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We study theoretically the elementary excitation spectrum in various one-dimensional electron
systems in the absence of a magnetic field. We first calculate the elementary excitations in a single
quantum wire under the random-phase approximation. We find that the intersubband collective ex-
citation frequency can be 5-6.5 times higher than the corresponding single-particle excitation ener-
gy due to a large depolarization shift. Next, we calculate the plasmon excitation energy of a
double-layered quantum-wire system. Our result shows that the resonance peak splits due to the
Coulomb interaction between electrons in different layers. We also study the elementary excitations
in one-dimensional lateral quantum-wire superlattices. We include the Coulomb interaction be-
tween electrons in different wires and allow tunneling between neighboring wires. Finally, we calcu-
late the spectral weights of the elementary excitations of both a single quantum wire and quantum-
wire superlattices for various parameter values. We compare our results with recent experiments

and find good agreement.

I. INTRODUCTION

Quasi-one-dimensional electron systems (1DES’s, also
called quantum wires) are usually fabricated on high-
mobility two-dimensional (2D) electron systems' by add-
ing an additional confinement along one of the remaining
free directions using ultrafine lithographic techniques.?™*
Recently, direct molecular-beam epitaxy (MBE) growth
of 1DES’s on GaAs-AlAs “tilted superlattices” has been
reported.’ The direct growth method is capable of grow-
ing samples with smaller wire widths than the lithograph-
ic method.

Undoubtedly, one of the motivations to study 1DES’s
is their obvious technological potential, such as achieving
even higher mobilities than the two-dimensional electron
gases 2DEG’s) on which they are built. The reason for
this is that in the low-energy regime (compared to the
subband separation), the only relevant scattering mecha-
nism in 1DES is back-scattering, which occurs relatively
rarely. However, much more work needs to be done be-
fore this (i.e., reducing the scattering) can be experimen-
tally realized because of imperfections on the boundary of
the quantum wires. Apart from their technological po-
tential, these 1D systems offer an excellent opportunity to
experimentally study some of the fundamental concepts
and methods of condensed-matter theory in a novel envi-
ronment, for example, the electron localization problem
(or electron transport in general). Now we understand
that as the system size changes from larger than the elec-
tron phase-coherence length to smaller than the elastic-
scattering length, the system goes through the universal-
conductance-fluctuation region into the ballistic-
transport region.%’ In the ballistic-transport region, Van
Wees et al.® and Wharam et al.® independently, find
quantization of the conductance of 1DES’s without an
external magnetic field. This is understood on the basis
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of the opening or closing of 1D subbands, which are also
called “channels” as in the multichannel Landauer for-
mula.®!'%!!" These kinds of phenomena associated with
the 1DES’s because of their small sizes (less than the
mean-free path) and/or low dimensionalities make
1DES’s a very interesting area of research. In the pres-
ence of an external magnetic field, there are more in-
teresting phenomena arising in 1DES’s. For example, in
a magnetic field (B), a periodic array of quantum wires or
a 1D lateral quantum-wire superlattice exhibits interest-
ing oscillating features because of the competition (or
commensurability) of the two length scales involved in
the problem: the superlattice period d and the Landau
length [ =(#c /eB)'/?. It has been found that in such su-
perlattices the magnetoresistance shows oscillations
periodic in 1/B.127* Magnetoplasmon oscillations have
also been predicted in such systems.!> A better under-
standing of elementary excitations of 1DES’s in a mag-
netic field may also shed some light on the issue of edge
states in the quantum-Hall effect.!6~18

The density of states (DOS), defined as dN /dE, the
number of states per unit energy, of a 1D quantum wire
with finite width is given by (A=1)

D(E)=Q2/m)(m/2)}* 3 (E—E,) "2
E, <E

(1.1)

Here E, is the energy level due to the finite-width
confinement of the quantum wire and m is the effective
mass of the electrons. When the 1D electron density N,
is small enough and the temperature is low enough
(kpT <<E,—E,), only the lowest subband is occupied,
and Eq. (1) can be simplified as (E, =0)

D(E)=(2/m)(m /2)!?E~/% (1.2)

It is quite clear that the DOS of a quantum wire is singu-
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lar at E=E,. In 3D and 2D electron systems, on the
other hand, the DOS is proportional to E'/? and E°, re-
spectively, and is finite everywhere. Since many physical
quantities are related to the DOS, we often need to deal
with the singularity, and if necessary, choose a right
cutoff in the theoretical model of 1DES’s. In real sys-
tems, one expects disorder arising from random impuri-
ties in the system to have a smoothening effect on the
singular D (E) given by Eqg. (1). Phenomenologically, the
broadening can be characterized by a parameter y =#/7,
where 7 is the single-particle scattering time.'

In an ideal 1DES (zero width), the Fourier transforma-
tion of the Coulomb interaction

2

Vix,x")=———
€lx —x’'|

(1.3)
is divergent. However, if we assume a more realistic
finite-width model, the 1D Fourier transformation of the
Coulomb interaction

e2

Vir,r')= A —x P+ —y 2] (1.4)
is given by?%?!
v(g,y —y’)Z%KO(iq(y =y (1.5)
Thus the matrix element of the Coulomb interaction
I/;jmn<q>=fdy fdy’¢i<y)¢j(y>v(q,y =y')
X¢,, (), (y") (1.6)

is finite for finite wave vector q. Here ¢;(y) is a confining
wave function of the ith subband in the y direction and €
is the background lattice dielectric constant. K,(x) is the
zeroth-order modified Bessel function of the second kind,
which diverges as -In(x) when x goes to zero. Even in the
limit of ¢ —0, as we shall prove in Sec. II, some matrix
elements of the Coulomb interaction such as v,,(g) are
still finite, whereas others such as v,;;;(g) diverge as
In(ga). Here a is the width of the quantum wire. For-
tunately, this divergence is very weak (only logarithmic)
and is not sensitive to the cutoff. Theoretically, while 1D
systems have these additional difficulties as discussed
above, they also have some simplifications compared to
the 2D and 3D cases. Some 1D models, such as the 1D
Hubbard model, are exactly soluble.’»?3 A nontrivial ex-
act solution is valuable because it not only solves the
problem in one dimension, but also helps us understand
the properties and the structures of its higher-
dimensional counterparts.

We point out that in 1D electron systems there is no
Landau damping except on two isolated lines
E=E,tqup. Here Eq=q2/2m, and vp=kp/m is the
Fermi velocity (we use =1 throughout this paper). This
is quite different from the 2D and 3D cases, where there
is a continuous Landau damping region E,
—qup SE=<E,+qup in the energy-momentum space.
Landau damping, as proposed by Landau,?* is a damping
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mechanism in which a collective mode decays rapidly by
exciting a single particle-hole pair. In general, once Lan-
dau damping becomes possible, the collective mode has
such a short lifetime that it no longer represents a well-
defined excitation of the system.?> In 1D systems, the
single particle-hole continuum of 2D and 3D systems be-
comes two isolated lines, and most of the collective exci-
tations will not be Landau damped because the conserva-
tion of energy and the conservation of momentum cannot
be satisfied simultaneously to allow the decay of a collec-
tive mode into a particle-hole pair in the region other
than these two lines.

1D intersubband collective excitation has been ob-
served by Hansen et al.? in a far-infrared spectroscopy
experiment. Since then, IDES’s have been a very active
research area.>2%21.2673% 1p another 1DES experiment,
Demel et al.®> did both far-infrared spectroscopy and
magnetoresistance measurements. They found a big
discrepency between their optical and transport measure-
ment data: at zero magnetic field, they found that the
resonant frequency is 4 meV, while they also found that
their magnetoresistance data could be best fitted by as-
suming the zero-field subband separation to be 1 meV. In
this paper, we theoretically study the collective excita-
tions in various kinds of 1DES’s. Our calculations show
that the experimental results can be explained by a very
large depolarization shift in 1DES’s.

We report our work in two papers: In this paper (pa-
per 1), we calculate the elementary excitation spectra of
various kinds of semiconductor-based 1DES’s in the zero
magnetic field within the random-phase approximation
(RPA) or the self-consistent-field approximation.’®> In
another paper (paper II),*® we will discuss the collective
excitations of quantum wires in the presence of a magnet-
ic field. Unless otherwise explicitly stated, all our discus-
sions are for electrons in conduction subbands of
GaAs/Al,Ga,;_,As structures, even though most of the
theory should be of general validity for any free-carrier
system with isotropic and parabolic effective-mass band
dispersion.

