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Optical phonons in GaAs/A1As quantum wires
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Phonon-dispersion curves of semiconductor quantum wires are studied in a realistic rigid-ion
model. We introduce an approach for solving the rigid-ion model in qua. ntum wires, which avoids
direct computation of the Coulomb interaction. Our calculations demonstrate the interesting
anisotropic behavior of long-wavelength optical phonons in quantum wires. In particular, we
show that frequencies of several optical phonons approach difI'erent values as the wave vector
approaches the zone center from three different axes. We have also shown that the lateral
confinement in a quantum wire on the interface modes leads to the edge modes.

Recent advances in microfabrication technology have
made it possible to grow one-dimensional semiconduc-
tors, i.e. , quantum wires (QWR's), with controllable
geometries and dimensions. These structures have at-
tracted rapidly growing interest in both science and
technology in the last few years. There has been a
great; deal of theoretical studies on the electronic prop-
erties of quantum wires; ' however, theoretical studies
of phonons in these structures have not been reported.
Phonons in semiconductor superlattices, on the other
hand, have been studied extensively and their behav-
iors are well understood. In this paper we report
calculations of phonon dispersion curves of GaAs/A1As
quantum wires using a rigid-ion model. We found that
the anisotropic behaviors of optical phonons in quan-
tum wires are more complicated than that in super-
lattices. The frequencies of certain optical modes can
be quite diff'erent when the wave vector (k) approaches
zero from all diferent directions in the three-dimensional
space. In contrast, the optical phonons in superlattices
are isotropic for wave vectors approaching zero in direc-
tions perpendicular to the growth direction. The inter-
face modes which exist in superlattices are modified by
the lateral confinement in the quantum wire and turn
into laterally confined interface modes or edge modes.

A typical GaAs QWR structure of interest is shown
schematically in Fig. 1. In this structure, an array of
GaAs quantum wires embedded in AlAs are aligned along
the [110] direction with interfaces normal to the [001]
and [110] directions. We shall call the [001] and [110]
directions which are normal to the interfaces as two lat-
eral directions. Throughout the paper, we use a trans-
formed coordinate system, in which the z direction is
along [001], the new z direction along [110],and the new

y direction is along [110].The QWR unit cell consists of
(mi+ni) x (m2+n2) bulk unit cells, out of whicll mi x m2
are GaAs unit cells and the rest are A1As unit cells. We
shall refer to such a structure as the (mi+ni) x (m2+n2)
GaAs/A1As QWR.

A rigid-ion model is used in our calculations. In this
model, the polarization in an ionic crystal is determined
completely by the displacements of ions (assumed point-
like) from their equilibrium positions. The polarization
within ions is ignored. The equation of motion for the
ionic displacement is given by

) D, (k)LI, = cu (k)M t'I

where D(k) is the dynamic matrix, M is the mass Ina-

trix, and U is the polarization vector. 0, , 0, '=1,... ,6 with
the first three components describing the vibrations along
the z, y, and z directions for cations and the last three
components describing those for anions. The dynamic
matrix consists of two parts —the short-range (SR) inter-
action matrix and the Coulomb (C) interaction Inatrix:

D(k) = D (k) + C(k).

Eleven parameters are used to fit the bulk phonon-
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dispersion curves of the constituent materials (GaAs
and AlAs) to the neutron scattering data. The best-
fi t p ar ameters can be found in Refs. 18, 25, and
26. Recently this model was adopted by Ren, Chu,
and Chang to calculate the phonon-dispersion curves
of GaAs/A1As semiconductor superlattices. is In adapt-
ing the eleven-parameter rigid-ion model to QWR's, we

choose the short-range interaction parameters between
any two atoms in the QWR's to be the same as those in
the corresponding bulk material with the exception that
the interaction between a Ga atom and an Al atom across
an interface is taken to be the average of the Ga-Ga in-

