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Theory of optical anisotropy in quantum-well-wire arrays with two-dimensional quantum confinement
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The effective bond-orbital model is used to calculate the conduction- and valence-subband struc-
tures of recently grown epitaxially buried GaAs/Al„Ga& „As/AlAs quantum-well-wire arrays.
The model incorporates the coupling of the degenerate spin- —valence bands and the s-like conduc-

tion bands. Band-structure parameters of all the materials involved are taken into account as well

as the lateral intermixing of species, which has been observed in such structures. The quantum-wire
{QWR) array is an intermediate case between quasi-one- and quasi-two-dimensional structures; the
dispersion perpendicular to the QWR's is explainable in the combined terms of lateral confinement
and zone folding. We calculate optical matrix element's within the model for light polarized parallel
and perpendicular to the QWR s. When lateral intermixing is taken into account, the carriers occu-

py preferentially the nonmodulated part of the structure and exhibit only very weak optical anisot-
ropy. Thus, the structure behaves like a two-dimensional rather than a one-dimensional system.
We discuss our results in the context of the observed photoluminescence excitation spectra. It is
found that band mixing, lateral diffusion, and the interplay of quasi-one- and quasi-two-dimensional
properties play important roles in determining the electronic and optical properties.

I. INTRODUCTION

An important advance in the physics and engineering
of ultrasmall structures is the ability to achieve quantum
confinement of carriers in two dimensions without em-
ploying etching or lithography, as such techniques may
provide a source for the introduction of defects. One ap-
proach to quantum-wire (QWR) fabrication is to utilize
the diff'erent growth rates on the different crystal facets
by deposition on patterned substrates. Epitaxially buried
GaAs/Al„Ga, As QWR V-shaped grooves have re-
cently been grown and the observation of lasing action in
these structures has provided impetus for work in the
field. Another technique in nanostructure fabrication is
the growth of epitaxially buried semiconductor
quantum-wire arrays and tilted or vertical superlattices
(SL) on vicinal substrates. While in conventional quan-
tum wells (QW) and SL's the material interfaces parallel
to growth planes provide the carrier confinement, in the
QWR arrays and lateral SL's, a measure of control is
gained over the motion of carriers in a lateral direction r2
as well as in the growth direction x. This is achieved by
modulating the material composition, and thus the band
edges, in the lateral direction using a novel one-step
growth process. In this study we present theoretical cal-
culations of the conduction and valence subbands and op-
tical matrix elements of the QWR arrays grown by
Tsuchiya et ah. The structure is a
GaAs/Alo 2Gao 8As/AlAs array of strongly coupled
QWR's which shows characteristics of both one- and
two-dimensional confinement. Photoluminescence exci-
tation (PLE) spectra of this structure exhibits strong po-
larization dependence, the low-energy peak of which [la-
beled lehh in Fig. 2(b), Ref. 2j is stronger for parallel po-

larization than for perpendicular polarization. The situa-
tion is reversed for the second peak (that labeled lelh in
the abovementioned figure). In addition, we consider
other similar structures in which the relative sizes of the
features are varied.

Other workers have also measured optical anisotropy
in a similar structure grown on a vicinal substrate. The
structure consisted of an array of antiwires (i.e., higher-
band-gap material) centered in a QW. PLE data show
only weak optical anisotropy. Because the antiwires sam-
ple the maxima of the relevant envelope functions in-
volved in the optical transitions, this setup is ideal to ex-
amine how an array of lateral barriers perturbs QW
states. For the structure of Ref. 2, however, the lateral
barriers are at the edge of the well where the amplitudes
of the envelope functions are small. Thus we would ex-
pect the optical anisotropy to be rather weak. Of course,
this assumes that the correct picture is of a QW per-
turbed by a lateral modulation. In the sequel we shall
show that this picture is born out by detailed calcula-
tions.

Several theoretical accounts of optical anisotropy in
structures of reduced dimensionality have recently ap-
peared in the literature. Reference 2 contains a theoreti-
cal description of polarization dependence of the heavy-
hole and light-hole excitons for a QWR of square cross
section. As pointed out by Sercel and Vahala, however,
the agreement is fortuitous; the treatment in Ref. 2
neglects the band mixing and quantum-mechanical
coherence eAects. It is shown that, when the latter are
included, the one-band model predicts no optical anisot-
ropy. Sercel and Vahala drive the zone-center optical an-
isotropy of the squared optical matrix elements in a
coupled-band model in the axial approximation for a cy-
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of the Brillouin zone is investigated for related QWR ar-
rays in Sec. IV. Section V concludes this paper.

II. THEORETICAL METHOD

where e is the polarization vector making angle 0 with
the QWR axis, lh and 2h denote the first and second
valence subbands, and I is the overlap integral. This ex-
pression gives the ratio of the strengths of the zone center
le-1h and le-2h transitions at the center of the Brillouin
zone and also approximately gives the ratio of the oscilla-
tor strengths for the corresponding excitonic transitions.
Another comment on the one-band model is that assump-
tion of heavy-hole and light-hole states in a QWR is in-
consistent because the irreducible representations for the
hole states in a QWR transform neither like the heavy
hole nor the light hole but have mixed heavy-hole —light-
hole character at all k in contrast to a QW where the
states are decoupled at the zone center. The group
theoretical treatment of QWR valence-band states for
QWR's of square cross section is discussed in Refs. 10
and 6. Apart from any discussion of the correct treat-
ment of optical anisotropy in QWR s, it is important
when discussing real structures to begin with an unbiased
theory, i.e., one that does not make a priori assumptions
about the lateral confinement. The present study
represents such an effort. We shall see that the QWR ar-
ray has optical properties intermediate between those
predicted for a pure QWR and a QW.

