be
applied to the relatively small number of alloys
comprised of lattice matched constituents (e.g. ,
Al Ga, „As). To study the effects of relaxation, models
using a local description of the alloy such as the molecu-
lar coherent-potential approximation' (M-CPA) or a
periodic supercell approach should be used. In the case
of the latter, it has been recently argued that surprisingly
small supercells represent the random alloy well if the
most important site correlations of the infinite alloy are
well duplicated by the periodic model. " These con-

siderations make an understanding of structural relaxa-
tion and bond-length distributions in pseudobinary semi-
conductor alloys fundamental to studies of their electron-
ic and thermodynamic properties.

Of current models giving a realistic description of the
structural relaxation of semiconductor alloys, the
valence-force-field (VFF) approach is the simplest. This
model assumes that the energetics of atomic displacement
can be accurately approximated in terms of a classical in-
teratomic potential. Such an approach works well where
distortions are small and there is no significant alteration
of the bonding structure in the alloy. The Keating'
valence force field has been previously applied to the
study of alloy relaxation by several authors, providing re-
sults in general agreement with experimental data. How-
ever, with the exception of the finite cluster model of
Podgorny et al. ' and Qteish, Motta, and Balzarotti, '

these calculations limit relaxation to a few shells around
an impurity' ' or assume zero relaxation of the mixed
sublattice. '

Here we present a simulation of pseudobinary zinc-
blende semiconductor alloys using the Keating VFF and
a periodic cubic supercell geometry with 216 atoms. We
provide results for the average first- and second-neighbor
distances and first-neighbor distribution widths for eigh-
teen III-V and eleven II-VI systems. We also explain the
origin of multimodal distributions of second-neighbor
distances in terms of a small number of components aris-
ing from specific configurations of neighboring atoms.
Finally, we compare our results to available experimental
data, and show good agreement between the two.

II. PROCEDURE

In our calculations of structure in pseudobinary zinc-
blende structure alloys, the Keating valence-force-field
(VFF) potential' was chosen because previous calcula-
tions' ' using this model show good correspondence
with the available experimental results. In addition, this
potential uses only three empirical parameters to describe
the interactions in a tetrahedral semiconductor. For an
arbitrary supercell containing 2% atoms (lV on each sub-
lattice), the Keating potential is
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where R; is the equilibrium bond length between atoms i
and j in the pure zinc-blende compound, r; is the vector
between first neighbors, and a,",P,"k are empirical bond-
stretching and bond-bending constants, respectively. En-
ergy in the Keating model [Eq. (1)] is determined as the
sum of two separate contributions. The first summation
in Eq. (1) represents the contribution of bond-length
compression or dilation to total energy while the second
sum includes energy terms arising from distortion of
bond angles from the ideal tetrahedral angle. Values for
the constants R;2, a;~, and p;,k for pure compounds are
taken from the table of Martins and Zunger. ' For
heterogeneous bond angles, P,"k is estimated as the
geometric mean of the bond-bending constants for the
pure compounds: p)k =Qp;;@krak. It should be noted
that this model uses empirical parameters determined
from the elastic properties of the pure zinc-blende com-
pounds, and does not use any additional unconstrained
parameters or experimentally derived data to conform to
experiment.

An infinite, random alloy lattice was simulated in our
calculations using a zinc-blende supercell with periodic
boundary conditions. The supercells were constructed as
cubical lattices with n conventional zinc-blende unit cells
per side, corresponding to a cell in which each of the fcc
sublattices is occupied by N=4n atoms. In the present
simulations the lattice constant of the alloy was assumed
to be the concentration weighted average of the lattice
constants of the pure end-point compounds. Minimiza-
tion of the energy in Eq. (1) with respect to alloy lattice
constant was performed for several systems by calculat-
ing the average supercell total energy over a range of
values of this parameter. In all instances the value of the
lattice constant which provided a minimum differed
insignificantly from the interpolated value, verifying the
validity of our assumption. Consequently, for the sake of
expediting calculations, all subsequent simulations used
the alloy lattice constant predicted by Vegard's law.

In constructing the random 3 B i C supercell, points
lying within the cell are separated into a mixed and an
unmixed (common) sublattice, the former with a random
distribution of atoms of types 2 and B and the latter oc-
cupied with atoms of type C. The composition of a simu-
lated supercell assumes a finite number of possible values,
determined by the number of atoms in each of the sublat-
tices. For example, in a supercell of A„B& C contain-
ing 2X atoms, x varies from 0 to 1 in steps of 1/X. The
Nx atoms of type 3 are placed in unoccupied lattice sites
randomly chosen from those in the mixed sublattice.
Once these sites are allocated, the remaining mixed sub-
lattice sites are filled with %(1—x) type-B atoms, and the
common sublattice is uniformly occupied with N atoms

of type C. This method of site occupation simulates a
random alloy with neither short- nor long-range chemical
ordering. By allocating a constant number of atoms of
type 2 for each random cell configuration, the simula-
tions are carried out at fixed composition. This contrasts
with sampling over a grand-canonical ensemble in which
chemical potential rather than occupation fraction is held
constant.