teraction in bulk GaAs and the Al-Al interaction in bulk
A1As. The present treatment of the long-range Coulomb
interaction is diferent from t, hat, used in Ref. 18. le
t, he present approach, we assuITle that t, lie atomic charge
transfers for GaAs and AlAs are the same. This ap-
proximation has been used in previous theoretical studies
for superlattices, and it is a fairly good approxima-
tion for GaAs/A1As QWR's. In this approximation, the
Coulomb interaction in QWR is identical to that in a fic-
titious QWR made of only one bulk material, of which
the phonon modes can be obtained from the folding of
the bulk phonon-dispersion curves along two lateral di-
rections. Because now we assume that GaAs and A1As
have the same charge transfer, the diA'erence in phonon-
dispersion curves between QWR and the bulk material is

caused only by the diA'erence in short-range interactions
of GaAs and AlAs and the mass diA'erence between Ga
and Al atoms.

The unit cell of a QWR (henceforth defined as a super
cell) consists of Ni x N2 bulk unit cells with Ni columns
aligned in the [001] direction and N2 rows aligned in the
[110] direction. Each bulk unit cell consists of two atoms
(one cation and one anion) separated by a distance vector
v = (1, 1, l)a/4. For a QWR the equation of motion can
be cast into the following matrix equation:

) (R., n lM ' D(k, )M '
l
R.'n') (R.'n'lU')

R.I nI

= ~'(k, ) (R.nlU'). (3)
Here R, R' run over all position vectors of bulk unit cells
in a QWR super cell, and the indices n, n' have the same
meaning as in Eq. (1). We have multiplied both sides of
the dynamic equation by M to conver t the gener al-
ized eigenvalue problem to a simple eigenvalue problem.
O' = M U. The other notations are self-explanatory.
The wave vector k, is restricted in the first Brillouin zone

of QWR.
For a fictitious QWR made of the material (say GaAs),

we denote the corresponding D, M, and U' by Dp Mp,
and U, respectively. Since the solutions of the fictitious
QWR can be obtained by zone folding of the bulk phonon
modes, we label the eigenfrequency and polarization vec-
tor for the nth folded phonon mode with polarization v

by ~ „and U,„,respectively. They are related to the(p)

corresponding bulk phonon frequency and polarization
vector by

cu1„&(k,) = 2& &(k, + g„)

(R,nlUI „~)= - e's" U
'

(k, + g„),
Ni N2

where g„denotes the nth QWR recipical lattice vector;
n = 1, ...

& Ni x N2 uI 1(k. ) and U
"

(k) denote the eigen-
frequency and polarization vector, respectively, of the vth
bulk phonon mode at wave vector k (k is now restricted
in the first Brillouin zone of a bulk material). The equa-
tion of motion for the fictitious QWR is given by

) (Rn lMo Do(k, )Mo lR,'n') (R,'n'lU&, „&)
R.I n'

= ~~'„~'(k,)(RnlU&'„&).

Using the completeness relation

) (R,nlUIol)(U&ollR. n') = ~n„.~... ,

we convert Eq. (3) (via a unitary transformation) into

) (vnlM '~ D(k )M ' lv'n')(v'n'lU')
uInI

= ~'(k, )(vnlU'), (5)

where we have used the abbreviated notation lvn) for

Now we write D = Dp+ AD, where AD = D
Do Note that th.e Coulomb part is completely absorbed
in Dp, since it is the same for the superlattice and the
fictitious superlattice made of bulk GaAs. Substituting
Eq. (4) into Eq. (5) yields

) ((vnlQlv'n') + (vnlM '~ AD M '~ lv'n'))(v'n'lU') = ~ (k, )(vnlU'),
uInI

(6)

where

(vnl~lv'n') = ) .(v»IM '"Mo' lv"n")~.''.-(k )(v"n"IMo' M "lv'»')
u II~ II
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The above eigenvalue problem can be solved numerically
to get the QWR phonon frequencies. This method avoids
the specific treatment of the Coulomb interaction for
QWR because it is already included in the zeroth-order
dynamic matrix Do. This method can also be used to
treat phonons in superlattices, and the results are iden-
tical to those obtained by the method used in Ref. 18,
provided the Coulomb interaction parameters for GaAs
and AlAs are taken to be the same. The method is, in a
certain sense, similar to that used by Huang and Zhu.
However, the method introduced here takes into account
the short-range interactions exactly within the rigid-ion
model. This is of importance for treating superlattices
and quantum wires with short periods.