Our theoretical results for this structure are summa-
rized as follows. A detailed treatment including band
mixing, the actual geometry of the structure, and lateral
intermixing of the constituent atomic species across la-
teral interfaces necessarily must be undertaken as the
energy-level spacings as well as the strengths of the opti-
cal transitions are found to depend sensitively on these
factors. We find that the subband dispersion in the direc-
tion of the QWR s r, is intermediate between that previ-
ously calculated for other QWR structures' ' and for
QW's. The dispersion perpendicular to the QWR's but in
the plane of the array is non-negligible indicating that the
fabricated structure cannot be considered simply as an
array of uncoupled QWR's. The interplay of zone folding
together with lateral confinement qualitatively explains
the subband dispersion. The details of the subbands often
referred to as light-hole (lh) depend sensitively on lateral
intermixing and the particulars of the geometry; the
heavy-hole (hh) subbands are less sensitive to these
effects. We also calculate optical matrix elements for
light polarized along the QWR*s and perpendicular to the
QWR's but in the plane of the array. Although our re-
sults are in qualitative agreement with experiment, we are
unable to obtain close quantitative agreement between
theory and the observed polarization-dependent PLE
spectra. Based on our calculations, we expect the struc-
ture of Ref. 2 to display weak, if not negligible, optical
anisotropy. In Sec. II we discuss our theoretical
methods, and in Sec. III we present the results for the
sub-band dispersion and optical matrix elements for the
QWR array of Ref. 2 and compare our results with the
experimental data. The electronic structure at the center

The effective bond-orbital model (EBOM)' employed
here is a tight-binding-like model which includes
nearest-neighbor interactions among bond orbital resid-
ing on an fcc lattice. Although it possess symmetry
higher than that of a zinc-blende crystal, it captures the
salient features of the electronic structure. In particular,
the polar character of the crystal, which gives rise to
terms in the Hamiltonian linear in k, is neglected. The
version of the EBOM used in these calculations describes
the coupling between the upper four spin- —,

' valence bands
and the lowest two s-like conduction bands. For the
GaAs/AlGaAs system the band-edge properties are rela-
tively uneffected by the split-off band' since the spin-
orbit splitting is large (b, =340 meV). Thus, we assume
6= ao which decouples the split-off bands from the prob-
lem. A bond orbital is defined to be the proper linear
combination of two atomic orbitals within a zinc-blende
crystal which best describes the states near the center of
the Brillouin zone. The parameters that appear in the
theory are given by a correspondence with the effective-
mass parameters. This correspondence is made by re-
quiring that the Hamiltonian in the bond-orbital basis,
when written for the bulk material and expanded to
second order in k, agree with the Luttinger-Kohn expres-
sion. For interactions across heterojunctions, we take the
average of the matrix elements for the two bulk materi-
als. The matrix elements across the interface alternative-
ly can be considered as adjustable parameters with the re-
quirement that the theoretical band structures agree with
the experimental data. We have found, using QW, that
the averaging procedure produces results in good agree-
ment with other methods. In any case, because the mag-
nitude of the wave function is small at the GaAs-
Al Ga

&
As interfaces for the cases in which we are

most interested, the exact values of the interaction pa-
rameters between materials is not of critical importance.
The model includes the anisotropy of the effective-mass
parameters, the nonparabolicity, the different band-
structure parameters of all participating materials, and
treats the interfaces in a realistic and straightforward
manner. Furthermore, EBOM's tight-binding-like nature
allows the unprecidented rigorous treatment of the com-
plicated geometries of structures that are actually fabri-
cated. EBOM has recently been used to calculate the
valence- and conduction-subband structure of epitaxially
buried In„Ga, As/InP QWR of triangular cross sec-
tion. ' ' For a detailed account of the general theory of
EBOM, see Ref. 13.

Our treatment of the QWR proceeds as follows. ' We
first calculate the band structure of a SL with M bilayers
in the well material and X bilayers in the barrier material
using the slab method. The well thickness is
LL =L~ +L& =Ma/2 where a is the lattice constant.
For a sufficiently large value of the barrier thickness (we
use Li =204 A) the QW's are essentially decoupled and
we ignore the dependence on the wave number in the
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growth direction, taking q=0. The SL eigenstates with

q =0 are denoted by ~k„kz, n ) where k, is the wave
number in the QWR (i.e. , r, ) direction, kz is the wave
number perpendicular to the QWR axis but in the plane
of the SL (i.e., rz direction), and n is the subband index.
The wave number k

&
is a good quantum number for the

QWR array. The QWR wave function is a linear com-
bination of SL wave functions with the same k, but with
values of k2 differing by 2~/L2 where L2 is the periodici-
ty of the array of QWR's in the rz direction. We define

kz to be the wave number of the QWR array in the rz
direction, and we can write kz =kz +2~(/I. z with
$=-0, 1,2, . . . , m where m =I.z/az with az =a for
rz~~(001) and az =a /+2 for rz~~ (011). The QWR Ham-
iltonian is then diagonalized in the basis
~k, , kz+2~j/Lz, n ) of SL eigenstates with ki and kz
fixed. The basis is suitably truncated in g and n in order
to yield a matrix diagonalization problem of manageable
size while insuring satisfactory convergence of the sub-
band energies. Because the basis is truncated, the calcu-
lation is of a variational nature. Although the subbands
closest to the band edge are converged to within 0.1 meV,
other subbands may not be so accurate. The power of
this approach lies in the truncation. The problem that
begins with a Hamiltonian matrix the size of which is
given by the number of sites in a QWR supercell times
the number of coupled bands is reduced in size to the
number of SL states necessary to give accurate results for
the QWR. In practice, this number is -200 in order that
the two uppermost pair of valence subbands are well con-
verged. In this study, however, we use -600 basis ele-
ments in order to ensure the accuracy of the deeper lying
states for all calculations and figures (except for Figs. 3
and 7 which are included for illustrative purposes) in this
paper.

For large M and X the computation becomes lengthy.
For such cases we employ the a scaling approximation. '

To calculate the subband structure of a QWR with
M'=sM, we calculate the subbands for a QWR with
thickness M but with the material parameters replaced by
s E, s Vo, and s V, where F. is the band gap and Vo
and V, are the band offsets in the valence and conduction
bands. The desired subband structure is then given by
E„(k, /s, k z /s ) /s for the scaled QWR. This is
equivalent to using a bond-orbital model with enlarged
unit cells. For the calculations in this study, s =2 and
X =36. The effect of lateral intermixing of the Al and
Ga is accounted for using the virtual-crystal approxima-
tion. Bond-orbital parameters for the interdiffused ma-
terials are obtained by linearly interpolating between the
values of the parameters for the pure materials. The par-
ticular profile we explore for the lateral modulation in the
composition are discussed below in Sec. III. Apart from
the additional complications of lateral dispersion and in-
termixing, our method for obtaining the subband struc-
ture can be perused in Ref. 12.