The rest of the paper is organized as follows. In Sec. I1
we calculate the collective excitations in a single quantum
wire using multisubband models. We derive the disper-
sion relations for both intrasubband and intersubband ex-
citations and discuss the mode-coupling effect between
them. In Sec. III we calculate the collective excitations
in a double-layer quantum-wire system. We devote Sec.
IV to the discussion of collective excitations in multiwire
and lateral quantum-wire superlattice systems. We in-
clude Coulomb interaction among different wires and al-
low tunneling between neighboring wires. In Sec. V we
show our calculated results for the spectral weights of the
collective (‘“‘charge-density””) and the single-particle
(“‘spin-density”) excitations. We conclude the paper with
some discussions, in Sec. VI. Some of our results ap-
peared in brief communications?!33 published earlier by
us.

Equations in this paper are labeled by section and
number, such as Eq. (2.15). When referenced within the
same section, however, the section designation is usually
dropped.
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II. ELEMENTARY EXCITATIONS
IN A SINGLE QUANTUM WIRE

We assume the 2DEG to be confined in the xy plane.
We impose an additional confinement in the y direction.
Usually the confinement in the z direction is much
stronger than the confinement in the y direction in real
systems. In terms of energy scales, the energy-level sepa-
ration is about a few meV in the y direction, while in the
z direction it is of the order of 107! eV. In the low-
energy regime, if the 2D electron density is not too high
(N <5% 10! cm™?), we can assume that the electrons
are always in the lowest subband in the z direction. For
the sake of simplicity, we assume the 2DEG has zero
thickness in the z direction. Thus, the z direction drops
out of consideration, and the problem becomes a 2D
problem in the x-y plane. The generalized dielectric
function €;;,,(q,@) for a single quantum wire is given
by237

Et’jmn(Q’w)ZSim 6jn _Uijmn(q)llmn (q’w) ’ 2.1)

where i, j,m,m denote subbands because of confinement
in the y direction. ¢ is a 1D wave vector in the direction
in which the motion is free. §,,, is the Kronecker 8 func-
tion. The function I1,,, (g,w) is a generalized 1D irreduc-
ible polarizability function. The subband matrix element
of the Coulomb interaction v,;,, is given by Eq. (1.6).
Note that Eq. (1) is a definition of a generalized dielectric
function of any multi-component plasma; the index i, j,
m, and n could be spin index, layer index (see Sec. III), or
as in our case, the subband index. In Sec. IV, we shall
derive Eq. (1) from the linear-response theory [cf. Eq.
(4.20)].

The collective excitation spectrum is obtained by the
condition of the vanishing of the determinant of the
dielectric matrix given in Eq. (1):

detle,, | =0 . (2.2)

To begin with, we restrict ourselves to a two-subband
model in which only the lowest subband (denoted by 1) is
occupied by electrons. Under this assumption, I1,,(g,®)
is zero at zero temperature, and is negligibly small at low
temperatures. Thus Eq. (2) gives

(O=vy I ))I=v ) ) = vl Iy ,=0,  2.3)

where y;,=II,,+1I,, is the intersubband polarizability.
Within the random-phase approximation one can use the
noninteracting polarizability functions (“bare bubble”)
for II’s in Eq. (3). The noninteracting 1D polarizability
functions are given by

dp nelE, tE )= npE, ., TE,)
21 w+§p+En—Em—§p+q ’
(2.4)
where nF(ngrEn):{exp[/g’(é'p-f-E,,)]-f—l}‘1 is the Fer-
mi distribution function, £, =p?*/2m —u, p is the chemi-

cal potential, and S=1/kzT. At zero temperature, these
IT’s are easily calculated to be

1,,(q,0)=2 [
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2 2
o“—(E, —qug)
II,,(g,0)="~In | ————"— 2.5)
q o*—(E, +qup)
2 2
w*“—(E,—qup+E,)
Xlz(%w):ﬂ‘ln 2 . o 71> 2.6
Tq o"—(E, tqup+E,)
where the subband separation E, =E,—E,. In the
long-wavelength limit, i.e., when ¢ —0,
N, 2
I(g0)=—"1+0(g" , 2.7)
m w
(gror=—22Ne 460 (2.8)
yO)= . .
X12 q wz_E%I q

Here N, is the 1D density of electrons (i.e., the number
of electrons per unit length). Notice that the long-
wavelength forms of polarizability given by Egs. (7) and
(8) are independent of the dimensionality of the system,
and have the same form as in Egs. (7) and (8) for higher
dimensions as well.’

The physical meaning of Eq. (3) is as follows. The zero
of (1—wy,;;11};) gives the intrasubband 1D plasmon exci-
tation, which corresponds to the collective charge-density
oscillations in the free x direction, whereas
(1=v1515X1,)=0 determines the 1D intersubband
plasmon excitation, which corresponds to collective
charge-density oscillations in the direction perpendicular
to the quantum wire (along the y direction in our case).
These two modes are coupled by a term —v?;;,11,,x;,-
Clearly, this intuitively appealing separation of the ele-
mentary excitation spectrum into distinct intrasubband
and intersubband modes is strictly valid only when the
coupling term is zero. When the coupling term is
nonzero, the electric fields associated with the “longitudi-
nal” and ““transverse” motions couple, and the distinction
between intrasubband and intersubband excitations is no
longer strictly valid. However, we use the names in-
trasubband and intersubband excitations to label the two
branches of solutions of Eq. (2.3) when the correction due
to the coupling is small.

For a symmetric potential well, Viimn(q) 18 strictly zero
for arbitrary g if (i +;j +m +n) is an odd number.*® This
is simply because the wave function is either symmetric
or antisymmetric under space reflection. We assume the
confining potential in the y direction to be of a square-
well form in our calculation.?! Thus v, is zero, and the
mode-coupling term —uv?,,,11,,x,, vanishes. Equation
(3) in this case becomes decoupled.

We first consider the intrasubband plasmon excitation
(w,), which is given by

1=V 1(g)(q,0,)=0 . (2.9)
We can solve Eq. (9) using Eq. (5) to get

0} =[A(qo’ —0 1/[A(q@)—1], (2.10)
where

A(g)=explgm/mv,(q)], (2.11)

o, =quptq?/2m . (2.12)
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In the long-wavelength limit ¢ —0, we can simplify Eq.
(10) as

w,=gqawy|ln(ga)|'*+0(¢?) , (2.13)

where ©,=(2N,e’/ema*)'’? and « is the width of the
quantum wire. We notice that « appears in the zeroth-
order term, unlike in the 2D plasmon case, in which the
finite-width effects appear only in higher-order terms?® of
the expansion.

Next we consider the intersubband collective excitation

1—v1512(9)x12(q,0)=0 . (2.14)
We can solve Eq. (14) using Eq. (6):

0*=[B(q)Q% —Q21/[B(g)—1], (2.15)
where

B(g)=explgm/mv,5(q)], (2.16)

Q,=E, tqup.+q*/2m . (2.17)

In the long-wavelength limit ¢ -—0, we can simplify
(15) as

@0*=E3 +2E, N, v5,(g—0)+0(q) ,

=E3, +W3i+0(q), (2.18)
where W, =[2E, N, v,,(¢—0)]""? is the so-called
depolarization shift,"”3* which measures the energy
difference between the intersubband single-particle and
collective excitations. v,;,(g—0) is about 1.2e¢2/¢ for a
square-well potential. It is easy to understand why
Vi512(q—0) is finite, while v;;;;(¢—0) diverges as
lin(ga)| using the asymptotic expansion of the Bessel
function K,(x)and the orthogonality of the wave func-
tions. When g —0,

Kollg(y —y"))=—In(ga)—In|(y —y") /al . (2.19)

From Eq. (1.6) it is quite clear that the first term of Eq.
(19) —In(ga) contributes to the divergence of v,;;,(g—0)
but not to v,,(g—0) due to orthogonality of the wave
functions. The contribution of the second term
—In|(y —y’)/al is always finite and does not depend on
q.
The intersubband single-particle excitation frequency is
given by

¥\ (g,0)=0. (2.20)

In Fig. 1 we show the calculated dispersion of the in-
tersubband collective excitation between the first and
second subbands and the corresponding single-particle
excitation within the two-subband model. One can see
that for g =0 the collective excitation frequency is about
six times as high as that of the single-particle excitation.
This is in qualitative agreement with the experimental re-
sult of Demel et al.®> To characterize this large enhance-
ment due to the many-body effect, we introduce a param-
eter

Y 12(@) =w1,(q) /01,(q) (2.21)
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FIG. 1. The intersubband single-particle excitation (lower
branch) and the intersubband collective excitation (upper
branch) between subbands 1 and 2 as a function of ga in a two-
subband model. (The parameters @ =390 nm, N, =0.166X 10°
cm ™! are chosen according to Ref. 3).