We have calculated phonon frequencies of QWR for
wave vectors propagating in different directions. One of
the most interesting results of phonons in QWR is the
anisotropic behavior of optical phonons near the zone
center. That is, for certain optical modes, the frequen-
cies near the zone center are different when k ~ 0 from
different directions. Figure 2 shows the results of near-
zone-center GaAs-like optical-phonon frequencies of a
(2+2) x (3+3) GaAs/A1As QWR as functions of the an-

gle of orientation of the wave vector. The charge-transfer
parameter (Q) used in obtaining these results is taken to
be the same as in bulk GaAs. The angle of orientation of
the wave vector is defined as (0, P) with 0 being the polar
angle and P being the azimuthal angle in the transformed
coordinate system. In the left panel, the wave vector is
rotating from the z axis to the z axis in the z-z plane
(perpendicular to the direction of quantum mire), i.e. ,

0 = 0 ~ ~/2 and P = 0. In the middle panel the wave
vector is rotating from the z axis to the y axis in the z-y
plane, i.e. , 0 = x/2 and P = 0 —+ x/2. In the right panel
the wave vector is rotating from the y axis back to the
z axis in the y-z plane, i.e. , 0 = vr/2 ~ 0 and P = 7r/2.
The values of 0 and P are displayed along the bottom

axes of Fig. 2. The dashed curves are for modes with
large angular dispersion and the solid lines are for modes
with weak or zero angular dispersion.

Various features of the anisotropy of optical phonons
in superlattices have been described in Ref. 18, e.g. ,

only the principal modes (modes with a nodeless enve-
lope function) can have significant angular dispersion,
while the other modes are nearly angular dispersionless
except when they are mixed with a principal mode at a
certain angle where their frequencies tend to cross each
other. In analyzing the GaAs-like QWR phonons, we

notice that if we ignore the anticrossing effect there are
three branches which have substantial angular disper-
sion. These three branches are actually three principal
modes derived from one bulk longitudinal mode and two
bulk transverse modes. At (0, P) = (0, 0), the longitudi-
nal mode is predominantly z-like and the two transverse
modes are predominantly z-like and y-like. Thus, we

mark them as LO(z), TO(z), and TO(y). Because of
the confinement effect from both the z and z directions,
these modes do not have pure polarization. This is in
contrast with the superlattice case. At (0, P) = (7r/2, 0),
the longitudinal mode is predominantly z-like and the
two transverse modes are predominantly z-like and y-
like. We therefore label these modes LO(z), TO(z), and

TO(y). Similarly, at (0, $) = (x/2, x/2), we mark the
three principal modes by LO(I/), TO(z), and TO(z). In
the left panel, the wave vector lies in the z-z plane, so the
frequency of the TO(I/) mode remains nearly constant as
seen in Fig. 2. Similarly, in the middle panel the TO(z)
frequency remains nearly constant and in the right panel
the TO(z) frequency remains nearly constant. In each
of the three panels, an LO mode and a TO mode tend
to couple with each other as the direction of wave vector
deviates from the symmetry axes. This results in angu-
lar dispersion of the two coupled modes. For example,
in the left panel the LO(z) frequency decreases and the
TO(z) increases as 0 increases and their frequencies be-
come very close at 0 = x/2. For 0 & 0 & x/2, each of the
modes cont, ains strong admixture of z and z components.
When 0 reaches x/2, the z-like mode becomes a trans-
verse mode and the z-like mode becomes a longitudinal
mode. Similar behavior is seen for phonon dispersion in
the middle and right panels with the roles played by the
z-, y-, and z-like modes changed.