To calculate optical matrix elements between QWR
states, we need to know the optical matrix elements be-
tween any two bond orbitals. Using symmetry considera-
tions, we can write down the expressions for the optical
matrix elements between bond orbitals. The optical pa-

rameters in these expressions are determined by requiring
that the optical matrix elements between bulk states ob-
tained by EBOM be identical to those obtained in the k p
theory up to second order in k (Ref. 16). We outline the
method' by which EBOM expressions for the optical
matrix elements are found. In the bulk material, the opti-
cal matrix element between a bond orbital of symmetry
type o. at the origin and another bond orbital of type a'
located at position v. is

1/2

P~ (r)= iA — J d r P (r) P (r r) .— (1)
Ple

Here a=s, x,y, z and P=x,y, z is the polarization of the
incident photon. By keeping only the leading contribu-
tions and by exploiting the symmetry, we obtain the fol-
lowing relations:

P~ (r)= P~, (r—) =iQ~5 p, a=x,y, z,
for v=0 and

(2)

Pg(w) =iP„&ii,

P, (r) =iPor re +iP, 5 .rpp

+iPz(5,&r +5 &r ), a, a'=x, y, z, (4)

for v=&2 where r is measured in units of a/2 and r is
the ath component of ~. The other optical matrix ele-
ments are neglected. The five parameters Q, , P„,Po, P„
and I'2 can be related to the k.p parameters by requiring
that the optical matrix elements between bulk states ob-
tained by EBOM be identical to those obtained in the k-p
theory 'One . finds Qz =+ED, P„=(l,—mo/m, *)RO,
PO=24(y3 —yz)RO, P, =(y, +5yz —6y3)RO, and Pz
= (6yz —3y3 —1 /2)RO where y „yz, y3 are Luttinger
parameters, E =(2/mo)~(s~p„~x)~, Ro=[A /
(4moa )]', and A, =Ez/Eg. Using the bulk expressions
for optical matrix elements together with the eigenstates,
the optical matrix elements for QWR are calculated. In
the following, we use GaAs optical matrix elements
throughout the supercell in order to reduce computation
time. Because the elementary optical matrix elements for
A1GaAs differ little from those for GaAs, and since the
magnitude of the wave function is, in any case, small in
the barrier material, this is a good approximation.

III. RESULTS

In this section we present and discuss our results for
the electronic structure and optical matrix elements for
QWR arrays such as those grown in Ref. 2. We begin by
neglecting the lateral intermixing that smears interfaces
perpendicular to the growth direction in such structures.
Later, we introduce lateral intermixing into the calcula-
tions and show that it has a strong effect on the electronic
and optical properties, particularly of those features in-
volving sizable lh contributions.

In Fig. 1 is sketched a cross section of the QWR array
grown by molecular-beam epitaxy (MBE) in Ref. 2. The
array is grown on a vicinal (100) CiaAs substrate with a
tilt of 2' in the [011] direction. Associated with this tilt
are monolayer steps alined with [011]spaced an average



11 706 D. S. CITRIN AND YIA-CHUNG CHANG 43

A4 sGap. sAs

IB
A1As

2 ' 2

GaAs

[loo] Alp sGap. sAs

'- [011]
[011]

+1

f'2

FIG. 1. QWR array such as is fabricated in Ref. 1. The
QWR axis lies in the [011] direction. The lateral period is
I., =I, ,'+L, 2~.

0

of 80 A apart. Similar metal-organic-chemical-vapor-
deposition (MOCVD) -grown structures have the mono-
layer steps alined with the [011] direction. As EBOM
does not make this distinction (it treats an fcc lattice), our
calculations apply to both the MBE- and MOCVD-
grown QWR arrays. Structures with other tilt angles and
corresponding step lengths have also been fabricated (see
below in Sec. IV). By successively depositing submono-
layers of GaAs and AlAs on the tilted substrate, one at-
tempts to grow the desired structure. The QWR array
shown is a special case of a tilted SL.' ' The structure
has its axis along the [011] and incorporates the three
materials GaAs, Alo 2Gao gAs, and AlAs. The carriers
are confined to the GaAs region. The material parame-
ters used in our calculation are given in Table I. All en-
ergies are measured with respect to the valence-band edge
of bulk GaAs. Our calculations neglect the 2' tilt. Stud-
ies have found that the interfaces normal to the r2 direc-
tion (henceforth referred to as lateral interfaces) and rath-
er ill defined due to the lateral migration of Ga and
Al during growth. We include this lateral intermixing in
our treatment later in this section.

Before we discuss the physical implications of our re-
sults, a few words on the accuracy of our method are in

order. Using EBOM, we calculated the subband struc-
ture of the QW shown in Fig. 2(a) of Ref. 2. We find the
le-1hh and le-llh transitions to be 1585 and 1602 meV,
respectively, neglecting excitons. Taking excitons into
account further reduces these values by about 10 meV.
These results disagree with the spectra of Ref. 2 which
shows peaks at 1602 meV (le-lhh) and 1625 meV (le-
llh). We find, however, that our model is in good agree-
ment with other experimental and theoretical data.
(See Table II for a comparison with Ref. 29.) We con-
clude that uncertainty exists in the parameters given in
Refs. 2—Al concentration may be higher than quoted
(x =0.2) or the well may be narrower than the value
given (Li =6 nm). Similarly, for the spectra of Fig. 2(b)
of Ref. 2, our calculation underestimates the energy of
the transitions by a comparable amount. A recent study
of similar tilted SL s indicates that the period in the rz

0

direction may vary between 65 and 110 A. We shall
have more to say about this variation in the period below
where we investigate the subband structure as a function
of the parameters Lz and L~ in Sec. IV. Furthermore,
our calculations for QWR's of rectangular cross section
calculated using EBOM are in agreement with previous
results we obtained in the effective-mass approxima-
tion

For the sake of clarifying the different physical effects
due to confinement, we begin with calculations of the
subband dispersion in which the lateral interfaces are as-
sumed to be atomically sharp. This situation refers to the
nominal structure as sketched in Fig. 1. Later we consid-
er the effects of lateral intermixing.