For each random supercell configuration tested, we
minimize energy [Eq. (1)] with respect to the atomic
coordinates using a Broyden-Fletcher-Goldfarb-Shanno'
conjugate gradient scheme. Within each randomly
configured supercell having N atoms on each fcc sublat-
tice, there exist 4N first-neighbor bond lengths and 12N
bond angles (equivalently second-neighbor distances).
These quantities do not assume a single value uniformly
throughout the cell. Instead they exist as a distribution
about some mean which is dependent on the properties of
the constituent compounds and the alloy composition.
Each random reconfiguration of the cell at fixed composi-
tion provides a slightly different set of distributions; the
properties of the ideal alloy are approximated as averages
over M different supercell configurations. Two sources of
error occur in this calculation, the first stemming from
the finite cell size and periodic boundaries, and the
second arising from a finite number of samples over the
configuration space. For 216-atom supercells in a cubic
configuration, the boundaries will only enter into interac-
tions involving the eighth- and more-distant-neighbor
shells, so this effect is essentially negligible. For example,
convergence of elastic energy with supercell size was
determined for cells containing 8, 64, and 216 atoms at a
composition Ao ~BO 5C, with the two larger cells tested
by averaging over 500 random cell configurations. For
Gao 5Ino 5As, the energy per atom averaged over all
configurations dropped from 1.26 to 1.18 mRy when the
supercell size was increased from 8 to 64 atoms. Use of a
larger cell with 216 atoms resulted in an insignificant in-
crease in the energy of 1 X 10 mRy/atom. From these
values, it is clear that the error arising from our finite cell
size is insignificant in comparison with the expected
physical accuracy of the Keating model. In contrast, the
error resulting from the limited number of samples in the
space of cell configurations must be accounted for in any
simulation of manageable size. In each calculation over
M configurations, we have a total of 4NM bond lengths
and 12NM second-neighbor distances in the statistical
sample of the distributions of these values. The error
arising from this source, which decreases as M ', is
quoted in our tabulated values except where it is smaller
than the least significant digit given.

III. RESULTS

Minimization of the total energy for each supercell
configuration results in a set of relaxed atomic positions
deviating from the ideal zinc-blende vectors. Measure-
ment of the relative distortions of each sublattice (mixed
and common) is accomplished by defining a sublattice
distortion parameter
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where R; is the ideal zinc-blende lattice vector, p, is the
relaxed position of atom i, and the t which provides a
minimum for the sum is to=(1/N)g; i(R, —p, ). The
introduction of the vector t allows for global translation
of all sites in the sublattice from their original zinc-blende
positions without additional distortion, ensuring transla-
tional invariance in the definition of S.

In Fig. 1 we present a graph of S as a function of alloy
composition for both the mixed and common sublattices
of a Ga In, As supercell, averaged over 500 random
configurations. As observed previously, ' the distortion
of the common sublattice is consistently greater than that
for the mixed sublattice at any given supercell composi-
tion. In addition, the distortion parameter for both sub-
lattices is well described by a quadratic function of the
form S(x)=4Sox(1—x). Some of the simplest alloy
models assume zero distortion for the mixed sublat-
tice; ' i.e., S' ' =0, restricting deviation from ideality to
the common sublattice (S' '%0). Clearly, as shown in
the figure, 0&S' '=

—,
'S' ', revealing a small but non-

negligible distortion of the mixed sublattice. The EXAFS
study of Mikkelsen and Boyce, ' has shown that the
average deviation of the common (As) sublattice in
Ga In, „As from the ideal zinc-blende sites is
significantly greater than that of the mixed (Ga, In) sub-
lattice. The dichotomy in S between the mixed and com-
mon sublattices is attributed to differences in local chemi-
cal environment. In particular, each cation in the mixed
sublattice has a uniform neighborhood of As atoms on
the tetrahedral bonding sites. This restricts inhomo-
geneities in the cation distribution to the second-neighbor
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FICx. 1. The sublattice distortion parameter S, defined in Eq.
(2), is plotted as a function of alloy composition x for both the
mixed and common sublattices of Ga In&, As. Solid symbols
represent calculated values, with a quadratic fit shown as the
dashed curve.

and more distant shells. In contrast, each As atom on the
common sublattice is surrounded by four cations, provid-
ing five possible distinct first-neighbor environments. Of
these, three (Ga3In, Ga2In2, and GaIn&) lead to local dis-
tortion of the As atom from its zinc-blende site, assuming
the absence of effects from shells beyond the second. As
a consequence, variation in local environment affects the
common sublattice to a measurably greater degree than
the mixed sublattice.

While S describes the overall relaxation of the indivi-
dual sublattices, a more accurate picture of the structure
of alloy supercells arises from analysis of the distributions
of nearest-neighbor distances and next-nearest-neighbor
distances. For any supercell configuration C; there will
be distributions of these quantities representative of the
infinite lattice associated with that supercell arrange-
ment. Each distribution has a characteristic mean value
R; and width I; for configuration C;. When these values
are averaged over the M configurations, we obtain the
final mean bond length R&N, second-neighbor distance
RNNN, and the intrinsic distribution widths, I NN and
I NNN. For a random supercell of A, B, C there are
two distinct distributions of bond lengths, (AC) and
(BC). There are also five distinct distributions of
second-neighbor distances: ( ACR), (BCB), ( ACB),
(CAC), and (CBC), where ( ACB) is the distribution of
NNN distances between atoms of type A and B, with an
atom of type C at the vertex of the bond angle Z. ACB.
Clearly, in and A B& C supercell containing N atoms
on each of the fcc sublattices, there will be 2%x bonds of
type A C, and 2N-(1 —x) of type B-C. More generally,
the binomial Bernoulli distribution gives the probability
of finding n atoms of type A on I sites, with an occupa-
tion fraction x as P(m, n, x)=(„)x"(1—x) ". Using
this expression for the second-neighbor distances, the rel-
ative numbers for each of these five distributions for a
random supercell are N„c„=Nx, Niicii =N (1—x),
Naca =Nx (1—x) Ncac =Nx, and Ncac=N(1 —x).