Similar to the optical anisotropy of superlattices the
optical anisotropy in QWR can be understood as follows.
In the long-wavelength limit, the long-range Coulomb in-

teraction in a bulk material can be written as

c;,(k, a;, rr') =4m
1

'
) (

' ' ——bz),

(o,o) (vr/2, 0) (s./2, 7r/2) (O, vr/2)

Orientation of Wave Vectors (0, p)

FIG. 2. Angular dispersion of GaAs-like long-wavelength
optical modes for a (2 + 2) x (3 + 3) GaAs/A1As QWR.

where i, j denote the z, y, z directions, o and o' de-
note atomic species (cation or anion), Q~ denotes the
charge transfer of atomic species o.

, and v is the vol-

ume of t,he bulk unit cell. It is noted that the ma', rix
elements of the long-range Coulomb interaction have an
angular dependence from the term k;k~/k2. This leads to
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angle-dependent polarization vectors when k approaches
zero from diA'erent directions. However, the zone-center
phonon frequencies remain angle independent, since the
bulk material has cubic symmetry. The same description
can be used for the phonon modes of a fictitious QWR
made of the same bulk material. However, for a QWR
the angle of orientation is referred to k, (restricted in the
QWR Brillouin zone) rather than k. For the nth folded
phonon mode, the QWR polarization vector is given by
the bulk polarization vector at k = k, + g„.In the limit

—+ 0, k = k, for the principal mode (g„=0) and
k = g„otherwise. Thus, for the principal modes the po-
larization vectors are angle dependent, whereas for the
folded modes (g„g0) the polarization vectors are angle
independent.

Now, we consider a realistic QWR. In our treatment we

simply add the diAerences in short-range dynamic matri-
ces and in the atomic masses to the fictitious QWR. The
resulting phonon frequencies for the principal modes will
be angle dependent, since the perturbation matrices are
evaluated in an angle-dependent basis and the perturba-
tion does not have cubic symmetry. The folded modes

(g„g0), on the other hand, do not have angular disper-
sion unless they are coupled to the principal modes via
the perturbation. The coupling is non-negligible when
their frequencies are close to each other as seen in Fig.
2.

The same argument applies to semiconductor superlat-
tices. For a superlattice grown along the [001] direction,
the material does not have cubic symmetry but it is still
symmetric with respect to the exchange of z and y co-
ordinates. Consequently the zone-center principal modes
will exhibit angular dispersion for k, rotating from the z
direction to any directions in the z-y plane. However, no
angular dispersion occurs for k, rotating in the z-y plane.
In contrast, the principal optical modes of the semicon-

ductor QWR have angular dispersion for any direction of
orientation of k, as a result of lower symmetry.

It is instructive to compare the anisotropic behavior
of optical phonons in quantum wires to that in related
superlattices. The (2+ 2) x (3 + 3) GaAs/A1As QWR
discussed above can be constructed from a (001)-grown
(GaAs)2-(A1As)2 superlattice by replacing every three
out of six columns of GaAs arrays normal to the [110]
direction with AlAs arrays. Alternatively, it can be con-
structed from a (110)-grown (GaAs)s-(AIAs)s superlat-
tice by replacing every two out of four rows of GaAs
arrays normal to the [001] direction with AIAs arrays.
Figures 3 and 4 show the angular dispersion of GaAs-like
optical phonons of an (001) (GaAs)2-(AIAs)2 superlat-
tice and that of a (110) (GaAs)s-(A1As)s superlattice.
We have artificially enlarged the unit cell of these super-
lattices to the same dimension as the super cell of the
QWR. This way we obtain folded phonon bands of the
superlattices which are intimately related to the QWR
phonon bands. The anisotropic behaviors of the super-
lattices follow the description given in the previous para-
graph. It is noted that the angular dispersion is much
stronger in the superlattices than in QWR. The high-
est GaAs-like phonon frequencies in the (001) and (110)
superlattices are around 8.5 and 8.7 THz, respectively.
They correspond to the frequencies of the confined LO
phonon principal modes. The corresponding confined LO
phonon principal mode frequency in QWR is only around
8.2 THz (see Fig. 2), indicating a much stronger confine-
ment in QWR than that in superlattices.