A. Subband dispersion

The calculated subband stru:. ture for the QWR array
shown in Fig. 1 is given in Fig. 2 (solid curves). The con-
duction subbands (not shown in the figure) are approxi-
mately parabolic near the I point. The subband splitting
at k&0 is spin splitting due to the lack of inversion sym-
metry of the structure. The first conduction subband 1e
is at 1592 meV at the I' point. This gives the energy gap
of 1610 meV for the QWR array. (The first PLE peak
le- 1hh is observed at 1624 meV. ) The calculated conduc-
tion subbands were used to obtain the effective masses.

TABLE I. Material parameters used in calculations in this study. The valence-band offsets Vo are
with respect to the bulk-valence-band edge of GaAs. T=4.2 K.

Materials

GaAs'
Alo. r.G ao. 8As
Alo, Gao 5As
AlAs'

6.85
6.01
5.08
4.04

2. 1

1.57
1.14
0.78

2.9
2.5
2.04
1.57

m,*/m,

0.0665
0.0831
0.108
0.12

E, (I-) (meV)

1.5177
1,7635
2.1877
3.13

Vo (meV)

0
0.076"
0.067'
043

'From Ref. 20.
Effective masses and energy gaps obtained by linear interpolation between the end-point materials

from Ref. 16. Inverses of Luttinger parameters for the alloy are obtained by linear interpolation of re-
ciprocal Luttinger parameters from Ref. 16. We ignore the indirect nature of Alp 5Gao 5As.
'From Refs. 21 and 22.
"From Ref. 23 ~
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Transition Pseudopotential' EBOM

TABLE II. Transition energies in meV for the 67 A/175 A
GaAs/Alo 36Ga0,4As superlattice calculated by the pseudopo-
tential method and by EBOM.

TABLE III. Percent hh character for pairs of valence sub-

bands at the I" point and at the minizone boundary

kp = 7T/L2( k
&
=0) for the ideal case of no lateral intermixing.

lhh and llh label the subbands as referred to in the text.

le- lhh
1e- 1 lh
le-3hh
2e- 1 lh
2e-2hh
2e-3lh
2e-2lh

'From Ref. 25.

1585
1607
1685
1752
1773
1830
1845

1589
1611
1693
1758
1774
1837
1856

Subband

k2=0

94(lhh)
25(1lh)
44
44
44
4S
34

a/L2

34
44
45
47
46
44
46

100(1}1h)
42
44
42
9(llh)
45
57

%%uo heavy hole

3—1

0

57
58
61
65
57
65
39

This was accomplished by Atting the subbands near the I
point to a polynomial. The eA'ective masses of 1e are
0.074m, in the r& direction and 0.081m, in the r2 direc-
tion. The value of the eAective masses are somewhat
higher than the bulk value (m,*=0.0665m, ).

Unlike for the QW, the zone-center states for the QWR
already contain an admixture of both hh and lb. The
percent hh character of the pairs of states at the I point
is given in Table III. The uppermost valence subband
1hh is 94%%uo hh at the I point. Deeper subbands show
stronger mixing. Nevertheless, we shall conform with
custom and refer to the QWR subbands as lhh and 1lh as
labeled in Table III. We must bear in mind, however,

that this appellation is not strictly correct.
Referring again to Fig. 2 for dispersion in both the r,

and rz directions, we observe strong interaction between
the subbands. Minigaps open at k2=~/I 2. The upper-
most pair of subbands, 1hh, has somewhat flattened
dispersion in the k2 direction compared with the disper-
sion for a 50-A asymmetric QW (dashed curves) or with
the QWR dispersion in the r

&
direction. (The 50-A asym-

metric QW is Ala, Gao, As/GaAs/Alo 2Gao 8As in order
to account for the mean composition in the modulated
layer. ) The second pair of subbands, llh, is quite aniso-

0
1.0 0.6 0.0

k~ (units of n/L2)
0.5 1.0 1.5 2.0

-20

-40
CD

LLI

-60

-80
0.02 0.00 0.02 0.04

k& (Units of 2n/s)
0.06 0.08

FIG. 2. Valence-subband dispersion (solid curves) in the k& and k, directions for the structure illustrated in Fig. 1 with perfect la-
0 0 0

terai interfaces. L ~ =L
~
= 50 A, L2 =L z =40 A. Dashed curves show valence-subband dispersion for a 50-A

Alo 5Gao 5As/GaAs/Alo 2Gao &As quantum well. Energies are measured from the bulk GaAs valence-band edge.
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Ga,As/Alp 2Gap sAs
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FIG. 7. Valence-subband dispersion in the r2 and r, directions for the structure similar to the one illustrated in Fig. 1 with perfect
0 0

latera1 interfaces hut with the QWR axis in the [001] direction. Li =Li =50 A, L2 =Lz =40 A. Energies are measured from the
bulk GaAs valence-band edge.

larger k2 and consequently the valence subbands are sen-
sitive to the spherical and axial approximations. We note
in passing that the structure treated in Fig. 7 may be real-
ized as proposed in Ref. 19.