as the ratio of the intersubband collective excitation and
the single-particle excitation frequency. ¥ ,,(g =0) is
about 6.3 in our two subband model. The parameters
used in our calculation are in accordance with the experi-
ment of Demel et al.’ (sample A) with the difference that
N, is scaled down for our calculation from the experi-
mental total electron density by a factor

N (EFI_EI)I/Z
A , (2.22)
N > (EFlz’“En)]/2

n=1

wl

which takes into account the fact that the experimental
sample has 12 subbands occupied, whereas in our model
calculation only one subband is assumed to be populated.
E,=n’m?/2ma? is the energy bottom of the nth sub-
band, and E is the Fermi energy. We further assume
that the Fermi energy Ep, (Eg,) is at the bottom of the
second (thirteenth) subband. Because the generalized
dielectric-function matrix has dimensions B%X B?, where
B is the number of subbands in the model, it is very
difficult to calculate the elementary excitation spectrum
for a thirteen-subband model using our method. Thus
the semiquantitative comparison between theory and ex-
periment as carried out here is the best one can do at this
stage. Next we shall extend our calculation to a three-
subband model, which exhibits some interesting features
not found in the two-subband calculation described
above. In particular, a mode coupling between the in-
trasubband and intersubband excitations shows up in the
three-subband model. We also discuss the intersubband
collective excitation and single-particle excitation be-
tween the second and third subbands. The agreement be-
tween theory and experiment improves in this three-
subband calculation, lending further support to our mod-
el.



11772

In the three-subband model, we assume that only the
two lowest subbands are occupied (denoted by 1 and 2).
Under this assumption, Il3;(q,w) is zero. This reduces
Eq. (2) to an 8 X8 determinant. Using the symmetry of
the potential well, the 8 X 8 determinant can be decoupled
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to two 4 X4 determinants, which can be further reduced

to the following two equations, after some algebra:
(1= 112X 12)(1 = 02323X23) — 03321 X 12X 23 =0 (2.23)

and

(1‘”1313)(13)[(1*Umlnn)(1_Uzzzznzz)_v%mnunzz]—2”1122”1113”2213”11“22)(13

_(1“Unnnu)l’%zmnzﬂm—(l”Uzzzznzz)v%mnn)(n:o ’

where y;=1II,;+11;; is the intersubband polarizability.

Clearly, Eq. (23) corresponds to the mode coupling be-
tween intersubband collective excitations of subbands 1
and 2 and that of subbands 2 and 3. Equation (24) is
more complicated, describing the coupling among the in-
tersubband collective excitation of subbands 1 and 3 and
the two intrasubband plasma excitations of subbands 1
and 2. We start with Eq. (23), which we believe includes
the relevant physics needed to explain the experimental
results of Demel et al.? First we calculate the intersub-
band collective excitation w$;(g) of subbands 2 and 3,
which is determined by

1—=0,353(q)X23(q,@)=0 . (2.25)

In the three-subband model, y,;(g =0) is about 5.4,
which is smaller than y,,(g =0)=6.3 in our two-subband
model and closer to the experimental result ¥y =4.0. In
Fig. 2 we show the numerical solution Q(q) of Eq. (23) as
a function of ga. The uncoupled intersubband collective
excitation modes w$; and single-particle excitation w3;
are also plotted in the figure for comparison. After mode
coupling, the collective excitation is about 1.3% above
w53 at ¢ =0. We can see that the correction due to the
coupling is rather small. The reason is that y,, is much

300 | T T T rj T T T T I T T T T ] T T T T ]
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FIG. 2. The intersubband excitation between subbands 2 and
3 as a function of ga in a three-subband model (a =390 nm,
N,=0.486X10° cm™!). The solid line is for {(q), the solution
of the coupled Eq. (2.23), whereas the dashed line and the
dotted-dashed line are for the uncoupled single-particle and col-
lective excitations, respectively. The coupling effect pushes the
other branch of Q(q) below the abscissa in the figure.

(2.24)

smaller than Y,; in the three-subband model as the result
of our assumption that subbands 1 and 2 are occupied
while subband 3 is empty. Thus, in the coupling term of
Eq. (23), w;, has a small correction on ,3;, while w,; has
a large effect on w;,, so large, in fact, that the other
branch of the coupled solution corresponding to @, does
not exist anymore.

Next we consider Eq. (24). In Fig. 3 we show the cou-
pling between the intrasubband plasma excitations of
subbands 1 and 2:

(1= T (1= 0500 TT5y) =015, 1T 115, =0 (2.26)

The uncoupled plasma modes w;; and w,, in each sub-
band are also plotted for comparison. In Fig. 4 we plot
the three branches of the solution of Eq. (24). Apparent-
ly, the highest branch corresponds to the intersubband
collective excitation w3, while the two lower branches
correspond to the coupled intrasubband plasmon excita-
tions (cf. Fig. 3).

In summary, we calculate the elementary excitation
spectrum of a quasi-1D quantum wire within the two-
and three-subband models and using the RPA for the
dielectric response. We find that the intersubband collec-
tive excitation energy can be significantly higher than the
corresponding single-particle excitation energy for exper-
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FIG. 3. The coupling between intrasubband plasmon excita-
tions as a function of ga in the same system as in Fig. 2. The
solid lines are for the coupled modes and the dashed lines are
for the uncoupled individual plasmon excitations of subbands 1
and 2, respectively.
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FIG. 4. The solution of Eq. (2.24), which describes the cou-
pling between the intersubband collective excitation (1—3) and
the intrasubband plasmon excitations of subbands 1 and 2. The
system is the same as in Fig. 2.

imentally realizable parameter values. Our calculation
shows that the ratio of the two energies can be as high as
5-6.5 using the experimental parameters adopted from
Ref. 3. This is in good qualitative and semiquantitative
agreement with experimental results.> We identify the
experimentally observed infrared absorption peak to be
the intersubband collective excitation mode. This
identification is supported by the fact that in the zero
magnetic field, the absorption peak was observed only
when the incident light was polarized in the direction
perpendicular to the 1D quantum wire, but not when it
was parallel.

III. COLLECTIVE EXCITATIONS IN A
DOUBLE-LAYERED QUANTUM-WIRE SYSTEM

In their experiment, Demel et al.® also studied the
far-infrared absorption spectrum of a double-layered
quantum-wire system prepared by deep-mesa etching
(sample B). They found that the absorption peak split
into two peaks in the double-layered system. In this sec-
tion, we calculate the collective excitations in a double-
layered quantum-wire system and show that the splitting
is due to the Coulomb interaction between the electrons
in the different layers.

We assume that the electrons are confined in two zero-
thickness planes 8(z) and 6(z —Az) with a distance Az
apart and that there is no tunneling between different lay-
ers. Additional confinement is induced along the y direc-
tion. Thus we can define the generalized dielectric func-
tion:

€;jim,ap= 018 jmOap™ Vijim,apllim,p - (3.1)

Here i,j,I,m are the subband indices due to the y-
direction confinement and «,B are the layer indices.
I,  is the generalized polarizability, and Vj,, s is the
matrix element of Coulomb interaction,

Viiim,ap= Vijim0apt (1= 8,8 Ujjtp,

(3.2)

where
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2e? , ,
Vi (@)= 25 [ dy [ dy'$,(0)¢,(0K (g =3")])
X, (y" ), (y") (3.3a)

is the matrix element of Coulomb interaction of electrons
in the same layer, and

2e° ,
Uyim (@)= = [ dy [ dy'¢(0)6,(»)
XKo(g[(y —y" )+ (Az)*]'?)

X (y')p,,(y")

is the matrix element of Coulomb interaction of electrons
in the different layers.

The collective excitations of the system are given by
the zeros of the generalized dielectric function.

(3.3b)

det|€;j, 45l =0 . (3.4)

I

We assume a two-subband model, considering only the
lowest two subbands, and assume that only the lowest
subband (denoted by 1) is occupied by the electrons. Un-
der this assumption, the generalized dielectric function is
an 8 X 8 matrix (it would be 16X 16 if we allowed tunnel-
ing between the two layers), and Il,, 4(q,®) is zero at zero
temperature. We further assume the confining potential
in the y direction to be symmetric. After some manipula-
tion, Eq. (4) can be simplified and written as

1=[Vin(@)x Uy (@) (g,0)=0, (3.5)

1=[Vi212(q) £ U 515(q) X 12(g, @) =0, (3.6)

where Y,,=II;,+1II,, is the intersubband polarizability
function given by Eq. (2.6), and II,; the intrasubband po-
larizability function given by Eq. (2.5).