Figure 5 shows the results of near-zone-center AlAs-
like optical-phonon frequencies of a (2 + 2) x (3 + 3)
A1As/GaAs QWR as functions of the angle of orienta-
tion of the wave vector. This structure is just the QWR
structure considered in Fig. 2, but with all the GaAs
and AlAs elements exchanged. The charge-transfer pa-

I—

D
g) CO

D
Q)

LL

C4

N

O
g) CO

U
0)

LL

C)

{0,0) {~/2, 0) {~/2, vr/2) {0,~/2)

Orientation of Wave Vectors (s, p)
Orientation of Wave Vectors (g, p)

FIG. 3. Angular dispersion of GaAs-like lang-wavelength
optical modes for a {GaAs)2-{AIAs)2 (001) superlattice
treated as a (2 + 2) x {3+ 3) GaAs/A1As QWR.

I'"IG. 4. Angular dispersion of GaAs-like long-wavelength
optical modes for a (GaAs)3-(A1As)s {110) superlattice
treated as a (2 + 2) x (3 + 3) GaAs/A1As QWR.
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a (GaAs)4-(A1As)4 (110) superlattice. The discussions
given above also applies here. Now,N the laterally con-
fined (110) interface modes will fall within the interface
bands of the (110) superlattice, while the laterally con-
fined (001) interface modes or edge modes will not. Fig-
ure 8 shows the superposition of the dispersion curves of
A1As-like optical modes of the (6+6) x (4+4) A1As/GaAs
QWR on the projected phonon bands of a (GaAs)4-
(A1As)4 (110) superlattice. The dashed curves are the
QWR modes which do not fall into the superlattice pro-
jected phonon bands. These modes are either laterally
confined (001) interface modes or edge modes.

confined interface modes, we superpose the dispersion
curves of A1As-like optical modes of the (6+ 6) x (4+ 4)
A1As/GaAs QWR on projected phonon bands from both
the (001) and (110)superlattices. This is shown in Fig. 9.
The dashed curves are now identified as the edge modes.
We identified four edge modes, presumably correspond-
ing to linear combinations of the four modes localized
at the four edges. The problem of edge modes was dis-
cussed previously by Maradudin et a/. They considered
the long-wavelength acoustic modes of real crystals with
edges, corners, and steps. We note that the edge modes
are due to the assumed rectangular geometry of the quan-
tum wire and they will be absent in the case of cylindrical
wire. In prac ice,. I t' the structures are somewhere between
these two extremes.

QN

O
(0

~o

00—

0.0 0.2 04

Wave Vector k& (Units of 27r/a)

0.6

FIG. 8. Dispersion curves of AlAs-like optical modes for a
(6+6)x (4+4) A1As/GaAs QWR superposed on the projected
phonon bands of a (GaAs)4-(AlAs)4 (110) superlattice.

In summary, we have calculated the long-wavelength
optical phonons in QWRs propagating in all directions in

limit, the optical phonons of QWR's have very unique
three-dimensional anisotropic behaviors. We have also
studied the dispersion curves of the AlAs-like laterally

I l.5
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I I. I
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I0.7

0.0 0.2 0.6
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Wave Vector k& (units of 277./a)

Wave Vector k& (Units of 2~/a)

FIG. 7. Dispersion curves of AlAs-like optical modes for a
(6+6) x (4+4) A1As/GaAs QWR superposed on the projected
phonon bands of a (GaAs)s-(A1As)s (001) superlat tice.

FIG. 9. Dispersion curves of AlAs-like optical modes for a
(6+6)x (4+4) AlAs/GaAs QiA'R superposed on the projected
phonon bands of both the (GaAs)s-(A1As)s (001) superlattice
and the (GaAs)4-(A1As)4 (110) superlattice.
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confined interface modes and edge modes. We have not
discussed the lateral confinement of GaAs-like interface
modes and the GaAs-like edge modes. This is because
the projected phonon bands of GaAs/AIAs superlattices
do not have a well-defined gap which makes the iden-
tification of interface or edge modes diKcult. We hope
that our calculations will stimulate more experimental
measurements and lead to better understanding of semi-

conductor microscopic structures.