Until now we have assumed that the lateral interfaces
in the layer of thickness I.~ are perfectly abrupt. We
have seen on the basis of the subband dispersion and the
probability density plots that there are significant effects
due to lateral confinement. In the remainder of this sub-
section we investigate the effect of lateral intermixing on
the subband structure. In order to account for the lateral
intermixing of species in the QWR array, we consider a
sinusoidal compositional profile in the lateral direction rz
for the layer of thickness I.~. Writing the composition as
a function of r2 in this layer as Al&„~Ga, &„~As, g(r2)"2 "2

takes the form

1 2' r2
g(r2 ) =—1+q sin

2 L2

where 0 ~ g ~ 1. The value of g for MBE-grown struc-
tures is thought to lie approximately in the range
0. 15 ~ tl ~0.3 (Ref. 25). MOCVD-grown QWR arrays
may have better lateral definition. The form for g has
the virtue of facilitating the evaluation of the matrix ele-
ments of the QWR Hamiltonian in the basis of SL states.
As the exact form of the lateral modulation of the com-
position is not precisely known, we work with the con-
venient expression g' for the lateral compositional modu-
lation. In Sec. III 8 we present polarization-dependent
optical matrix elements for the cases of g=0. 3 and 1 as

well as for the ideal case in which the lateral interfaces
are perfectly abrupt. The lateral modulation in the com-
position is easily incorporated into our model by means
of the virtual-crystal approximation. The bond-orbital
parameters at position r2 are obtained by linear interpo-
lation between those of the pure materials. Thus, our
model for lateral diffusion includes the variation of all the
band parameters and not just the band offsets. For the
cases involving lateral intermixing we calculate the sum
in the r2 direction in the matrix elements of the Hamil-
tonian in the SL basis' assuming the lattice constant in
the lateral direction is zero. This allows us to replace the
summation by an integration over rz. The results at the
I point are unchanged by this procedure.

Before embarking on a discussion of the numerical re-
sults, some useful information about the QWR array can
be learned from simple considerations. Based on elemen-
tary considerations, we show that the realistic QWR ar-
ray in which there is considerable lateral intermixing is
less effective than the ideal structure in producing effects
due to the lateral compositional modulation. Further-
more, we show that the lh is most susceptible to the
effects of a laterally modulated layer.

Consider the extreme case of g= 1. In this case the
minimum band offset between the modulated and nonmo-
dulated layers is zero. The dominant effect to be con-
sidered is the lateral confining potential in the modulated
layer. In order to estimate the energy associated with the
lateral confinement, consider a parabolic QW in which
the curvature is given by the curvature of sin(2nr2/Lz)
at its minimum. The Hamiltonian then for a one-band
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model is
2

fi p 1.155Q
(6)

2Pal 2 L~

where Q=0. 31 for holes and 0.69 for electrons is the
offset in the respective band and units of energy are eV.
The mismatch in the band gaps between GaAs and the al-
loy Al&Ga& &As is 1.155/+0. 37( measured in eV. In
the Hamiltonian we have neglected the bowing of the
band-gap mismatch as it introduces only a small anhar-
monicity which increases the energies. We assume no
in-plane motion of the carriers. The energies associated
with this Hamiltonian are F.„=(n+ I /2)ii'igloo where

coo= (1.155Q /m *)' 2'�/L2

=1.8X10' s '(Qm, /m*)'

The effective masses in the [011] direction for the asym-
metric 50-A QW are 0.074m, and 0.21m, for the le and
1hh subbands at the center of the Brillouin zone. The
zone-center effective mass for llh is large and di%cult to
calculate from the subband structure. Substituting the
in-plane effective masses for the 50-A QW, we find that
the lowest confinement energies Eo for the electron and
hh are 357 and 142 meV, respectively. These
confinement energies are considerably higher than the
corresponding ones for the QW (81 and 45 meV). This
indicates that the electrons and hh's would preferentially
reside in the nonmodulated layer as the energy cost to
penetrate into the modulated layer is high. Thus, when
lateral intermixing is taken into account, based on these
simple considerations, we do not expect the laterally
modulated layer to have a strong effect on the electrons
and hh's. In the case of no lateral intermixing, we model

0
the lateral confinement by a 40-A-wide infinite potential
well. The lowest confinement energies Eo are now 317
and 112 meV for the electron and hh. These energies are
slightly closer to the corresponding energies in the 50-A
QW, and consequently we expect the penetration into the
modulated layer to be stronger. For the realistic case of
q =0.3, the argument against carrier penetration into the
modulated layer is even stronger but now the band-gap
mismatch (a function of rz) plays the leading role in the
exclusion.

Because we do not have a value for the lh effective
mass to substitute into the models (the llh subband is fiat
near the I point which leads to large errors in the deter-
mination of its effective mass), it is difficult to conclude
what is the result of lateral intermixing based on these
simple considerations. What is clear, however, is that in
the case of the parabolic potential well, the confinement
energy Eo goes as m ' ' while for the square well it
goes as m* '. Thus for a large lh effective mass, the
confinement energy for the square well is smaller and
closer to the llh energy in the 50-A QW than for the par-
abolic case. Consequently, we expect that the QWR ar-
ray without lateral intermixing is more effective in la-
terally confining the lh than the QWR array with lateral
intermixing. These expectations are borne out in the cal-
culations discussed in the following paragraphs.

Finally, in order to test our model for lateral intermix-

ing against a situation for which there exist both experi-
mental data and theoretical calculations, we consider the
QWR arrays of Ref. 30 (see also Ref. 31 for a similar
study). In that study QWR arrays like that depicted in
Fig. 1 with L2 =L2 for various values of L2 were stud-
ied. In these structures L~ =60 A and Lj =28 A. The
barrier material is all Alo 5Gao ~As and the well material
is GaAs. In Fig. 5 of Ref. 30 are plotted experimental
data for PL peak wavelength as a function of the lateral
period L2 together with theoretical calculations of the in-
terband energy in which the effect of lateral diffusion is
included. In Fig. 8 are plotted our results for the inter-
band transition energy (given in terms of wavelength) as a
function of L2 for the cases of no lateral intermixing and
of lateral intermixing with g= 1 for the structures of Ref.
30. The experimental data of Ref. 30 are shown as cir-
cles. Overall agreement with the experimental data is ob-
tained for tilt angles greater than 2 (L2 (80 A). This
must be qualified with the statement that excitonic effects
have not been included. Assuming excitonic binding en-
ergies of —10 meV, the curves in Fig. 8 should be moved
upward by —5 nm. For larger lateral periods, finite mi-
gration lengths during growth might limit the applicabili-
ty of our model ~ This aside, we expect that as the tilt an-
gle goes to zero (L~ goes to infinity) the confinement en-
ergies should be characteristic of a Li =90 A QW. In the
opposite limit of large tilt angle (small Lz), we expect the
confinement to be that of an asymmetric QW of width