Equation (5) describes the splitting of the 1D intrasub-
band plasmon excitations due to the Coulomb interaction
between the electrons in the two different layers. It is
similar to what Das Sarma and Madhukar found for the
2D plasmon excitations in a double-layered quantum-well
system.** Equation (6) describes the splitting of the inter-
subband plasmon excitations in the nontunneling
double-layered quantum-wire system. The plus (minus)
sign in Egs. (5) and (6) corresponds to the collective mode
in which electrons in the different layers are oscillating in
(out of) phase.

We can solve Eq. (5) in a similar way to solving Eq.
(2.9):

b =[A (g0’ —02]/[A.(9)—1], (3.7a)
where

As(g)=explgm/m [V 11()EU,5(q)]} (3.7b)

0y =quptq?/2m . (3.7¢)

In the long-wavelength limit ¢ —0, we can simplify Eq.

(7a) as
w2 =(N,/m)qg*(V,1;,£U 1), o+ 0(g") . (3.8)

Substituting Eq. (2.19) into Eq. (3) as ¢ —0, we get that
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(Vi + U )g0  diverges as  -In(ga),  while
(V1111 = Ui111 )40 is finite. So the 1D optical plasmon
frequency (plus sign) behaves as g¢|ln(ga)|'’? as ¢—0,
whereas the acoustic plasmon frequency (minus sign) de-
pends on ¢ linearly in the long-wavelength limit. It is in-
teresting to compare this result with the 2D plasmon ex-
citation energy in a double-layered quantum-well system
as discussed by Das Sarma and Madhukar.** They found
that the 2D optical plasmon frequency goes to zero as
g'/? when ¢—0, therefore always staying outside the
Landau damping region in the long-wavelength limit,
whereas the acoustic plasmon is Landau damped when
the distance between the two layers is smaller than a crit-
ical value d,, and is undamped when the distance exceeds
d,.
As we discussed in the Introduction, in one-
dimensional systems there is no Landau damping except
on two isolated lines. This is quite different from the 2D
and 3D cases, where we have a continuous Landau damp-
ing region. So in double-layered quantum-wire systems,
both the optical and accoustic plasmons should be un-
damped observable modes.
The intersubband collective excitation in the double-
layered quantum-wire system, Eq. (6), can be solved to
give

03 =[B.(q)Q% —Q2]/[B.(g)—1], (3.9a)
where

B (g)=exp{gm/m[Viy,(@)1U,,(9)]) (3.9b)

Q. =E, tqup+q>/2m . (3.9¢)

In the long-wavelength limit g — 0, we can simplify Eq.
(9a) as

@i =E3 +2Ey Ny[Via12(g—0)£U 51,(g—0)]+0(g) .
(3.10)

In Fig. 5(a) we show the two branches of the intersub-
band collective excitation energy as a function of ga for a
double-layered quantum-wire system with ¢ =320 nm,
Az=130 nm, and N,=0.135X10° cm~!. The single-
particle excitation energy is also plotted for comparison.
In Fig. 5(b) we plot V,;, and U,,;, as a function of ga
for the same system. Apparently, the splitting of the
plasma energy depends strongly on the separation Az be-
tween the two layers.

IV. ELEMENTARY EXCITATIONS
IN 1D LATERAL-QUANTUM-WIRE
SUPERLATTICES

In Sec. II we discussed elementary excitations in a sin-
gle quantum wire. Theoretically, it is relatively easy to
deal with a single wire, which gives us insight into the un-
derstanding of the elementary excitation spectra in
1DES’s. However, in order to get a satisfactory signal-
versus-noise ratio, experimentalists usually like to work
on a periodic array of 1D quantum wires or so-called 1D
lateral superlattices.>3 Accordingly, we now consider
elementary excitations in a multiwire electron system.
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According to the strength of the tunneling between the
neighboring quantum wires, two different approaches are
adopted in calculating the elementary excitation spectra
of such multiple-quantum-wire 1D superlattices. In the
strong-tunneling limit, the system could be regarded as a
2D electron gas with a periodic modulation potential
along one of its two directions. The modulation poten-
tial, if not too strong, can be treated as a perturbation.!*
In the weak-tunneling limit, on the other hand, the sys-
tem can be treated as a periodic array of tight-binding
quantum wires interacting with each other through
Coulomb interaction with some small wave-function
overlap.®®

In this section we study the weak-tunneling 1D super-
lattice, which is intermediate between a 1D quantum wire
(Sec. II) and a modulated 2D system referred to above.
We derive a formalism for calculating the collective exci-
tations of a 1D superlattice, including the mode coupling
between the intrasubband and intersubband excitations
from the linear-response theory*''*? within the self-
consistent-field approximation.’> We also discuss how
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FIG. 5. (a) The two branches of the intersubband collective
excitation energy as a function of ga for a double-layered
quantum-wire system with a =320 nm, Az=130 nm, and
N,=0.135X10° cm™' The single-particle excitation energy
(dotted line) is also plotted for comparison. (b) The matrix ele-
ments of Coulomb interaction between the electrons in the same
and different layers, V,,, (solid line) and U,,;, (dotted line), re-
spectively, as a function of ga for the same system.
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quantum tunneling between neighboring wires modifies
the plasmon dispersion.

As in Sec. II, we assume that electrons are confined in
a zero-thickness x -y plane for the sake of simplicity. We
choose the x direction to be the free direction. A period-
ic tight-binding-type confinement is imposed on the y
direction. The wave function and the energy of the sys-
tem are

Ux,y,2)=(5m) 2 explik,x)gy (PIB(2)]'7 (4.1)

E, (ke k,)=k}/2m+E,+(A, /2)[1—cos(k,d)], (4.2)

with
N
¢nky(y):N—1/2Rnky 1§1 explik,ld)u,(y —Id) . (4.3)

Here n is the quantum subband index for the y
confinement and d is the superlattice period. N is the to-
tal number of wires, and

R, =[1+2a, cos(k,d)]'”? (4.4)

is the normalization factor. «, is the overlap parameter
characterizing our tight-binding model,

a,,==qu dy u,(yu,(y —d) .

We assume the periodic confining potential is a finite
square well (Kronig-Penney potential) with barrier height
V, and well width a. In the tight-binding limit, the band-
width A, is given by

ar/2
A, =4[ dyu,()Vou,(y —d) .

(4.5)

(4.6)

To obtain the collective excitations of the 1D superlat-
tice system described by above equations, we start with a
standard linear-response theory.*"*> We consider &n(r),
the deviation of the electron density from its equilibrium
value, which can be related to the perturbation V by

fb —fa

E,—E,+o Vap Vs (1), (1), 4.7)

on(r)=73,

a,b a

]

<nkylVH|mky+qy>: 2 2 Hn’m'(q)c?w’k):’q): >unmn'm’(qx’ky?qy’k):’q):Kn’k}”VeX+VH1m'k);+q):> ’

nm' i’ g
T ey

where

’ ’ 2@2 L L ’ * ' * ' ’
Unmnem @Ky 4 K503 = == [ "y [ "y Pk, va, 081, 0) 2 Kollguly =y HLIDGL 1 00,007
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where a and b are the composite quantum indices, f, and
f. are the Fermi distribution functions ng(E,) and
np(E,) [cf. Eq. (2.4)], and V,, are the matrix elements of
the perturbing potential. For the system under con-
sideration, we write Eq. (7) as

dnlg,0)=3% 3 11,,(q,,0,k,,q,)

n,m ky,qy
X <nky|V|mky+qy)

X d’:nky +qy(y)¢nky<y) > (4.8a)

where

fmk+ =/ k
,,(q,0,k,q,)=23F "9 21 (4.8b)
* i ky Emk+q_Enk+w
where k=(k,,k,) and q=(g,,q,) are two-dimensional
momenta. If we neglect the exchange term, the potential
V can be written as the sum of two parts, the external po-
tential and Hartree potential:

V=Ve+yH (4.9a)
where
2
Vi) = [dr———=8n(r) . (4.9b)
elr—r'|

For the convenience of the calculation, we choose to
work on a finite system and use the periodic-boundary
condition in the y direction,*

2

vy = [dr €
0= rge[(x—x')2+(y~—y’+tL)2]1/2

Xén(r') ,

(4.10)

where the summation is over all integers ¢, L is the size of
the system in the y direction, and € the dielectric constant
of the background lattice. From Egs. (8), (9), and (10) we
get

(4.11)

(4.12)

The condition for collective excitations of the system is that self-sustaining oscillations in the electron density occur.
This means that Eq. (11) has a nonzero solution ¥ when the external perturbation V** is zero.