EXAFS measurements yield values for the first- and
second-neighbor distances which may be directly com-
pared to the R s calculated in our simulations. We com-
pare calculations for Ga In, „As with the experimental
EXAFS results of Mikkelsen and Boyce, ' and present a
detailed analysis of the structural behavior of this partic-
ular system. The data for Ga In& As were obtained us-

ing 500 random configurations of the 216-atom supercell.
Calculations were performed for thirteen values of x in
the range Gao o5Ino»As to Gao»Ino o5As, providing
average values and standard errors for Rz,~„R,„A„
R ~g As Ga ~ R Ga As In ~ R (11 As Ig ~ R ~s ~a As, and R As in As

Values for bond lengths in Ga„In, „As calculated
from the Keating model are compared with EXAFS re-
sults ' in Fig. 2. The theoretical predictions for the
Ga—As bond length lie within experimental error bars
for the EXAFS data over the entire range of composi-
tions. At small values of x, the predictions for the
In—As bond also agree well with experimentally mea-
sured values. However, at large x, the results of our cal-
culation overestimate the contraction of the In—As
bond as compared to the EXAFS measurements. Agree-
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FIG. 2. Average Ga—As (squares) and In—As (diamonds)
bond lengths for Ga In& As are shown. Values taken from ex-
perimental EXAFS measurements (open symbols) are compared
with the predictions of our model (solid symbols). X-ray
diff'raction measurements (open triangles) are superimposed
with the linear interpolation between end-point values (dashed
line).

Additional EXAFS results ' ' for Ga In
&

P,
InP As, , GaAs Sb, „Cd Zn, Te, and
Cd Hg& Te are given in Table I along with values cal-
culated from our model. Agreement between the two is
good in most cases, with our calculated values lying
within experimental error bars for all data except impuri-
ty Ga—Sb bond lengths in GaAs Sb& . For the latter,
EXAFS data exhibit virtually no Ga—Sb bond-length re-
laxation, while we predict a relaxation of =0.06 A.

Analogous calculations were performed for all ternary
III-V and eleven ternary II-VI alloys using M =50 ran-
dom cell configurations for 3 B, C, providing bond
lengths and second-neighbor distances. These data were
fitted with a quadratic polynomial in composition, pro-
viding parameters for a functional relationship between
the R, 's and alloy composition, x. Table II presents the
quadratic parameters, with standard errors, for the bond
lengths in these compounds, with parameters and errors
for second-neighbor distances provided in Tables III and
IV. The pure 3C functions R wc R sew a d R c~c a
given as

ment with the EXAFS data could be improved by reduc-
ing the bond-bending constant, P,„~„thus increasing the
penalty for compressing the In—As bond relative to the
penalty for bond bending. It has been argued that small-
er values of 13 better describe the overall phonon spectra
of semiconductor alloys. However, while it is possible to
better reproduce the experimental results by adjusting the
value of this parameter, it is not the purpose of this work
to fit the Keating constants to experimental data.

Figure 3 compares our calculations with the EXAFS
measurements of second-neighbor distances for each of
the five distinct NNN distributions. In the top panel, we
see exce11ent correlation for both the As-Ga-As and Ga-
As-In second-neighbor distances, with theoretical predic-
tions lying within error bars for all data points. Again,
predicted values of the As-In-As second-neighbor dis-
tances are lower near x =1, for the same reason that the
calculated In—As bond lengths deviate from experiment.
In the bottom panel we compare results for the Ga-As-
Ga and In-As-In NNN distances, again revealing
excellent correspondence between the two data sets.
In the limit of the pure end-point compound,
(Ro, ~, G„R~,o, ~, ), and (Rt A IRA -I -A -l -approach
the ideal second-neighbor distance as expected, while

R~, A, ,„exhibits relaxation at both extremes as should
occur for a mixed second-neighbor distribution which ex-
ists as an impurity at both x =0 and 1. Additional sup-
port for our interpretation of the relative distortions of
the two sublattices is provided by the behavior of these
second-neighbor distances with composition. Examina-
tion of the mixed sublattice NNN distributions reveals a
nearly linear dependence of RNNN on x between the end-
point second-neighbor distances. In contrast, the NNN
distances on the common sublattice both deviate strongly
from the interpolated value as the impurity limit is ap-
proached. However, in both cases, a non-negligible dis-
tortion of the sublattice is indicated.
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FIG. 3. Average NNN distances for Ga„Inl „As are shown
as open symbols for experimental data and solid symbols for the
predictions of our model. The top panel presents the As-In-As
(squares), Ga-As-In (diamonds), and As-Ga-As (triangles)
second-neighbor distances, fit with quadratic functions (dashed
lines). The In-As-In (diamonds) and Ga-As-Ga (squares) results
are shown in the bottom panel.
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TABLE I. Comparison of experimental EXAFS data to predicted bond lengths.

A„B, C
CA Bi

Experimental
Rgc (A) R„(A)

Predicted
R„(A) Rac (A)

Ga-In-P'
In-P-As'
Ga-As-Sb"

Cd-Zn- Te'

Cd-Hg-Ted

'Reference 8.
Reference 14.

'Reference 5.
Reference 19.

