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Semiclassical small-polaron hopping in a generalized molecular-crystal model
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The thermally activated rates for high-temperature adiabatic and nonadiabatic small-(bi)polaron

hopping are calculated for a generalization of Holstein's molecular-crystal model. In the expanded

model a carrier occupying a molecule is coupled to many molecular vibrational modes rather than

to just the single vibrational mode envisioned in the original model. This generalization of the

molecular-crystal model does not significantly affect the semiclassical small-(bi)polaron jump rates.
In particular, for the generalized model the hopping activation energy becomes a sum of contribu-

tions associated with each of the vibrational modes to which the carrier is coupled. The vibrational

frequency that is the preexponential factor for adiabatic small-(bi)polaron hopping is the square

root of the sum of the squares of the vibrational frequencies weighted by their relative contributions

to the net hopping activation energy.

I. INTRODVCTIQN

Phonon-assisted hopping of charge carriers or excitons
occurs in many classes of solids. These systems include
crystals, glasses, and polymers. ' There are two distinct
types of phonon-assisted hopping: (1) weak-coupling
single-phonon hopping and (2) strong-coupling multipho-
non hopping. The type of hopping that occurs is general-
ly determined by the spatial extent of the localized states
between which the hopping occurs. The size of the elec-
tronic states aA'ects the hopping processes because elec-
tronic states are only appreciably coupled to phonons
that have half-wavelengths that exceed the diameter of
the localized states. ' %'eak-coupling single-phonon hop-
ping occurs when the localized electronic states between
which hopping occurs are both suSciently large that they
are only eftectively coupled to the small fraction of pho-
non states that have suiciently long wavelengths. ' For
example, single-phonon hopping occurs between large-
radius impurity centers in semiconductors. By contrast,
phonon-assisted hopping between severely localized elec-
tronic states is of the multiphonon (small-polaronic) type.

Single-phonon and multiphonon hops are distinguished
by their temperature dependences. ' For example, when
the thermal energy k&T exceeds the energy of the pho-
nons involved in the hop, the jump rate for a single-
phonon hop (proportional to the density of available pho-
nons) becomes simply proportional to the temperature.
By contrast, in this high-temperature regime, a multipho-
non (small-polaronic) jump rate is thermally activated
with an activation energy that exceeds the energies
characterizing the phonons involved in the hop.

Theoretical studies of multiphonon (small-polaronic)
hopping ' ' have employed the molecular-crystal model
introduced by Holstein. " This model envisions a crystal
composed of molecules possessing a single deformation
parameter: xg is the deformation parameter for the mol-
ecule at site g. Furthermore, in this model the energy of
an electron on a molecule is taken to depend linearly on

the deformation parameter of that molecule. Explicitly,
the energy of a carrier on site g, e, is written as —Ax,
where 3 is a measure of the electron-lattice coupling
strength.

For the molecular-crystal model, the elemental jump
rate is thermally activated in the high-temperature re-
gime (ks T & ficooi3, where coo is the vibrational frequency
of a molecule's deformational parameter). In this high-
temperature regime, the molecules' vibratory motion is
treated classically, and small-polaronic hopping can be
understood in terms of the occurrence of "coincidence
events. "" Coincidence events occur because the local
(molecular) electronic levels change as the molecules' de-
formation parameters vibrate about their equilibrium
values. In particular, a coincidence event occurs when
the electronic energy level of the molecule occupied by a
carrier "momentarily" equals the electronic energy level
of another molecule. At such a transitory degeneracy,
the carrier can transfer from the occupied molecule to
the molecule that has an electronic energy level coin-
cident with it. The resulting elemental jump rate is

R = [(coo/2m)exp( E~ Ikz T)]P(T) . —

Here the activation energy E~ is the minimum net ener-

gy required to displace the molecules from their equilibri-
um configuration so as to produce a coincidence event be-
tween an occupied site and an unoccupied site. The
square-bracketed factor in Eq. (1) is the rate at which
coincidence events occur between the two molecules be-
tween which hopping is being considered. P(T) is the
average of the probability that the carrier will avail itself
of the opportunity aA'orded by the coincidence event and
hop between sites.