A. Isolated superlattice

First we consider the case of isolated superlattices, where there is no overlap between neighboring wave functions. In

this case we have the following simplifications:

N
¢,,ky(y)=N’“2 S explik,ld)u,(y —Id)
=1

(4.13)
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E,(k,)=E, , (4.14)
I, (g, w,k,,q,)=11,,(q,,0) . (4.15)

From Egs. (12) and (13) we can easily show that for isolated superlattices
Unmn’m'(qkay)qy’k;’q;):Unmn’m'(qx’Qy’Q):)

f f dy’ 22 U, ()
XS Kolg [y —y'+U—=1"d + 1], (y uk.(y') . (4.16)
t
We expand the Bessel function K, in Fourier space,
m/d  expli(p, +s2m/d)y —y')]
21( (gy —y'+tDD=(x/L)Y 3 2 o (4.17)
s p, =—m/d [ x+(py+S2'7T/d) ]
where the summation over s is over all integers. Using Eq. (17) we can, after some algebra, simplify Eq. (16):
27T€ ’ ’
Unnm08585)= =018, o [y [yt (0, (1S @y =y e (9 () 4.18)
where
exp[ —i(g, +s2m/d)(y —y')]
S(qy—y')= 4.19
&y ? [q§+(qy+s27r/d)2]l/2 @.19)

From Egs. (11), (15), and (18) we get the generalized dielectric function,
enmn’m’(qx’qy)w)zsnn'smm Hnm(qx’w)vnmn’m'(qx’qy) ’ (4.20)

where

nmnm(qx,qﬂ“—fdy fdy Uy (), (P)S(qy =y I, (y uy(y') (4.21)

Once we have the generalized dielectric function, the
plasmon excitation spectrum is obtained by the condition
of its determinant to be zero. If we restrict ourselves to a
two-subband model in which only the lowest subband
(denoted by 1) is occupied by electrons, we get

(1—wyyq (1 V21101112 1111X =0

(4.22)

U1 X12)

where x;,=II,,+1II,, is the intersubband polarizability.
IT;; and Y, at zero temperature can be easily calculated
using Eq. (8b),

2 2
0w —(E,—q,vg)
I0,(g,0)=—"In | 5———>L | | (4.23)
TGy " —(E;+q,vp)
2 2
0 —(Ey) —qvp+E,)
X12(geo@)=—""-In | 5———T—1_ | | (4.24)
Tq 5} —(E21+qva+Eq)
where E, =E,—E, is the subband separation, and

E, = qz/2m.

When g, is zero, vy, and v, are zero because of the
even symmetry of the confining potential, decoupling the
intrasubband and intersubband excitations. For nonzero
g,, the symmetry is broken and v, =v},;; becomes
nonzero, and therefore the intrasubband and intersub-

band plasmon excitations are coupled according to Eq.
(22). Thus, within this model, mode coupling exists only
for ¢, 70

If we neglect the coupling term, the intrasubband
plasmon excitation of an isolated 1D superlattice is given
by

(4.25)

where v,;;,(q) is given by Eq. (21). Since Egs. (25) and
(2.11) have exactly the same form, we can write down the
solution in a similar way:

1=y (@I (q,0)=0

wp=[4(Q0} —02]/[4(q)—1], (4.26)
where

A(q)=explgm/mv1;,(q)], (4.27a)

0 =qvptq?/2m . (4.27b)

We can also write the plasmon excitation equation of a
1D isolated superlattice in real space and use the wire in-
dex as a quantum number.?’ In the long-wavelength limit
we have
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©

172
o=(wyg,a) |Kolga)+2 3 Ko(lqd)cos(qyld)] ,
=1

(4.28)

where wy=(2N, e?/ema?)!/?. 1t is easy to prove that

these two approaches are equivalent in the limit a <<d.

In Fig. 6 we show the calculated intrasubband and in-
tersubband excitations of a nontunneling quantum-wire
superlattice as a function of g, for three different values
of g,=0,1/d,m/d. The parameters used in our calcula-
tion are chosen according to the experimental data of
Ref. 3 except that the linear density of electrons N, is
taken to be 0.618 X 10° cm ™! so as to be consistent with
our assumption that only the lowest subband is occupied.
As mentioned above, when g, is zero, the mode coupling
vanishes. Comparing the three curves in Fig. 6, we con-
clude that the mode-coupling correction is small in our
model, and, even for qyio, one can still talk about in-
trasubband and intersubband excitations as approximate-
ly separate entities without any significant error.

In the limit g, —0,

o

n“(qx,w)=~r—n—“’-wz+o<q§) (4.29)
for nonzero g,, vy1,(g, —0,q,) is finite, the intrasubband
excitation energy goes to zero linearly as g, goes to zero;
while for g, =0, vyy;,(g,—0,q,) diverges as g, ! and the
intrasubband excitation energy goes to zero as g.!’%
which is the expected long-wavelength behavior of the
2D plasmon dispersion. This is similar to the 2D super-
lattice situation, where for g, =0 the plasmon dispersion
in the long-wavelength limit goes to the 3D plasmon fre-
quency.** In Fig. 6 the slope of the plasmon dispersion
for small g, increases as g, decreases from 7/d to zero.
At g, =0, the slope diverges as g /2. This differs from
the single-quantum-wire case (cf. Sec. II), where the slope
diverges as |In(g,a)|!/%. For large g,, our calculation
shows that the bandwidth of the plasmon excitation de-
creases as we increase ¢, , i.e, the curves corresponding to
different value of g, tend to merge as g, increases. From
Fig. 6 we also see that the intersubband collective excita-
tion is about 160-170 #*/2ma?, that is, about 5.5 times
larger than the corresponding single-particle excitation,

which is 37°h2/2ma? for a square-well-type potential.

;|
Unmn'm'(qx,ky7q}nk;’q; ):8%,,]; Unmn‘m‘(qx’kyrqy’k):)
qy’q; el nky mky+qy n'k;
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FIG. 6. The intrasubband (lower branch) and intersubband
(upper branch) collective excitations of the nontunneling super-
lattice as a function of g.a for three different values of g,: 0,
1/d, and 7/d (solid, dashed, and dashed-dotted lines, respec-
tively). The parameters are a =550 nm, d=2a, and
N,=0.618X10°cm™".

This is in agreement with the recent experiment of Demel
et al.,’ who find that the intersubband collective excita-
tion is 4 times larger than the corresponding single-
particle excitation.

In Fig. 7 we show both the intrasubband and intersub-
band excitations as functions of g, at fixed g,=0.8/a.
The intrasubband excitation decreases,, while the inter-
subband excitation increases when we increase g, from 0
to m/d. Obviously, for a 1D superlattice with period d,
one expects that the excitation should be a periodic func-
tion of g, with period 27 /d [cf. Eq. (19)].

B. 1D superlattices with weak tunneling

Next we consider the 1D superlattice with weak tun-
neling. We only include the nearest-neighbor wave-
function overlap. In this case, Eq. (12) can be written as

ot
m ky+qy

ik d

X [dy [dy'[utDu, ) +uty +du, e +ul(y —du, (e "]

XS(qy —y )Nu, Y uk ) +u,(y' +dur(ye

—+—u,,r(y’—d)u,:'(y')ei

Thus Eq. (11) becomes

ik'd

by | (4.30)
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(nk, |V |mk,+q,)= E S, @,k0,G)) U@ Ky gy k) K 'k [V VM k ) +q, ) (4.31)
n',m' '
v

The collective excitations of the system are given by the condition that Eq. (31) has nonzero solution ¥ when external
perturbation V" is zero. In the following calculation we restrict ourselves to the lowest subband only, i.e., we only con-
sider the case m =n =m’'=n"=1. Then Eq. (31) can be simplified as

(k| VI, +q,) =3 gy, 0,k),q,)U(q,,k,,q,, k) 0"k [ VE+VHm k) +q,) . (4.32)
. ky
Here we have omitted the subband index subscripts, since F100=u,u,p), (4.37a)
all of them are equal to 1 under the assumption. In the
linear-response regime it is sufficient to consider the Lo)=u(y +d)u(y)+u(y —du(y), (4.37b)

response of the system to a perturbation in a single

mode.*> We write the induced Hartree potential as Fs)=u(y +duy(p)—uy(y —ddu, (y) . (4.37¢)