0.00
1.00
0.03
0.05
0.10
0.90
0.95
0.25
0.50
0.75
0.50

2.41+0.01

2.49+0.01
2.47+0.01
2.47+0.01
2.45+0.01
2.45+0.01
2.77+0.01
2.785+0.01
2.79+0.01
2.81+0.01

2.60+0.01
2.64+0.01
2.64+0.01

2.635+0.01
2.62+0.01
2.63+0.01
2.65+0.01
2.66+0.01
2.67+0.01

2.795+0.01

2.399

2.494
2.493
2.492
2.455
2.451
2.782
2.792
2.800
2.805

2.602
2.639
2.638
2.636
2.585
2.581
2.647
2.654
2.658
2.799

R(x)=R +b(l —x)+c(1—x)

while distributions for Rz&, R~~~, R&~&, and R ~&~ are

R(x)=R +bx +cx

These choices for the functional dependence on x allow

us to fit the theoretical data with the value of R fixed for
pure compounds, thus avoiding introduction of spurious
errors in these parameters. For the mixed NNN distance
R z&z, which exists as an impurity at both x =0 and 1, aH

three parameters will have intrinsic statistical errors.
However, as the magnitude of the error in R „cz is much

TABLE II. Quadratic parameters for bond lengths [Eqs. (3) and {4)].

A„B, C
CA„Bi

Al-Ga-P
Al-Ga-As
Al-Ga-Sb
Al-In-P
Al-In-As
Al-In-Sb
Ga-In-P
Ga-In-As
Ga-In-Sb
Al-P-As
Al-P-Sb
Al-As-Sb
Ga-P-As
Ga-P-Sb
Ga-As-Sb
In-P-As
In-P-Sb
In-As-Sb

R (A)

2.367
2.451
2.656
2.367
2.451
2.656
2.360
2.448
2.640
2.367
2.367
2.451
2.360
2.360
2.448
2.541
2.541
2.622

R ~elf (I —x) l

0 (10 A)

—1.832+0.009
—0.948+0.004
—4.11+0.02

54.6+0.2
61.3+0.2
49.8+0.2
61.1+0.3

58.64+0.06
57.7+0.2
24.5+0. 1

109.4+0.4
75.2+0.3
28.5+0. 1

114.8+0.4
69.2+0.3

21.06+0.09
92.8+0.3
56.7+0.2

c (10 A)

—0.09+0.01
0.164+0.006

—0.20+0.03
—19.3+0.3
—27.7+0.4
—22.1+0.3
—24.3+0.4

—22.64+0.09
—25.2+0.3
—1.6+0.2

—47.9+0.6
—28.7+0.4
—6.0+0.2

—53.4+0.6
—22.6+0.4
—5.5+0. 1

—50.3+0.4
—22.4+0.3

R (A)

2.360
2.448
2.640
2.541
2.622
2.805
2.541
2.622
2.805
2.451
2.656
2.656
2.448
2.640
2.640
2.622
2.805
2.805

R ac [f(x) ]
b (10 A)

2.07+0.01
0.891+0.004
4.62+0.02

—29.9+0.2
—28.5+0.2
—24.5+0.2
—30.8+0.2

—31.01+0.06
—28.4+0.2
—22.8+0. 1
—44.1+0.4
—39.4+0.3
—22.1+0.1
—45.4+0.4
—40.9+0.3
—15.2+0. 1
—25.8+0.3
—28.5+0.2

c(10 'A)
—0.18+0.01

—0.038+0.006
—0.18+0.03
—18.4+0.3
—28.2+0.3
—22.4+0.3
—24.0+0.3

—23.53+0.07
—25.4+0.3
—0.9+0.2

—48.6+0.6
—29.2+0.4
—5.7+0.2

—56.7+0.6
—22.4+0.4
—5.0+0. 1

—53.9+0.5
—22.2+0.3

Zn-Hg-S
Zn-Hg-Se
Zn-Hg-Te
Zn-Cd-Te
Cd-Hg-Te
Zn-S-Se
Zn-S-Te
Zn-Se-Te
Hg-S-Se
Hg-S-Te
Hg-Se-Te

2.342
2.454
2.637
2.637
2.806
2.342
2.342
2.454
2.534
2.534
2.634

45.9+0.2
41.9+0.2
42.3+0.2
43.8+0.2

—1.017+0.007
26.0+0. 1

92.0+0.3
46.6+0.2

15.06+0.07
63.4+0.2
31.4+0. 1

—24.9+0.3
—19.5+0.3
—19.4+0.3
—20.5+0.3
—0.14+0.01
—8.7+0.2

—43.0+0.4
—10.7+0.3
—4.7+0. 1

—32.5+0.3
—10.9+0.2

2.534
2.634
2.798
2.806
2.798
2.454
2.656
2.637
2.634
2.798
2.798

—10.7+0. 1
—15.2+0. 1
—18.2+0. 1
—17.8+0. 1

1.497+0.007
—15.1+0.1

—125.1+0.3
—30.0+0.2
—8.92+0.07
—11.6+0.2
—14.9+0.1

—23.3+0.2
—16.7+0.2
—18.2+0.2
—19.3+0.2
—0.33+0.01
—8.1+0.2
54.6+0.5

—7.8+0.3
—3.2+0. 1

—28.9+0.3
—8.7+0.2
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TABLE III. Quadratic parameters for common sublattice NNN distances [Eqs. (3) and (4)].