The physical situation encountered in real solids is gen-
erally much more complicated than that envisioned in
the molecular-crystal model. In particular, a molecule
generally has many more than one vibrational degree of
freedom. Furthermore, a carrier on a molecule is gen-
erally coupled (to some extent) to all of its vibrational
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modes. Thus, one might question the applicability of Eq.
(1) to real solids. For example, one may wonder what vi-
brational frequency enters into the expression for the
jump rate if the carrier is coupled to many vibrational
modes.

In this paper the elemental jump rate in the semiclassi-
cal high-temperature regime is calculated for a general-
ized version of the molecular-crystal model. The form of
the jump-rate expression is found to be unaltered from
that of the simple molecular-crystal model. The frequen-
cy factor that plays the role of coo in Eq. (1) is just found
to be a weighted average of the involved vibrational fre-
quencies, Eq. (15b).

Since generalizing the molecular-crystal model pro-
duces no qualitative changes in the jump rates, estimates
of observable quantities based on the jump rates are also
unaffected by this generalization. This result is consistent
with experimentally determined small-(bi)polaron dc con-
ductivities and Hall mobilities in varied complex systems
being in reasonable agreement with calculations based on
the simple molecular-crystal model (e.g. , see Refs. 8 —12).
However, the mobilities deduced from some nondisper-
sive transient photoconductivity measurements differ
significantly from the results of calculations for equili-
brated carriers within the molecular-crystal model. In
particular, the electric-field dependences of the mobilities
deduced from these experiments' differ from those pre-
dicted and observed for equilibrated small polarons. In
addition, extrapolating these field-dependent mobilities to
their low-field limits yields estimates of the preexponen-
tial factor of the mobility in Eq. (1) that are much larger
than those expected of equilibrated carriers. '

It was suggested in Ref. 14 that a generalization of the
molecular-crystal model might yield significantly in-
creased values of the preexponential factor of the mobili-
ties. However, the calculations of this paper in.dicate that
the present expansion of the molecular crystal does not
produce this result.

II. GENERALIZED MOLECULAR-CRYSTAL MODEL

Since an elemental hop involves only two sites, here
only two molecules are explicitly considered. Each of the
two molecules has N vibrational degrees of freedom. In
the harmonic approximation, neglecting vibrational
dispersion, the vibrational energy of the two molecules is

N

E„;b= g [M„(x „+y „)+k„(x„+y„)]/2,
n=1

where Mn and k„are the reduced mass and stiffness con-
stant, respectively, of the nth vibrational mode of a mole-
cule. The deformation coordinates of the nth mode at
the initial and final sites are x„and y„respectively.

Generalizing the molecular-crystal model so that the
electronic states of both initial and final sites depend on
all of the % deformation coordinates of each molecule,
the local electronic energies of initial and final sites are

N

e/=e/(0) —g A„y„,
n =1

(3b)

=(e&+e;)/2+[(e& —e;) /4+J j'i (4)

When severely confined to the initial site to form a small
polaron, ~e; ~

)) FI ~, ~
J ~. Then the lowest electronic state

is 8' =e, = —e, ~. However, at a coincidence e;=e'&,
one has W =e; —

~ J, ~. The subscript c is placed on the
transfer energy at a coincidence to emphasize that since
the transfer energy is generally dependent on the atomic
configuration, the electronic transfer energy at a coin-
cidence generally differs from that at the equilibrium
configuration.

III. SEMICLASSICAL JUMP RATE

The high-temperature small-polaron jump rate in
Holstein's semiclassical occurrence probability approach
may be written as'

R = I dE P(E)iEi(5(e& —c, )5( &
—~~; E)), —(s)

E =(e& —e;) ~,

is the time rate of change of the relative electronic ener-
gies of initial and final sites evaluated at the coincidence
event. Here P(E) is the probability that the electronic
carrier will negotiate a hop when a coincidence
event occurs. The brackets indicate a thermal average
over all configurational velocities and positions:

If the intersite transfer energy is sufBciently small so
that a carrier rarely responds to the opportunity afforded
by the occurrence of a coincidence event by executing a
hop, the hopping is termed "nonadiabatic. "' Then,

Alternatively, if the electronic transfer energy at the
coincidence J, is large enough so that the carrier can al-
ways follow the atomic motion, the hopping is termed
"adiabatic. "'""Then,

where 3„ is the electron-lattice coupling constant associ-
ated with the nth mode and e&(0) and e;(0) are the elec-
tronic energies of initial and final sites when the
configurational coordinates are all at their carrier-free
equilibrium values. In the presence of an applied electric
field E, e&(0)—e, (0)= —qE R&, , where q is the charge of
the carrier and R&, is the position vector between sites f
and i.