780

E
C:

~76O
U)

CD
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740

720
I

2 3
Tilt Angle {deg)

FIG. 8. Interband transition energy (given as a wavelength)
for the structures grown in Ref. 26 with L ~

=60 A and L ~
=30

0 0
A. (We use L~ =28 A for our calculations in order to have an
integral number of bilayers. ) The circles are the experimental
data points shown in Fig. 5 of Ref. 26. The tilt angle a is relat-
ed to the lateral period by L2/a =cota.
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Li =28 A. (The wavelength of the first PL peak would
be 724 nm, neglecting excitons. ) But in this limit the
steps themselves become important and these have been
neglected in our calculations.

Having demonstrated the appropriateness of our
method, we proceed to discuss our results. Characteriza-
tion studies of structures like the QWR array of Ref. 2 in-
dicate that the modulation in the composition is given ap-
proximately by g with 0. 15 (rI (0.3. For these values of
il it was found that the QWR subbands near the band
edge coincide with the QW dispersion. In order to mag-
nify the effects of confinement, we choose q=1. In Fig. 9
is shown the valence-subband dispersion of this structure.
The first conduction subband (not shown in the figure) is
at 1603 meV and has the zone-center effective mass of
0.075m, in the k, direction and 0.080m, in the k2 direc-
tion. These values are virtually identical with the
effective masses for the QWR array without lateral inter-
mixing and very close to those for the asymmetric SO-A

QW and the QWR array with no lateral intermixing.
Several features in Fig. 9 are in marked contrast with

Fig. 2. In Fig. 9 we see that the position of the 1lh sub-
band is depressed with respect to the corresponding sub-
bands in Fig. 2. This gives a subband spacing of 20 meV
between the first and second pair of valence subbands.
This is closer to the 1e-1hh —1e-11h peak spacing in the
PLE data of Ref. 2. There is little flattening of the sub-
bands and the minigaps are small. The severe subband
repulsions are a consequence of the high degree to which

zone folding accounts for all of the subbands. On the
basis of Fig. 9 we expect little effect due to lateral
confinement for the case of q=1 and consequently for
g =0.3. Thus, the simple one-band model discussed
above led qualitatively to the same conclusion as the de-
tailed numerical model.

Some of the results of this section have been anticipat-
ed by the conduction-subband calculations which have
recently appeared in Ref. 32 for similar, though
modulation-doped, QWR arrays. In that reference, cou-
pled Poisson and Schrodinger equations for the electrons
were solved using a finite-element technique.
Conduction-subband dispersion in the lateral k2 direction
and charge densities were calculated. Because the struc-
tures treated in this study diff'er from those of Ref. 2, a
detailed comparison of the results is made difTicult. Nev-
ertheless, we can make the following brief observations.
In Ref. 32 the dispersion in the lateral direction was
found to be largely explainable in terms of zone folding
with the introduction of rninigaps similar to what is
shown in Fig. 3 of this paper. Also, charge densities for
different states showed various degrees of quasi-two-
dimensional confinement (see Figs. 4—6 of this study).

B. Optical matrix elements

In this subsection we present results for optical matrix
elements calculated within EBOM. In particular we are
interested in the polarization dependence of the optical

1.0
0

0.5 0.0
k) (units of n/L2j

0.5 1.0 2.0
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FIG. 9. Valence-subband dispersion (solid curves) in the r2 and r, directions for the structure illustrated in Fig. 1 with lateral com-
0 0

positional modulation in layer of thickness L~ given by g=1. LI =L~ =50 A, L2 =L~ =40 A. Dashed curves show valence-
0

subband dispersion for a 50-A Alo &Gao &As/GaAs/Alo 2Gao 8As quantum well. Energies are measured from the bulk GaAs valence-
band edge.
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matrix elements. The optical matrix elements together
with the subband structure calculated in the previous
subsection provide the essential ingredients from which
we calculate the strengths of excitonic transitions. Be-
cause the QWR array shares characteristics both of one-
and of two-dimensional systems, direct computations of
excitonic oscillator strengths and PLE spectra are prohi-
bitively long. We do, however, propose below a simple
model for the optical properties which captures the essen-
tial physics.

Squared optical matrix elements calculated in EBOM
(Ref. 16) as a function of k

&
are plotted in Fig. 10 for po-

larization parallel (solid curves) and perpendicular
(dashed curves) to the QWR's, respectively, for atomical-
ly sharp lateral interfaces and in Fig. 11 for the case
treated in Fig. 9 (q= 1). The transitions considered are
1e-1hh and 1e-1lh. These curves were obtained by sum-
ming the contributions due to subbands degenerate at the
I point. Focusing on the case of well-defined lateral in-
terfaces (Fig. 10), for the parallel polarization, the largest
squared optical matrix element at the zone center is for
the 1e-1hh transition. The 1e-11h transition is consider-
ably weaker for light polarized in the k2 direction. Com-
parison of the two polarizations shows strong optical an-
isotropy with the le-1hh transition stronger for the paral-
lel polarization and the le-11h transition stronger for the
perpendicular polarization. The squared optical matrix

elements at the I point for the 1e-1hh and the le-11h
transitions are given in Table IV.

The case of lateral intermixing is shown in Fig. 11. In-
terchanging k& and kz in Fig. 11 results in similar curves
illustrating the weak optical anisotropy. Thus the
squared optical matrix elements are considerably more
isotropic than for the ideal case. For q=0. 3 the anisot-
ropy is negligible and we do not include plots for this
case. The case of g = 1, it should be reiterated, corre-
sponds to a structure with lateral definition considerably
better than thought to be the case for the real structure
(0. 15(q(0.3). The zone-center values for g=1 and
0.3 are also included in Table IV. The values for the le-
1hh transition for the parallel polarization exceed the
bulk value against expectation. This is due to the mixing
into the zone center of states of nonzero kz which may
have squared optical matrix elements greater than the
zone-center bulk value (see Figs. 10 and 11). The effect is
not large and it may be exaggerated by EBOM.