A 8[ C
CA 8)
Al-Ga-P
Al-Ga-As
Al-Ga-Sb
Al-In-P
Al-In-As
Al-In-Sb
Ga-In-P
Ga-In-As
Ga-In-Sb
Al-P-As
Al-P-Sb
Al-As-Sb
Ga-P-As
Ga-P-Sb
Ga-As-Sb
In-P-As
In-P-Sb
In-As-Sb

R (A)

3.865
4.002
4.337
3.865
4.002
4.337
3.854
3.998
4.311
3.865
3.865
4.002
3.854
3.854
3.998
4.149
4.149
4.282

Rc~c[f{I —x)]
b (10 ' A)

—2.91+0.04
—1.42+0.02
—6.69+0.09

85+1
97.2+0.9
78.9+0.8

96.2+1.0
92.S+0.2
91.4+0.9
39.2+0.5
169+2
119+1

45.8+0.5

180+ 1

109+1

33.4+0.5

143+1
88+1

c (10 A)

—0.33+0.06
0.10+0.02

—0.4+0. .1
—28+1
—42+1
—34+1
—36+1

—33.6+0.3
—38+1

—1.92+0.7
—69+2
—43+2
—9.3+0.7
—80+2
—33+1
—7.9+0.7

73+2
—32+2

R (A)

3 ~ 8S4
3.998
4.311
4.149
4.282
4.580
4.149
4.282
4.580
4.002
4.337
4.337
3.998
4.311
4.311
4.282
4.580
4.580

~cac [f(&)]
b (10 A)

3.46+0.04
1.43+0.02
7.58+0.09
—54+ 1

—51+1
—43.1+0.9

—56+1
—55.2+0.3

—50+ 1
—38.0+0.5

—83+2
—70+1

—36.9+0.5
—83+2
—71+1

—26.1+0.5
—53+2
—51+1

c(10 'A)
—0.43+0.06

0.09+0.02
—0.4+0, 1

—25+2
—42+2
—33+ 1

—34+2
—33.7+0.4

—38+ 1

—0.6+0.7
—68+3
—42+2
—8.4+0.7
—83+ 2
—32+2
—7.1+0.7

77+2
—31+2

Zn-Hg-S
Zn-Hg-Se
Zn-Hg-Te
Zn-Cd-Te
Cd-Hg-Te
Zn-S-Se
Zn-S-Te
Zn-Se-Te
Hg-S-Se
Hg-S-Te
Hg-Se-Te

3.824
4.007
4.306
4.306
4.582
3.824
3.824
4.007
4.138
4.138
4.301

68+1
63+1

65.3+1.0
68+1

—1.75+0.05
40.3+0.7
135+2
70+1

22.1+0.7
88+2
46+1

—33+2
—26+2
—28+1
—30+1

—0.15+0.08
—12+1
—55+3
—12+2
—5.2+ 1.0
—38+3
—12+2

4.138
4.301
4.S69
4.582
4.569
4.007
4.337
4.306
4.301
4.569
4.569

—27+1
—33+1
—35+1
—35+1
2.27+0.05

—27.5+0.7
—227+2
—54+1

—17.2+0.7
—34+2
—30+1

—28+2
—19+2
—24+2
—25+2

—0.36+0.08
—10+1

117+3
—8+2
—2+1

—31+3
—9+2

smaller than the number of significant digits provided in
Table IV, it is not included.

Several useful pieces of information may be extracted
from the parameters for the nearest-neighbor distances,
including the bond-length relaxation parameter' in the
impurity limit,

R wc RBc &ac+~ac
0 o o oR ~c RBc R ~c —RBc

RBc R ~c &Bc+~BC
0 o 0 0 +1

RBc R wc RBc R wc

and the nonlinear bowing coeKcients, —c~c, —c~c,
which measure the quadratic dependence on x of R zc
and RBC, respectively. Also, the bond length of AC as a
dilute impurity in crystalline BC is calculated as
R ~c =R „c+~„c+c~c. The impurity limits for
second-neighbor distances on either the mixed or com-
mon sublattice are determined in a similar manner, using
the parameters from Tables III and IV. Two values of
impurity bond length may be derived for R ~CB, one cor-
responding to x =0, R &cB, and the other to x = 1,

0R ACB +&ACB +CACB
The present work extends that done analytically by

Martins and Zunger, ' who allowed breathing mode re-

laxation of two shells surrounding an isolated impurity
atom. Other workers have noted' ' that this method
tends to overestimate the magnitude of the impurity
bond-length relaxation. Comparison of our results for
Ga In& As Of R GaAs 2.484 A and R I As 2. 567 A
[calculated from Eqs. (3) and (4)] with their values of
2.495 and 2.556 A shows this to be true. That this effect
arises from the small relaxation radius about the impurity
and is not due to inaccuracies in the model is demonstrat-
ed by the results of the current simulation.

The first-neighbor bond-length distributions for
Gap 05Inp 95As through Gap ~pInp 50As are plotted in Fig.
4. Examination of these reveals a slightly asymmetric,
but clearly unimodal peak for both Ga—As and In—As
bonds, in agreement with previous observations. ' ' As
the supercell composition approaches Gap 50Inp 50As, the
individual distributions broaden significantly. This is a
consequence of an increasingly inhomogeneous chemical
environment in mixed sublattice shells surrounding the
atoms at the ends of the bond, leading to a maximum
width at x =0.50. For x &0.50, the behavior of the
bond-length distributions is analogous to that seen in Fig.
4, with the Ga-As distribution narrowing and growing
dominant as x~1. Analysis of the functional depen-
dence of peak width (I ) on compositions shows a strong
correlation of the form
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TABLE IV. Quadratic parameters for mixed sublattice NNN distances IEqs. (3) and (4)].