With the carrier being permitted to move between ini-
tial and final sites with the transfer integral J, the two
electronic energy hypersurfaces of the two-site system be-
come

and

N

e;=e, (0)—g A„x„ (3a) (ga)

(8b)
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provided there is sufhcient dispersion of the vibrational
frequencies so as to preclude an immediate return hop. '

If the vibrational dispersion is not sufhcient to preclude
an immediate return hop, the carrier responds to a coin-
cidence by shuttling between initial and final sites. Ulti-
mately the carrier will settle on a site. If it lights on the
final site, a hop will have taken place. Thus, for (adiabat-
ic) hopping in which immediate-return hops are likely, a
carrier will eAect a hop in half of the instances of an ap-
propriate coincidence event

l~ l(~ ll~ I(i' )

(5(Ef E' E)) (5(Ef ~;))( )(, )
. (10)

5(ei i—
, E)=—(2ir) f da exp[ia(i& —i, E)—] (1 la)

An integral representation of the 6 functions is then
adopted:

for E)0

0 for E(0.
(9a)

(9b)
5(e~ —e;)=(2~) ' f d/1 exp[i/3(ei —e, )] . (1 lb)

With Eqs. (10), (1 la), and (lib), the thermal average of
Eq. (5) is rewritten as

To calculate the jump rate, the averages of the two 6
functions in Eq. (5) must be evaluated. To accomplish
this task, it is first noted that the linear dependence of the
local electronic energies on the local configurational
coordinates [cf. Eqs. (3a) and (3b)] permits writing the
average of the product of the two 5 functions in Eq. (11)
as the product of independent averages:

=exp(~J,
~ /kii T)(2')

X f da exp( i aE)F—(a)f dP G(P),

where

(12)

F(a) = (exp[ia(i& —i; ) ] )

=Q (exp[iaA„(x„—y„)])

f dx, f dy, exp[ —M, (x, +y „)/2kii T+iaA, (x„—y„)]

f dx„ f dy„exp[ —M„(x ', +y „)/2kii T]

6 (/3) = ( exp[i/3( ei —e, ) ] )

=e p(xi/36)Q(e p[xi/1A„( , x—y„)] )

fdx„ f dy„exp[ —[k„(x„+y„)/2—A„x„]/kii T+i/3A„(x„—y„)]=exp(iPE )Q f dx„ f dy„exp[ —[k„(x„+y„)/2—A„x„]/kii T]
(13b)

where b, =e&(0)—e, (0). In obtaining Eqs. (12) and (13b)
it is recalled [see text below Eq. (4)] that the lowest-lying
electronic energy level at a coincidence is W =e'; —

~ J, ~,

while the lowest-lying electronic level near equilibrium is

Completing the squares in the exponentials contained
in Eqs. (13a) and (13b) and then carrying out the standard
contour integrations over the configuration coordinates
and velocities yields

G(P) =exp(iPa)gexp[( —P'A„'k, T+iPA.')/k„]

=exp[ 4/3 c2kii T+iP(4—@2+A, )] . (14b)

In the final equalities of Eqs. (14a) and (14b), definitions
of a generalized nonadiabatic small-polaron hopping ac-
tivation energy e2 and a weighted average of the squares
of local vibrational frequencies co„=k, /M, are intro-
duced:

F(a)= +exp( aA„kii T/M„)—

=exp( 4a e2A ksT)— (14a)
and

ez= g (A„/4k„)

0 = g co„( A„/4k„)/e~ .

(15a)
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In Eq. (15a) the electron-lattice interaction-related contri-
bution to the hopping activation energy ez is seen to be a
sum of contributions from the different modes to which
the carrier is coupled. An analogous result was previous-
ly derived for a model in which the carrier was coupled
to both acoustic and optic phonons. ' The square of the

characteristic frequency that enters into the hopping
problem 0 is seen to be an average of the local vibration-
al frequencies weighted by the contribution of each mode
to the net hopping activation energy.