We define a 3X3 interaction matrix for the nearest-

itqytamlydy (4.33)  neighbor overlap case,

VH(y)=3 vje
1
277.82 ’ ’ ’
(W)l ==7—[dy [dy'f;»S(a.y =»")fiy") .
Here we have omitted the dependence on ¢, and o for

simplicity. Thus we have (4.38)
Then
(k[ VH|k, +q, ) =blk,,q,)-VH, (4.34) e
U(qx,kyyqyyky ):b (ky;qy )'E(q)b(ky;qy ) ) (439)
where b and V# are three-dimensional vectors, where b is the Hermitian conjugate of b. We also define
a 3 X3 polarizability matrix,
b(ky,qy)ZRl,\.lekywy E(q,w)zkzb(ky,qy)Hll(qx,w,ky,qy)bT(ky,qy) . (4.40)
X (1,co8)k,d),  sin(k,d)) , (4.35) . .
Then at V*=0, Eq. (32) can be rewritten as
and VH-[l~_IfZ(q)-I_’(q,a))]-b(ky,qy)=O . (4.41)
(VH),- = fdy fi(y)VH(y), i=1,2,3, (4.36) Here 1 is the 3X3 unit matrix. Equation (41) has
nonzero solution V¥ if and only if
with
det|1—W(q)-P(q,w)|=0. (4.42)
170 I This is the intrasubband plasmon excitation equation for
o ' ro r rr the weak-tunneling 1D quantum-wire superlattice.
We solve Eq. (42) by expanding it in a Taylor series up
160 to first order of a; or A;. After some lengthy manipula-
R tions, we have
= 60 det|1—W(q)-P(q,0)|
S
18 =1—v(q)[1,,(g,,0)+c(g,,0)A,]+0(a®)=0,
a0 4.43)
40 where Il;; and A, are given by Egs. (23) and (6), v(q) is
the Coulomb interaction matrix v,,;;(q) as given by Eq.
(21), which can be further simplified as
30
0.0 2 29-1/2
a,d/ % u(q)Z;[q)pl-(qy-}-Zﬂl/d ]
FIG. 7. The intrasubband (lower branch) and intersubband X ’fdy wl(y )e—i(qy +2ml/d)y |? ’ (4.44)

(upper branch) collective excitations of a nontunneling superlat-
tice as a function of g, at a fixed g, =0.8/a. The parameters are
the same as in Fig. 6. and c(q,,w) is given by
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m quF_‘Eq
kg

c(g,,w)=
x a)z_(qxl)p—Eq )2

q,.vp+E
-l (4.43)
o°—(qup+E,)

In Fig. 8 we show the intrasubband plasmon dispersion
in the tunneling superlattice as a function of g, for three
different values of g,: O, 1/d, and w/d at
V,=100%4%/2ma?. 1In this case, the overlap parameter
[cf. Eq. (5)] a; is 0.1X10™* and A, [cf. Eq. (6)] is
6.0X10™* #2/2ma?; the higher-order terms are ap-
parently negligible. For nonzero g,, the plasmon energy
goes to zero linearly as g, goes to zero, while for g, =0, it
goes to zero as g,”2. Quantum tunneling does not change
the dispersion power law, but modifies the coefficient in
front of it. The coefficient becomes smaller as the tunnel-
ing gets stronger. In Fig. 9 we plot the plasmon excita-
tion as a function of g, for four different values of
Vo=, 100, 20, and 5 (in units of #>/2m *a?) for a fixed
g,=1/d. The corresponding «, increases from zero to
0.22 and A, from zero to 1.15%#*/2m *a®. We can clearly
see that when the barrier is lowered, i.e., the tunneling is
increased (we keep d =2a fixed), the plasmon excitation
energy goes down. The reason for this is that for in-
creased tunneling, the wave function spreads wider,
which is equivalent to increasing the wire width a, conse-
quently causing a lowering of the plasmon energy.?’ It
should be noted that the above discussion is based on the
assumption of a weak-tunneling limit. When tunneling
gets strong enough so that we should include more than
just the nearest-neighbor overlap, the whole picture may
change.

Finally, we want to point out that Eqgs. (11) and (12) are
generally valid for calculating the plasmon excitations of
a 1D superlattice. It works in the multisubband case and
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FIG. 8. The intrasubband plasmon excitation of a tunneling
superlattice as a function of g, a for three different values of g,
from the above: 0, 1/d, and 7/d. The barrier height V; is
100%4%/2ma?, which corresponds to an overlap of
a;=0.11X10"* Other parameters are the same as in Fig. 6.
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FIG. 9. The intrasubband plasmon excitation of a tunneling
superlattice as a function of g, at a fixed g,=1/d for four
different values of the barrier height ¥V, from the above: oo,
100, 50, and S (in unit of #2/2m «*), which correspond to a; =0,
0.11X107% 0.11X 107!, and 0.22, respectively. Other parame-
ters are the same as in Fig. 6.

is not limited to nontunneling or nearest-neighbor over-
lapping superlattices only. The examples that we con-
sidered above are only the simplest applications of Eq.
(11). With larger-scale numerical calculation, one can go
further than that.

V. SPECTRAL WEIGHTS OF THE ELEMENTARY
EXCITATIONS IN 1DES

In the previous sections, we have calculated the ele-
mentary excitation frequencies in various circumstances:
single wire, multiple wires, and double-layered quantum
wires. In all the calculations, we have calculated only the
excitation energies, which correspond to the positions of
the peaks in spectroscopic experiments. However, the
light-absorption or Raman-scattering experiments do not
only measure the position of the peak, but also the line
shape of the peak, which, of course, contains some addi-
tional information of the system being probed. To have a
complete comparison with experiments, we should also
calculate the spectra weights. Theoretically, the calcula-
tion of the spectral weights (line shapes) is more involved
than the determination of the plasmon energies, because
the position of the peak is determined by the pole of the
density-density correlation function (DDCF, also called
the dynamical polarizability function, see Sec. II) and
does not involve the full knowledge of the DDCEF,
whereas the spectral weight is proportional to the imagi-
nary part of the dynamical polarizability function for
Raman-scattering experiments and is proportional to the
real part of the conductivity in light-absorption experi-
ments. In Raman-scattering experiments (also called in-
elastic light scattering spectroscopy), one measures the
imaginary part of the DDCEF directly for finite wave vec-
tor q. Since the Coulomb interaction is spin independent,
i.e., it does not flip spins, the DDCF calculated without
screening (single bare bubble) D,-(j’» corresponds to the
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spin-density excitation, whereas the DDCF calculated
with screening using the random-phase approximation
D;; i, corresponds to the charge-density (or collective) ex-
citation.’®*® In infrared-light-absorption experiments,
we are always in the long-wavelength limit, since the
speed of light is always much larger than the Fermi ve-
locity in 1DES’s, which is the slope of the single-particle
dispersion relation. In order to increase the range of
wave vectors that can be probed, one can use a grating
coupler of period d to allow jumps in the probed wave
vector by 27n /d , 4748 where n is an integer.

The time-ordered density-density correlation function
is defined in the usual way:

D(x,p,t;x",y',t")=—i{Tn(x,y,t)n(x",p",t")) , (5.1)

where we have assumed that the 1DES is confined in a
zero-thickness x -y plane and the z coordinate is dropped.
The quantity n (x,,t) is the electron density operator in
the Heisenberg representation and 7 is the time-ordering
operator. D(x,y,t;x',y’,t') depends on x and x’ only
through the difference x —x’' due to the translational
symmetry in the x direction, and, therefore, one can
Fourier transform it in the variables x —x' and ¢ —t’ to
get D (q,w;y,y'). We can expand D (q,;y,y’) in terms of
the wave function in the y direction,?®

D(q,w;y,y')= 3, Dy 1 (q,0)
ikl

X¢:(p)p;(y)dy (¥ )i (y")
Using the standard RPA treatment, D;; ;; is given by

0
zk6 +D 2 ijmn mn,kl?