A Bi C

CA B, R" (A)

~acatf(I
b (10 A) c (10 A) R (A)

&sea(f (x)1

b (10 ' A} c (10 A) R {A)

~ pcs I:f (x) ]

b {10 A) c (10 A)

Al-Ga-P
Al-Ga-As
Al-Ga-Sb
Al-In-P
Al-In-As
Al-In-Sb
Ga-In-P
Ga-In-As
Ga-In-Sb
Al-P-As
Al-P-Sb
Al-As-Sb
Ga-P-As
Ga-P-Sb
Ga-As-Sb
In-P-As
In-P-Sb
In-As-Sb

3.865
4.002
4.337
3.865
4.002
4.337
3.854
3.998
4.311
3.865
3.865
4.002
3.854
3.854
3.998
4.149
4.149
4.282

—8.18+0.04
—3.68+0.03

—18.98+0.09
213.6+0.9
216.6+0.8

185.1+0.8
226.5+0.9
220.8+0.2
207.3+0.8

100.9+0.4
365+1
259+1

108.6+0.4
361+1

240.6+0.9
95.0+0.5

327+ 1

222+1

—0.66+0.06
0.03+0.02

—0.7+0. 1
—23+1
—34+1
—25+1
—31+1

—32.8+0.2
—30+ 1

1.8+0.7
—48+2
—30+2
—4.7+0.7
—53+2
—19+2
—3.3+0.7
—52+2
—21+2

3.854
3.998
4.311
4.149
4.282
4.580
4.149
4.282
4.580
4.002
4.337
4,337
3.998
4.311
4.311
4.282
4.580
4.580

8.88+0.03
3.64+0.01

19.93+0.08
—197.2+0.9
—193.6+0.9
—169.2+0. 8

—204+ 1
—198.9+0.2
—187.7+0.9
—103.2+0.4

—327+1
—237+1

—106.3+0.4
—320+ 1

—226.7+0.9
—93.5+0.4
—288+1
—207+ 1

—0.72+0.06
0.11+0.02

—0.94+0.01
—25+1
—35+1
—25+1
—34+1

—31.5+0.2
—30+ 1

2.1+0.5
—52+2
—33+1
—4.6+0.5
—56+2
—20+ 1
—4.0+0.6
—55+2
—23+1

3,8S5
3.998
4.314
4.106
4.239
4.543
4.104
4.237
4.S39
3.985
4.266
4.289
3.978
4.244
4.268
4.262
4.511
4.535

9.75+0.09
3.26+0.02
20.9+0.1

—187+2
—174+2
—156+2
—188+3

—169.2+0.5
—171+2
—107+1
—305+4
—223+3
—105+1
—294+4

221+2
—94+1

—265+4
—200+3

—1.35+0.06
0.39+0.05

—1.5+0.3
—18+3
—31+3
—21+3
—27+3

—39.1+0.5
—26+3

5+1
—41+5
—25+3
—2+1

—47+5
13+3
0+2

—43+5
—14+3

Zn-Hg-S
Zn-Hg-Se
Zn-Hg-Te
Zn-Cd-Te
Cd-Hg-Te
Zn-S-Se
Zn-S-Te
Zn-Se-Te
Hg-S-Se
Hg-S-Te
Hg-Se-Te

3.824
4.007
4.306
4.306
4.582
3.824
3.824
4.007
4.138
4.138
4.301

223+1
210+ 1

191.8+0.9
201+1

—8.67+0.06
128.9+0.7

352+2
213+ 1

108.0+0.7
300+2
181+1

—38+2
—32+2
—28+2
—32+2

—0.34+0.09
—7+1

—37+3
—5+2
—4+1

—28+3
—5+2

4.138
4.301
4.569
4.582
4.569
4.007
4.337
4.306
4.301
4.569
4.569

—196+1
—189+1
—173+1
—181+1

9.09+0.05
—124.5+0.7

—444+2
—209+ 1

—106.3+0.7
—274+2
—176+1

—43+2
—34+2
—29+1
—32+ 1

—0.05+0.06
—7.0+0.8

66+2
—4+1
3.0+0.9

—27+2
—4+1

4.080
4.249
4.524
4.S34
4.571
3.978
4.228
4.261
4.272
4.493
4.524

—176+3
—171+3
—159+3
—163+3

9.4+0. 1

123+2
—324+ 5
—213+3
—107+2
—273+5
—181+3

—34+4
—28+4
—23+3
- —27+4
—0.6+0.2

—3+2
—12+6
—3+4

0+2
—13+6

3+4

Ga„InI,As

XG,

O.OS

0.10

0, 15

0.20

0.30

0.40

O.SO

2.40 2.45 2.50 2.55 2.60

Bond length (A.)

I

2.65 2.70

FIG. 4. Distribution functions for the Ga—As and In—As
bond lengths are shown for compositions in the range
0.05 &x &0.50. Both peaks are seen to broaden systematically
as x ~0.50.

I =4I ox(l —x) .

We provide parameters for the intrinsic peak widths of
the bond-length distributions ( AC) and (BC) in Table V.
The parameter I represents additional broadening of the
distributions of erst-neighbor distances beyond the
Debye-Wailer factor. While this excess broadening of the
spectra for Ga In, As was not observed, ' the stated

0

upper limit on additional broadening of 0.02 A is very
nearly equal to our predicted maximum widths for the
Ga-As and In-As distributions (0.025 and 0.021 A, re-
spectively). Also the discovery that the Ga-As and In-As
distributions have the same width to within 0.01 A does
not contradict our result (I &„A,

—I G,A, =0.004 A). Of
the systems studied, these e1Yects are still quite small for
the most strained systems (I =0.039 A for AIP,.Sb,
and I =0.041 A for GaP Sb, ), where this additional
broadening would be most easily observed.