This work was supported in part by the U.S. Office
of Naval Research (ONR) under Contract No. N00014-
89-3-1157. We acknowledge fruitful discussions with H.
Chu. We acknowledge the use of the Cray Y-MP su-
percomputer at the National Center for Supercomputer
Applications at University of Illinois.

I. Suemune and L. A. Coldren, IEEE J. Quantum Electron.
QE-24, 1778 (1988).
M. Tsuchiya, j. M. Gaines, R. H. Yan, R. j. Simes, P. O.
Holtz, L. A. Coldren, and P. M. Petrol, Phys. Rev. Lett.
62, 466 (1989).
N. C. Constantinou and B. K. Ridley, Phys. Rev. B 41,
10 622 (1990); 41, 10 627 (1990).
J. Xia and K. Huang, Chin. J. Semicond. 8, 1062 (1988).
D. S. Citrin and Y. C. Chang, Phys. Rev. B 40, 5507
(1989); J. Appl. Phys. 68, 161 (1990).
3. L. Merz, A. S. Barker, jr. , and A. C. Gossa, rd, Appl.
Phys. Lett. 31, 117 (1977).
A. S. Barker, jr., J. L. Merz, and A. C, Gossard, Phys.
Rev. B 17, 3181 (1978).
C. Colvard, R. Merlin, M. U. Klein, and A. C. Gossard,
Phys. Rev. Lett. 45, 298 (1980).
R. Merlin, C. Colvard, M. V. Klein, H. Morkoq, A.Y. Cho,
and A.C. Gossard, Appl. Phys. Lett. 36 (1), 43 (1980).
E. P. Pokatilov and S. L. Beril, Phys. Status Solidi B 118,
567 (1983).

"M. Babiker, J. Phys. C 19, 683 (1986); Physica, B+C 145B,
111 (1987).
E. P, Fuchs and IZ. L. Kliewer, Phys. Rev. 140, A2076
(1965).
S. M. Rytov, Zh. Eksp. Teor. Fiz. 29, 605 (1956) [Sov.
Phys. —JETP 2, 466 (1956)].

R. Enderlin, F. Bechstedt, and G. Gerecke, Phys. Status
Solidi B 148, 173 (1988).
S. K. Yip and Y. C. Chang, Phys. Rev. B 30, 7037 (1984).
A. Kobayashi, Ph. D. thesis, University of Illinois at
Urban a-Champaign, 1985.

"T.Toriyama, N. Kobayashi, and Y. Horikoshi, jpn. j.Appl.
Phys. 25, 1895 (1987).
S.-F. Ren, H. Chu, and Y. C. Chang, Phys. Rev. Lett. 59,
1841 (1987); Phys. Rev. B 37, 8899 (1988).
E. Richter and D. Strauch, Solid State Commun. 46, 867
(1987).
H. Chu, S.-F. Ren, and Y. C. Chang, Phys. Rev. B 37,
10 746 (1988).
K. Huang and B. Zhu, Phys. Rev. B 38, 2183 (1988); 38,
13 377 (1988).
B. Zhu, Phys. Rev. B 38, 7694 (1988).
T. Tsuchiya, H. Akera, and T. Ando, Phys. Rev, 8 39,
6025 (1989).
A. Fasolino, E. Molinari, and 3. C. Maan, Superlatt. Mi-
crostruct. 3, 117 (1987).
I&. Kunc, Ann. Phys. (France) 8, 319 (1973-1974).
K. Kunc, M. Balkanski, and M. Nusimovici, Phys. Status
Solidi B 72, 229 (1975).
A. A. Maradudin, R. F. &allis, D. L. Mills, and R. L.
Ballard, Phys. Rev. B 6, 1106 (1972).