The remainder of this section is concerned with a com-
parison of the PLE data and the theoretical calculations
of this study. Neglecting an occupancy factor, the ex-
pression for PLE is quite similar to that for optical ab-
sorption. Thus we expect that the absorption spectra
contains all the salient features of the PLE data. Apart
from a constant factor, the excitonic absorption is given
by

k) (units of 7T/L2j

go Lateral' Intermixing

25

l2.5-
/

I

/
I

0.02 0.00 0.02

k~ (units of 27T/aj

FIG. 10. Squared optlca} matrix elements ln eV for transltlons from 1hh and 1}h to le for light PO1arlzed para}}e}(so}ld curves) and

perpendicular {dashed curves) to the QWR axis for the case of no lateral intermixing. The curves are labeled as pairs in order from

the valence-band edge.
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TABLE IV. Squared optical matrix elements at the zone center in eV for light polarized parallel and
perpendicular to the QWR axis.

Transition

lehh
lelh
lehh
lelh

Polarization No lateral intermixing

26.3
1.9

18.1

8.8

~~ P, „(O,O)~'

q=1

23.8
5.6

21.9
6.9

g=0. 3

23.1

8.1

23. 1

8.1

zone center contribute. Consider an envelope function of
the form

X I [co—E;(0,0)+E,„„(0,0)

+E i".-ihh l + l i.-ihh I

where I &, ihh is the half width of the le-lhh excitonic
peak in the spectrum and E', ", ,„h is the binding energy for
the le-lhh exciton. A similar expression holds for the
le-llh transition. In order to obtain this expression, we
have assumed that the spatial extent of the excitonic en-
velope function is su%ciently large so that only the opti-
cal matrix elements in a region of k space close to the

@„(r)=(2/7r)'~ (2/a„)exp( 2r/a„)—,

where the Bohr radius is a„=4~eofiz/(p„e ) with
n C I le-lhh, le-llh. The two-dimensional expression is
justified since, although the hole experiences significant
lateral confinement, the electron does not. Because the
electron eftective mass is about an order of magnitude
lower than the hole eA'ective mass for these subbands, we
expect the electron properties to dominate over the hole
properties in the determination of the excitonic binding
energy and envelope function. The ratio of the height of
the n PLE peak for the I polarization to the n' peak for
the rn' polarization is then

0,5 0.0
k~ (units of vr/L2)

1.0

12.5—

0.02 0.00 0.02

k) (units of 2nla)

FIG. 11. Squared optical matrix elements in eV for transitions from 1hh and 11h to 1e for light polarized parallel (solid curves) and
perpendicular (dashed curves) to the QWR axis for the case of lateral intermixing given by g and rl= l. The curves are labeled as
pairs in order from the va)ence-band edge.
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P„(0,0) i'
n

„" [~, P„,(0,0)i'
n'

IV. RELATED STRUCTURES

The reduced effective masses for the le-lhh and le-llh
excitons are approximately the same and are neglected.
The half-widths of the le-llh peak is difFicult to deter-
mine from the experimental spectra, and we shall ignore
the factors involving I „and consider the optical anisot-
ropy for a fixed peak given by

'P„(0,0)I',
where the squared optical matrix elements are given in
Table IV. For the case of no lateral intermixing, the ratio
of the peak heights for the le-lhh transition for the
parallel to the perpendicular polarization is 1.4 while for
the le-llh transition the ratio is 0.2. This is in rough
agreement with the observed ratios which are -2 and
-0.5, respectively. For q=1 the anisotropy is weak and
for g=0. 3, which is believed to apply to the actual struc-
ture, the anisotropy is negligible.

The data in Table IV give approximately the maximum
rise in PL efficiency of the QWR array with respect to the
asymmetric QW. As we argued, the major modification
to the le-lhh peak brought about by the lateral modula-
tion is due to the oscillator strength. Thus, for the QWR
array under consideration we expect a maximum
enhancement in the PL e%ciency of about 26.3:23.1=1.1
or about 10% with respect to the asymmetric QW (essen-
tially g=0.3). This enhancement is due solely to the
mixing of a light-hole contribution into the lhh state at
the zone center. This assumes perfect lateral interfaces
and is for the parallel polarization. We reiterate that this
value might be exaggerated as a result of our computa-
tional technique. Some of these results are discussed in
Ref. 33.

The QWR array of Ref. 2 clearly involves one of many
possible choices of the parameters L~, L~, and Lz. It is
of interest to see how the subband structure varies with
these parameters. It is also of interest to see if there is a
smooth or sharp transition between one- and two-
dimensional subband structure as the parameters are
varied. A related question concerns whether this cross-
over is the same for electrons and holes.

In this section we investigate the zone-center energy
levels as a function of the height L ~ and the width L z of
the A1As barriers. The period Lz in the rz direction is
kept fixed at 80 A because most of the published data for
tilted SL's grown to data are on 2 viscinal substrates.
This gives an average spacing of 80 A between monolayer
steps. %'e also keep L~ fixed at 100 A.

In Fig. 12 are plotted the energies for the first two
pairs of conduction and valence subbands at the center of
the Brillouin zone as a function of L~ for various values
of Lz. The limiting cases are for the Lz =0 and 80 A.
These represent 100 Af300 A GaAs/Alp pGap 8As and
(100 A Li)/Li/—300 A GaAs/AlAs/Alo zGao sAs SL's,
respectively. These calculations are exact in EBOM with
s =2. For the latter case as L~ goes to 100 A, the states
become conGned in the Alp ~Gap 8As with a SL energy
gap of 1.775 eV. The energy gap of Alp &Gap 8As is given
in Table I as 1.7635 eV. The discrepancy of 12 meV be-
tween the energy gaps of the SL and bulk Alp @Gap 8As is
due to residual confinement energy in the 300-A
Alp soap 8As layer. Thus, in the range of high L g and L p

the carriers are effectively squeezed out of the CxaAs and
in the limit of infinitely thick Alp pGap 8As layers are no

1730

1630

CD

6)
LU

1530.—

15—

~i ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ s ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

OA

z4A
4OA.