The distributions of second-neighbor distances cannot
be described solely in terms of their mean values and
peak widths because they are multimodal, unlike the dis-
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TABLE V. Quadratic parameters for bond distribution widths [Eq. 161].

AB) C

Al-Ga-P
Al-Ga-As
Al-Ga-Sb
Al-In-P
Al-In-As
Al-In-Sb
Ga-In-P
Ga-In-As
Ga-In-Sb
Al-P-As
Al-P-Sb
Al-As-Sb
Ga-P-As
Ga-P-Sb
Ga-As-Sb
In-P-As
In-P-Sb
In-As-Sb

2
~0 AC

(10 A )

9.0+0,4
1.95+0.09

46+2
5800+300
6700+300
3900+200
7100+300
6290+80
5500+300
1320+60

15 500+700
9300+400
1620+80

16 100+800
7700+400

870+40
9000+400
4900+200

2I oBc
(10 'A)
10.8+0.5

1.99+0.09
57+2

4100+200
5200+20
3700+200
4500+200
4480+60
4500+200
1610+80

15 200+700
7900+400
1700+80

16 800+800
8000+400
1040+50

11 400+500
5400+300

A, Bi C
CA, Bi

Zn-Hg-S
Zn-Hg-Se
Zn-Hg-Te
Zn-Cd-Te
Cd-Hg-Te
Zn-S-Se
Zn-S-Te
Zn-Se-Te
Hg-S-Se
Hg-S-Te
Hg-Se-Te

3500+200
3700+200
3400+200
3800+200

4.4+0.2
1170+60
8800+400
4000+200
460+20

3500+200
1420+70

~OBC
(10 A )

1730+80
1660+80
2200+ 100
2100+ 100

5.2+0.2
1430+70

10 900+500
4300+200
480+20

4900+200
1990+90

tributions of first neighbors. In particular, the common
sublattice second-neighbor distributions in 3 8, C
clearly exhibit trimodal character, while those of the
mixed sublattice are broadened and non-Gaussian in
form. The dependence of these functions on environment
is attributed primarily to variations in the first- and
second-neighbor shells around the atom at the vertex of
the bond angle. This assumption allows identification of
three independent and distinct environments for each of
the five second-neighbor distributions. Schematic illus-
trations of the relevant configurations for arbitrary
second-neighbor distributions on both the mixed and
common sublattices are presented in Fig. 5. In order to
simplify the description of effects leading to splitting in
the NNN distributions, we will discuss the 3 -C-3 dis-
tance on the mixed sublattice and the C- 3 -C distance on
the common sublattice. For the purposes of this section,
the behavior of the 3 -C-8 and 8-C-8 distributions is
identical to that of 3 -C-A, and C-8-C is equivalent to
C-A -C. On the mixed sublattice, the primary distortions
are the result of inhomogeneities in the first-neighbor
shell. Occupying any C centered tetrahedron with an
2 -C-2 bond angle are four atoms from the mixed sub-
lattice, at least two of which are of type A. Thus, the
three possible arrangements of atoms around the central
C atom are 34, 338, and A 282. Because of bond-length
alternation in the alloy lattice, we expect each of these
tetrahedra, shown in Fig. 5, to distort in a slightly
difFerent manner. Clearly, the greatest distortion wi11

occur in A28z, where the two 8-C bonds will strongly
inAuence the central atom. Similarly, the 34
configuration will distort the least, remaining closer to
the ideal VCA second-neighbor distance for the com-
pound AC, while the 338 tetrahedron wi11 experience a
distortion intermediate between these two extremes. In
contrast with the 3 -C-A second-neighbor distribution,
the C-2 -C NNN distance is primarily infIuenced by an

Mixed Sublattice NNN distances

Common Sublattice NNN distances

OA GB ~ C A/B

FIG. 5. The local environments responsible for splitting in
NNN distance distributions are illustrated schematically for
both the mixed and common sublattices. An arrow is used to
denote the relevant second-neighbor pairs in each diagram. For
the A - A NNN distance (A A cA ) on the mixed sublat tice, the
three peaks comprising the overall distribution arise from the
A4, A3B, and A2B2 configurations surrounding the central C
atom. The geometries of each of these are diagrammed in the
top part of the figure. In contrast, the common sublattice NNN
distributions arise from the arrangement of atoms in the
second-neighbor shell around the central A or B atom. Of the
many potential configurations of these atoms, those involving
permutations of the two lying on the chains in (110) directions
are crucial. Atoms shaded in gray are those on the mixed sub-
lattice which are less important in determining the NNN dis-
tances.
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3.85 3.95 4.05 4.15 4.25 4.35 4.45

NNN distance (A)

FIG. 6. Distributions of second-neighbor distances for
Gao 5oIno &OAs are shown for the five NNN types in panels (a)
through (e). In each panel the distributions are further broken
down into three components associated with the geometrical
configurations shown in Fig. 5.

inhomogeneous cation environment in the second-
neighbor shell. Fortunately, the number of atomic
configurations in this shell about the vertex atom may be
reduced from (2) possible arrangements to three
configurations of the atoms lying on chains in (110)
directions. This is emphasized in Fig. 5 by shading gray
those atoms in the second-neighbor shell which do not lie
in the plane of the bond angle. Again, the C-3 -C distri-
bution splits into three peaks, one each for the Az, AB,
and B2 configurations, with the distortions occurring in a
fashion similar to those for 3 -C- A. Figure 6 shows dis-
tributions for each of the five second-neighbor types,
separated into the three components described above.
Distribution functions for each of the configurations in
Fig. 5 were obtained by accumulating second-neighbor
distances in relaxed 216-atom supercells of Ga0»In& 50As
over 2500 random cell reconfigurations. Association of
each subsidiary peak with a specific first- (mixed sublat-
tice) or second-neighbor (common sublattice) environ-
ment about the atom at the center of the bond angle is
shown to be an excellent approximation by the absence of
significant skewness or other deviation of the distribu-
tions from Gaussian form.