(5.2)
D= (5.3)

is the matrix element of the Coulomb in-
1.6), and D is the density-density

|

where V;;

z]mn

teraction given by Eq. (
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correlation function in the absence of Coulomb interac-
tions,

D%g,0;y,y" )= Di}(q,0)$,(»)$;(¥);(y")b;(»") . (5.4)
ij
We use Matsubara’s finite-temperature formula*’#* to
calculate D,
. 2 . .
D,‘}(q,zwn)=—i5§p29‘j-°’(p +q,ip, +iw,)
X 89%p,ip,)
(Ei(p+q))—fp(Ei(p))
:ngp ;e —fF i) (5.5)
L < Ejp+q)—El(p)—io,

where fp(E;(p +q)) is the Fermi distribution function
and w, =n2w/f3 is the complex frequency; n is even for
bosons and odd for fermions (here it is even), $\%(p,ip, )
is the Matsubara Green’s function of the electrons in the
ith subband in the absence of the Coulomb interaction
P=p., 4=4q,, and B=1/kzT. To calculate the Raman-
scattering intensity, one replaces the complex frequency
iow, by w+iy. But this simple replacement violates the
conservation of the number of particles. Instead, we
should use the correct form of D suggested by Mer-
min,* which is

o, D%g,0+iy)1+iy/w)
1+i(y /0)D%g,0+iy)/D%4g,0)

Making this correction does not lead to any significant
changes in our result. To simplify the notation, we still
use the simple replacement of iw, by w+iy. Here y is
the phenomenological parameter characterizing the
broadening of energy levels due to the impurities and im-
perfections. From Eq. (6), we get

_ f frlE;+k*/2m) frE;+k*/2m) 5.6
E;+k*/2m —(k —q)*/2m —(w+iy) E;+(k+q)?/2m —k*/2m —(o+iy) '
In the y —O0 limit,
Sw—E,;—kq/m +q*/2m) Sw—E;—kq/m —q*/2m)
ImD,.‘}(q,w)=ifdk K/ qu q/°m  TOOT R qu 47°7
T exp[B(E;+k*/2m —p)]+1 exp(BE;+k?*/2m —u)]+1
=2 ! - ! (5.7)
q |exp[BE;+k}/2m—p)]+1  exp[B(E;+k3/2m—p)]+1 | '

Here
—m 2
kl——q~(a)—*Eﬁ+q /2m) , (5.8a)
k2=%< —E;—q%/2m) , (5.8b)

where E;=E;—E,; is the energy separation of the jth
and ith subbands, and u the chemical potential.
First we consider a single quantum wire and assume

the two-subband model (see Sec. II). From Eq. (4) we

have
Do(qx,w,qy):fdyfdyle_iqy(y—y”
XDO(quw;y,JM )
=3 Dj(q,,0)Cy(q,) , (5.92)
iJ
with
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—ig (y —y,)
Cylg,)= [dy [dy 6,0, (p)e ¥
x¢i(Y1)¢j(J’1) .

We assume that the confinement potential in the y direc-
tion is the square-well type with well width a. In this
case, C,-j is calculated to be

(5.9b)

Cy1(g,)=2[1—cos(g,a)]

1 2872 —5q2a?
(qya)2 2(47T2—qy2:12)2 > (5.10a)
Ci12(g,)=Cy(g,)
=2[1+cos(g,a)]
811r2——5q}302 77'2_5qy2a2
4(9772-_qy202)2 4(77_2_‘1})202)2
(5.10b)

In the two-subband model, we assume only the lowest
subband to be occupied. At zero temperature, D9, is
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potential), we can still neglect D9,. Thus
D%gq,,0,9,)=3 DY(q,,»)C;(g,)
ij
=C; D%, +C (D, +DY,)) . (5.11)

The Raman-scattering intensity is proportional to the
imaginary part ofDO(qx,w,qy ). Since C;; is real, we get

ImD%g,,w,q,)=C;;(ImDY,)

+C,(ImDY, +ImDY,) . (5.12)

In Fig. 10 we show, in the limit of ¥y —0 [cf. Eq. (7)]
the calculated Raman-scattering intensity of the spin-
density (single-particle) excitation of a IDES with the 1D
electron density Nw=0.888><105 cm™!, @ =390 nm at
fixed ¢,=1/a and T =0.33E,, /ky for three different
values of g9,=1/a, 2/a, and 4/a [Figs. 10(a), 10(b), and
10(c)], respectively. We can see clearly that as g, is in-
creased, the spectral weight of the intersubband excita-

tion increases.
The calculation of the Raman-scattering intensity of

zero. For finite temperature, as long as kzT <<E,, the collective excitation is more complicated. In the
(more precisely, kT <<E, —pu, where p is the chemical = two-subband model we can solve Eq. (3):
J
D — “‘D(z)szzzz)D(h (5.13a)
i (1_D(1)1V1I11)(I_Dg2V2222)~D(1)1D(2)2(V1122)2 ’ .
D311 =D3111 =D 1115 =D 131 = D33 =D313 =Dy =Dy =0, (5.13b)
DnguzzD?l
D, ,=Dyy = , (5.13¢)
(1_D(I)IVIHI)(I_DgZVZZZZ)_D(l)ngZ(V1122 )?
(1—D?1V1111 )D(z)z
Dy = , (5.13d)
(I_D?IVIIII)(1_D(2)2V2222)—'D(1)1D(2)2(VIIZZ)Z
D — (1~D81V1212)D?2 (5.13¢)
12 1_(D(l)z +D(2)1)V12]2 ’ '
Do = (1—D%,V15,,)DY, (5.13f)
2121 — ’ .
1_(D(x)z"'l)% Wiz
D(2)1V1212D(1)2
D311;=Dp = . (5.13g)
1'(D(1)2 +D(2)1 Wiz
In the low-temperature limit B(E,—u)>>1, D9, goes D3V 121,D%,
i - D =D = , (5.14d
to zero in the two s;bband model. Thus 2112 1221 1—(D?2 +D(2)1 W 212 )
D
D1m=‘_-_—o11 ’ (5.14a) _
1=D7 Vi D13,=Dyy1; =Dy, =0. (5.14e)
(I‘Dgl Vi212 )D(I)Z
2R 1—(D% +D0 )V ) (5.14b) The pole of the D,;,;, which is
12 21V 1212
1-DY V=0, (5.15
(I—D(I)ZVIZIZ)D(Z)I e )
Dy = s (5.14¢)

1"(D(1)2 +D(2)l )V1212

determines the intrasubband plasmon excitation; and the
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pole of D51, (or Dy51,D5;15,D5,1), which is

1—=(DY,+ D3 )Viy,=0, (5.16)
determines the intersubband collective excitation. This is
exactly what we get in Sec. II (note that Dg =I1;;) for the
two-subband model.

Similar to the spin-density excitation [Eq. (9)], we
Fourier transform Eq. (2) for the charge-density excita-
tion and get
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D(gy,0,9,)= [dy [dye” " 7VD(g, 09,9,
= X Diulqy,®)B(q,) , (5.17a)
with et
Bijii(q,)= fdy fd}*‘1¢,
Xeflqy P (1)) (5.17b)

Substituting Eqgs. (14) and (13b) into Eq. (17a), we get

D(qx’a)’qy)=BllllDllll +B512(Dyyp +Dy15t Dy +Djpp1)

DY, D3, +D%,

=B + B,

1—-D% V1, 1—(D

Comparing Eqgs. (17b) and (9b) yields

Bi11=Cyy, Bpp=Cyp, . (5.19)
The values of C,; and C,, in a square-well-type potential
are given by Eq. (10). We can see clearly from Eq. (18)
that in the two-subband model the Raman-scattering in-
tensity is the sum of two parts: intrasubband and inter-
subband plasmon excitations.

In Fig. 11 we show the Raman-scattering intensity of
the charge-density excitations for the IDES with
Ny =0.888X10° cm ™}, 2=390nm, y =#*/2ma? at fixed
q,=1/a and T =0.10E,, /ky for three different values of
q,=1/a, 2/a, and 4/a [Figs. 11(a), 11(b), and 11(c)], re-
spectively. In the numerical calculation we have actually
included the second subband completely, i.e., we use Eq.
(13) instead of the low-temperature-limit form [Eq. (14)].

In Fig. 12 we show the Raman-scattering intensity of
the charge-density excitation at fixed g,=4/a for the
same system as in Fig. 11 except y =5.0%*/2ma? [Fig.
12(a)] and y =10.0#%/2ma? [Fig. 12(b)]. The half-widths
of the peaks are determined by y and the temperature 7.

Next we consider the case of a 1D quantum-wire su-
perlattice; we restrict ourselves to the case of isolated 1D

J

V”“(q)-_—fdyfdylul(y)

LDV,

(5.18)

superlattices (see Sec. IV). For the spin-density excita-
tions, the Raman-scattering intensity of the 1D superlat-
tice is nothing but the sum of the contributions of each
individual quantum wire, since it is calculated in the ab-
sence of the Coulomb interaction, and is, therefore
enhanced by a factor of N, which is the number of quan-
tum wires in the superlattice. The relative profile (or line
shape) does not change. For the charge-density excita-
tions, the Raman-scattering intensity of the 1D superlat-
tice can be calculated by replacing the Coulomb interac-
tion matrix elements of a single wire [Eq. (1.5)],

vig,y —y')=2e*/e)Ky(|qg(y —y")|) (5.20a)

by the Coulomb interaction matrix elements of the 1D
quantum-wire superlattice [Eq. (4.19)],

exp[ —i(g, +s2m/d)y —yp')]
S(q,y —y")=
@y =" 23" (gi+(q, +s2m/d)*]'"?

where the summation is over all integers s.