L~ —80k

~ +Qyl ~ ~I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

-85
0 20 40

I.B (A)
80 100

FIG. 12. Zo ne-center energies of the first two conduction and valence subbands as a function of L j~ for various values o
I.j = 100 A, I.~

=80 A.
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longer bound.
For L, ~

—80 A for electrons and -90 A for holes there
is a sharp change in behavior for the
GaAs/A1As/Alo zGao 8As SL. In this region the carriers
become confined in the Alo &Gao 8As layer. In this region
we expect the structure to go over to type-II (spatially in-
direct) behavior. This effect is well known from work on
asymmetric QW's. In the case shown in Fig. 12,
however, the spatially indirect nature is due to the elec-
tron becoming unbound while the hole remains confined
in the GaAs well material. In Ref. 35, the type-II behav-
ior is associated with confining the electron and hole in
separate, though coupled, QW's. For the QWR arrays, in
the corresponding regions the QWR's in the array be-
come more weakly coupled and strong hh-lh mixing takes
place. For L~ thick but L2 thin, the carriers are strongly
confined in the GaAs and the subband spacing is charac-
teristic of QWR subband structure. (Compare hole ener-
gies of Fig. 12 for L 2

=24 A at L ~
= 100 A with the

zone-center energies of the upper two subbands in Fig. 2
of Ref. 10.) For L i thick and L z thick, the carriers
penetrate into the Alo 2Gao 8As layers but are still bound
in the GaAs regions. The subband energies for the QWR
arrays are bounded by the corresponding curves for the
two SL's. In order to form type-II QWR arrays, very
thin (L2 —15 A) QWR's are necessary. It may be possi-
ble through careful engineering of the dimensions of the
QWR array to exploit the crossover between type-I and
-II behavior.

Similar structures are proposed and investigated
theoretically in Ref. 19. In that work, quasi-two-
dimensional confinement is to be achieved by growing a
QW on the cleaved edge of a SL. Because of the
differences in the details of the structure and the
simplifications made in the calculations in Ref. 19, an ex-
act agreement between our results and those of the earlier
investigation are not to be expected; however, it is still
meaningful to make a comparison for electrons as we
found that the le subband was virtually identical for the
cases where the QWR axis lies in the [011] and [001]
directions. For the case of L, ~ =60 A, L, 2 =40 A in Fig.
12, the confinement energy for the zone-center state for
the first conduction subband is —100 meV. In Fig. 2 of
Ref. 19, for do=d, =40 A, the confinement energy is
—125 meV. In Ref. 19 the Aat interface between the well
and barrier material (regions II and III in Fig. 1 of Ref.
19) is GaAs/AlAs. Thus the carrier penetration into re-
gion III is small and is consequently strongly inAuenced
by the modulation in the band offsets in region I. The
charge distribution is more one-dimensional and hence
the confinement energy is higher than the structure fabri-
cated in Ref. 2 and the structures treated in this study.

Previously we mentioned that the period in the r2
direction of similar QWR arrays may vary between 65
and 110 A. Then for the QWR array of Ref. 2, assuming
that the A1As barriers themselves are of constant width,
this means that L2 may vary between 25 and 70 A. If
Fig. 12 is to some degree applicable in these cases, the
spreads in the energies of the 1e- 1hh and 1e- 1 lh transi-

0
tions L, ~

=50 A for the case treated is approximately 10
and 20 me V respectively. The full width at half-
maximum (FWHM) of the lehh peak in Ref. 2 is given to
be 7.7 meV. The FWHM of the lelh peak appears to be
more than twice that value. These peak widths are in
keeping with the deviation from periodicity in the QWR
sizes observed in Ref. 25. This in itself, however, does
not account for the discrepancies between the calculated
energies of the 1e- 1hh and 1e- 1 lh transitions and the posi-
tions of the 1ehh and 1elh peaks.

Another class of nanostructures are the laterally
strained structures of Ref. 38. In that work, a
GaAs/Al„Gai As QW was grown on the cleaved edge
of a GaAs/In Ga, „As strained-layer SL. It was hoped
that the lateral strain in the edge-grown QW would in-
duce lateral confinement of the carriers. Polarization
dependence in the PLE spectra is observed and follows
the trends observed in Refs. 2 and 3. Unfortunately, as
the strain field in the material is not known in detail, it is
difficult to discuss the data in the light of our calcula-
tions. It is not clear, for example, whether the polariza-
tion dependence might be due to the anisotropic strain it-
self, rather than due to lateral confinement, nor is it obvi-
ous that the strain field is appreciable in the QW.

Other classes of structures exhibiting lateral
confinement are strain confined structures by means of
stressors and ion-implanted structures. EBOM al-
ready has been applied successfully to strained-layer SL's.
The application of the formalism to situations in which
lateral confinement is achieved by strain is straightfor-
ward though has not been carried out yet. In ion-
implanted structures there may be considerable damage
to bombarded regions. We have, therefore, opted to treat
expitaxially grown structures.

V. CONCLUSIONS

EBOM is a highly flexible formalism well suited to cal-
culating subband structure and matrix elements for real-
istic nanostructures and has proven accurate in calculat-
ing subband structures for SL's, ' strained QW's, ener-
gy levels of semiconductor quantum dots, ' and impurity
levels in quantum dots' and QW's. In this study, we
have demonstrated the utility of EBOM in calculating
electronic structure and optical properties for QWR ar-
rays grown on vicinal surfaces. In summary, the struc-
ture of Ref. 2 must be understood as a perturbed QW.
We find that for the parameters given ' inclusion of the
lateral compositional intermixing effectively ecludes the
carriers from the layer of thickness Lz resulting in a
structure of which the predicted properties are close to
those of an asymmetric QW. When we considerably un-
derestimate the lateral intermixing (g= 1 ) the optical an-
isotropy is sti11 considerably sma11er than observed.
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