Inspection of Fig. 6 reveals substantially greater split-
ting between individual distribution peaks for the As-As
NNN distributions than for the cation-cation distribu-
tions. Examination of the geometries shown schematical-
ly in Fig. 5 shows the cause of this behavior. If it is as-
sumed, for the sake of argument, that any distortion
which requires compression or dilation of a bond will be
accompanied by a corresponding bending of the adjacent
bond angles, we recognize the strong dependence of dis-
tortions around an atom on the orientation of forces act-
ing on it. In the mixed sublattice, splitting in NNN dis-
tributions arises from the influence of two inhomogene-
ous atoms acting normal to the plane of bond angle,
while the forces on a second-neighbor pair in the com-
mon sublattice act in this plane. As a result, changes in
bond lengths in the mixed sublattice have a smaller eFect
on the associated second-neighbor pair than do similar
changes in the common sublattice.

The energies of alloy formation and stability are of
significant interest in studies of these systems. ' ' If
chemical interaction energies are neglected as in the
Keating model, it is clear that phase segregation is the
favored behavior in all strained alloy supercells at low
temperature. However, the existence of ordered struc-
tures which provide metastable configurations of
minimum strain energy is a question which has relevance
when chemical energies are considered, as well as being
of interest in total energy calculations. " ' While a
thermodynamic treatment of this topic lies outside the
scope of the present work, a number of interesting obser-
vations may be made regarding the correlation of total
strain energy for a given supercell configuration and the
average properties of that supercell. In Fig. 7 we show a
scatter plot revealing linear variation of average bond
length for Ga—As and In—As bonds with strain energy.
In this diagram, each point represents the relationship
between supercell energy and the average bond lengths of
the constituent compounds for one specific configuration.
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FIG. 7. This scatter plot shows the strong linear correlation
between average Ga—As and In—As bond lengths and super-
cell strain energy for Gao, OIno»As. Each point on the plot
represents the average values of bond length for a single
configuration as compared with the energy of that
configuration. As expected, a direct correlation is seen between
the average distortion of the lattice and the energy associated
with that distortion.

IV. CONCLUSIONS

As expected, a direct correlation between the extent to
which a lattice geometry is energetically favorable and
the closeness of the average bond lengths in the supercell
to their ideal end-point values is clearly shown. The ex-
tent to which this elastic energy plays a role in the forma-
tion of alloys varies widely among the compounds, de-
pending primarily on the difIerence in bond lengths be-
tween the two constituents. For example, the order-
disorder transition temperature for the systems studied,
calculated using the site approximation for
configurational entropy, ' ranges from a low of
2 U/k = 1.4 X 10 ' K for Alo sooao soAs to a high of
2U/k =1.2X10 K for GaPo. soSbo. so

sublattice experiences deviation from zinc-blende sites as
a consequence of an inhomogeneous first-neighbor shell,
while the mixed sublattice distorts primarily due to varia-
tion in the second-neighbor shell. Significantly greater
average distortion is seen on the common sublattice, as
expected for atoms with substantial variation in the
near-neighbor environment. (ii) Experimental EXAFS
results are reproduced very well in our Keating VFF
simulations. The variation of bond lengths and second-
neighbor distances with composition is predicted within
error bars for Ga In& As, with some deviation arising
for the In-As distance due to previously noted uncertain-
ties in the model parameters for this compound. (iii)
Both NN and NNN distances are well described by a
quadratic dependence on composition. Parameters are
provided for fits to data from eighteen III-V and eleven
II-VI systems, allowing prediction of these quantities for
any alloy composition and for alloys for which there are
no experimental results. (iv) The intrinsic broadening of
alloy bond-length distributions is quantitatively predict-
ed. This additional broadening of first-neighbor distribu-
tions is found to vary with alloy composition as
1 =41 ~ (1 —x). Values of the parameter I o are tabu-
lated for all alloy systems studied, enabling estimation of
the significance of this effect. (v) Distributions of NNN
distances are found to show trimodal splitting arising
from variation in the local environment. Second-
neighbor distributions on the common sublattice exhibit
the greatest splitting magnitude between the three indivi-
dual peaks. This is attributed to elongation or compres-
sion along (110) chains including the second-neighbor
pair. Smaller, but still significant, splitting is seen in
NNN distributions on the mixed sublattice. Here, the
second-neighbor distance varies with the configuration of
atoms surrounding the vertex atom. Because the first
shell around each atom on the mixed sublattice is uni-
formly occupied, the distortion experienced by these
second-neighbor pairs is decreased.

We conclude the following from the results of our
valence-force-field simulation of relaxation in pseudo-
binary semiconductor alloys. (i) Distortion of both fcc
sublattices occurs to an appreciable degree. The common
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