It turns out that the matrix elements of Coulomb in-
teraction in the 1D isolated superlattices can be calculat-
ed explicitly for the square-well-type potential, consider-
ably simplifying the numerical calculation of the spectral
weight. For example,

, (5.20b)

u (¥)S(qy =y uy(yu,(y;)

2sin[(g, +s27/d)a /2] 1 g, t2ms/d 591
T lait(g, +s2m/d)?)'V? | g, F2ms/d (g, +2ms /d)P— (27 /a) 2D

In Fig. 13 we show the calculated spectral weights of
the charge-density excitations in the 1D quantum-wire
superlattices (no tunneling) with N, =0.872X10% cm ™!,
@=39 nm, y =#%/2m2*=0.377 meV, superlattice period
d =2a, q,=q,=1/a at temperature T =0.44 K [Fig.
13(a)] and T'=4.4 K [Fig. 13(b)] respectively. In Fig.

[
13(b) the small peak on the left side is the intrasubband
plasmon excitation of the second subband. In low tem-
perature [Fig. 13(a)], the second subband is not popu-
lated, and its intrasubband plasmon excitation spectral
weight is negligible.

In Fig. 14, we show the Raman-scattering intensity of
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the charge-density excitations of the 1D quantum-wire
superlattice with the same parameters as in Fig. 13(b) ex-
cept for y=2#%/2ma? [Fig. 14(a)] and 5#%/2ma* [Fig.
14(b)], respectively. In Fig. 15 we show the Raman-
scattering intensity of the charge-density excitations of
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FIG. 10. The calculated Raman-scattering intensity of the
spin-density excitation of a 1DES with ¢ =390 nm,
N,=0.885X10° cm™!, and y—0 at fixed g,=1/a and
T=0.33E,, /kp for three different values of g,=1/a, 2/a, and
4/a [(a), (b), and (c), respectively].
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the 1D quantum-wire superlattice with the same parame-
ters as Fig. 13(b) except for g, =4.0/« [Fig. 15(a)] and
2.0/« [Fig. 15(b)], respectively. The peak on the left side
(lower energy) is the intrasubband plasmon excitation and
the peak on the right side is the intersubband collective
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FIG. 11. The calculated Raman-scattering intensity of the
charge-density excitation for three different values of g, =1/a,
2/a, and 4/a [(a), (b), and (c), respectively]. The parameters are
the same as in Fig. 10 except y =#2/2ma”* and T =0.1E,, /kg.
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excitation. We can clearly see that as q, increases, the
spectral weight of the intersubband plasmon excitation
increases.

VI. CONCLUSION

In this paper we have studied the elementary excita-
tions in various quasi-one-dimensional electron systems
in the zero magnetic field. We summarize our results and
discuss the possible future directions of development in
the field. Results of the elementary excitations in quan-
tum wires in the presence of an external magnetic field
will be published in another paper.’®

In Sec. II, we studied the elementary excitations in a
single quantum wire. The collective excitation energies
were calculated explicitly for the two-subband and three-
subband models under the random-phase approximation.
We have included the mode-coupling effect between the
intrasubband and intersubband excitations in our calcula-
tion. We find that the intersubband collective excitation
frequency can be 5-6.5 times higher than the correspond-
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FIG. 12. The calculated Raman-scattering intensity of the
charge-density excitation at fixed g, =4/a for the same parame-
ters as in Fig. 11 except for y=5.0#/2ma® (a) and
10.0#%/2ma?).
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ing single-particle excitation energy due to a large depo-
larization shift in quasi-one-dimensional electron systems.
This is in good agreement with the recent far-infrared
spectroscopic experimental results.

In Sec. ITI, we calculated the plasmon excitation ener-
gy of a double-layered quantum-wire system. We find
that because of the Coulomb interaction between the
electrons in different layers, the 1D intrasubband
plasmon frequency splits into two branches. One goes to
zero as g|In(ga)|'’?, while the other goes to zero linearly
on g in the long-wavelength limit. The intersubband col-
lective excitation also exhibits a similar splitting.

We studied the elementary excitations in multiwire sys-
tems (or 1D lateral quantum-wire superlattices) in Sec.
IV. We started from the linear-response theory and in-
cluded the Coulomb interaction and the tunneling be-
tween neighboring wires. In the case of nontunneling su-
perlattices, the equation determining the collective exci-
tation energies is very similar to that of the single-wire

025 L L B EE
a) 4
_020F .
2z [ ]
g . b
£ 015} R
g : 1
Z 010f -
g r ]
2 0.05F ]
[ L B

0. 0 f 1 L L 1 1 L ! L

005 20 40 60 80 100 120

E (1 unit =0.377 meV )

0.25 T T T T T T T T T ]
L) _
~ 020f E
E § :
5 015f .
) C ]
= 010F .
it :
0.05 - =
0.00 I/ 1 | 4 ! L | L
005 20 40 60 80 100

E (1 unit =0.377 meV)

FIG. 13. The calculated Raman-scattering intensity of the
charge-density excitations in a 1D quantum-wire superlattice
with @ =39 nm, N,=0.872X10° cm ™!, ¥ =0.377 meV, super-
lattice period d =2a, g, =g, =1/a at temperature T =0.44 K
and 4.4 K (b).
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case, whereas the equation is more complicated in the
case of tunneling superlattices. In the weak-tunneling
limit, the intrasubband excitation energy decreases as the
tunneling increases. For nonzero g, (where the y direc-
tion is the direction of the superlattice and the x direction
is the free direction), the plasmon energy goes to zero
linearly as g, goes to zero, while for g, =0, it goes to zero
as g2, At least from the perturbation theory point of
view, quantum tunneling does not change the dispersion
power law, but only modifies the coefficient in front of it.
The coefficient becomes smaller as tunneling gets
stronger.

In Sec. V we calculated the spectral weights of the ele-
mentary excitations of the single quantum wire and the
quantum-wire superlattice under the two-subband as-
sumption. The Raman-scattering intensity is proportion-
al to the imaginary part of the density-density correlation
function. We calculated the density-density correlation
function for two cases: with and without Coulomb in-
teraction, which corresponds to the charge-density and
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FIG. 14. The Raman-scattering intensity of the charge-
density excitations of the 1D quantum-wire superlattice with
the same parameters as Fig. 13(b) except for y =0.754 meV and
1.885 meV (b).
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spin-density excitations, respectively. We plot the
Raman-scattering intensity for various parameter values
including the temperature, the wave vector, and the im-
purity broadening width. The spectral weight of the in-
tersubband excitation increases as g, increases.

Several important problems remain open. First, we use
the RPA rather uncritically, based mainly on the fact
that we do not know how to go beyond the RPA in a con-
trolled approximation. The validity of the RPA in the
1D electron systems of interest here is unknown, but it is
expected to be less valid than in higher dimensions. In
some sense it is a surprise that our theory agrees so well
with experiments. One possible reason may be that in
GaAs systems the dimensionless ratio r, =rq/a, is rather
small. Here r, is the average distance between electrons
and a,=e#*/me? is the Bohr radius. In the small 7, lim-
it, the kinetic energy of the electron system is much
larger than its interaction energy, and the RPA is expect-
ed to be a good approximation. Second, our use of a
model confinement in the RPA calculation can and
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FIG. 15. Shows the Raman-scattering intensity of the

charge-density excitations of the 1D quantum-wire superlattice.
The parameters are the same as Fig. 13(b) except for g, =4/a (a)
and 2/a (b), respectively.
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should be improved in subsequent calculations in a more
realistic self-consistent manner.?® Finally, our calcula-
tions in this paper are based mostly on the two-subband
and three-subband models. It is very hard to include a
lot of subband using our method. To have a qualitative
comparison between the theory and experiments, it is
hoped that more experimental results in samples with
fewer occupied subbands (ideally only one or two) will ap-
pear. We do not see any fundamental difficulties prevent-
ing one from doing that. To have such a qualitative com-
parison, it is also important that the confining potentials
of the 1DES’s be made in a more controllable manner, as
in the 2DEG case. The direct MBE growth method to
fabricate 1DES’s seems to be a promising step in this
direction. By carefully controlling the concentrations of

Q. P. LI AND S. DAS SARMA 43

different ingredients (such as Al and As in Ga,_ Al As
devices) in the growth process, one can tailor the band
structure to achieve the confining potential as desired.
This method has been successful in fabricating parabolic
quantum-well samples.>
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