Inserting Eqs. (14a) and (14b) into Eq. (12) and per-
forming the integrations over a and P yields

(5(e/ E'' E )5(E/ E' ) )
(

~

) ( ) ( ) (
):(II/2~)exp[ —[(4e2+'~) /16',

l

—J, l ]/kg T]

X(8e~ksTII ) 'exp( E /—16e2k~TSI ) .

The semiclassical small-polaron jump rate is obtained when Eq. (16) is inserted into Eq. (5):

R =(II/2~)exp[ —[(4ez+6) /16ez —~J, ]/k&T)(8@2k&TQ, )
' J dE P(E)~E~exp( E /1—6@2k&TB ) . (17)

In the adiabatic regime with sufficiently strong vibration-
al dispersion, P(E) in Eq. (17) is given by Eqs. (8a) and
(8b). Then, the integration over F. is readily carried out,
yielding an expression for the adiabatic jump rate that
only differs from the analogous molecular-crystal-model
result in that ~0 is replaced by 0:

R =(II/2w)exp[ —[(4ez+b, )~/16 e—
2 ( J, ~ ]/kz T]

(18)

In the nonadiabatic limit, where ~J, ~

~0 and P(E) is
given by Eq. (7), the integration over E in Eq. (17) is
readily performed to yield

X exp[ —(4m~+ b, ) /16m k2~ T]. (19)

IV. CONCLUSIONS

Despite its extreme simplifications, Holstein's
molecular-crystal model has provided an excellent frame-
work within which to understand small-polaronic hop-
ping in solids. Furthermore, the measured magnitudes
and temperature dependences of the dc conductivities
and Hall mobilities where small-polaronic hopping is
suspected are even reasonably consistent with the predic-
tions of calculations based on the molecular-crystal mod-
el. ' In addition, the dependence of the electrical con-
ductivity at high electric fields on electric-field strength
has been understood, or at least rationalized, in terms

Equation (19) is identical to the result obtained for the
simple molecular-crystal model. '

Finally, it is recalled that the electric-field dependence
of the hopping mobility depends upon the electric-field
dependence of the elemental jump rates. Within the
molecular-crystal model, the electric-field dependences of
the small-polaron jump rates of Eqs. (18) and (19) are ob-
tained by just replacing b. by —qE.R&, [see the discus-
sion below Eqs. (3a) and (3b)]. ' In this approach any
additional electric-field dependence of the jump rates
arising from the field dependence of the transfer energy
J, is ignored.

predictions of the model. "
Some results of transient photoconductivity measure-

ments of hopping transport also agree with predictions of
the simple molecular-crystal model. For example, for x-
ray-generated holes in SiOz, the magnitude, temperature
dependence, and electric-field dependence of the high-
field mobility are all in accord with predictions based on
the simple molecular-crystal model. ' Also, time-of-Aight
mobility measurements on a series of molecularly doped
polymers are consistent with the predicted transition
from adiabatic to nonadiabatic small-polaron hopping
with increasing intersite separation.

Nonetheless, some transient determinations of mobili-
ties manifest significant departures from the predictions
for the motion of equilibrated small polarons obtained
from studies of Holstein's molecular-crystal model. For
example, some magnitudes of the reported preexponential
factors of the mobilities are unacceptably large (corre-
sponding to coo in Holstein's model being over 10'
sec '). ' These observations motivated asking whether
the preexponential factor of the mobility calculated for
an extension of Holstein's model might be enhanced
sufficiently so as to resolve the discrepancies. ' In partic-
ular, would the coupling of a carrier to multiple local vi-
brational modes increase the rate at which coincidence
events and hops occur'?

In the present paper, the semiclassical small-polaron
jump rate has been calculated for an expanded model in
which a carrier on a molecule can interact with A vibra-
tional modes rather than just the single mode envisioned
in the original model. The small-polaron jump rate for
the extended model is not significantly different from that
of the original model. In particular, the vibrational fre-
quency that serves as the preexponential factor of the adi-
abatic jump rate is just replaced by the square root of an
average of the squares of the vibrational frequencies
weighted by the vibrational mode's contribution to the
hopping activation energy [see Eq. (15b)].
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