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Nuclear-spin relaxation and spin-wave collective modes in a disordered two-dimensional electron gas
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The spin-polarization of nuclei near a two-dimensional electron gas (2D EG) may be relaxed by
spin-Hip excitations of the electron system. The spectrum of low-energy electronic spin-Aip excita-
tions depends on the disorder broadening of Landau levels and on the interaction enhancement of
the Landau-level spin splitting. Disorder vertex corrections to the spin-Hip response function cap-
ture the fact that the nuclear relaxation rate depends on local rather than thermodynamic Landau-
level broadening, while interaction vertex corrections can strongly enhance the relaxation rate. We
illustrate these eA'ects by summing the disorder and interaction ladder diagrams for the spin-Hip

response function in the strong-magnetic-field limit. Our approach is also able to describe the eAect
of disorder on the spin-wave collective modes of a spin-polarized 2D EG,

I. INTRODUCTION

In metals the relaxation of polarized nuclear spins' is
usually dominated by processes involving the hyperfine
contact interaction between nuclear and electronic mag-
netic moments. Studies of nuclear relaxation rates can
often provide unique information about the local elec-
tronic structure near a given nuclear site. Recently
Berg et a/. have demonstrated the possibility of observ-
ing nuclear-spin relaxation which is due to hyperfine in-
teractions with electrons in a two-dimensional electron
gas (2D EG) in a strong perpendicular magnetic field.
This development provides a potentially important probe
of the 2D EG at strong magnetic fields, which can pro-
vide information complementary to that available from
the conventional transport and optical studies. Previous
theoretical studies of nuclear-spin relaxation near 2D EG
systems have not taken account of the vertex correc-
tions, which are important because of the local nature of
the contact interaction. In this article, we demonstrate
that the vertex corrections can have substantial quantita-
tive and qualitative consequences and that their impor-
tance complicates the interpretation of the spin-
relaxation experiments.

For nuclei near a 2D EG in GaAs, the contribution to
the "spin-lattice" relaxation rate due to hyperfine interac-
tions is given by ' '

workers the low-energy electronic spin-fIip excitations
which relax the nuclear spins are present only if the Lan-
dau levels are sufficiently broadened that Landau levels
with different spin indices overlap. (Without disorder the
lowest electronic spin-fIip excitations occur at the Zee-
man energy and T& is zero. ) Thus the inclusion of dis-
order is essential to any discussion of the nuclear-spin re-
laxation rate in a 2D EG at strong magnetic fields. It is
well established that electron-electron interactions can
dramatically enhance the g factor which parametrizes the
energy separation between up-spin and down-spin Lan-
dau levels. It is therefore equally essential to include
electron-electron interactions in any discussion of the
spin-Aip response in the present system. In the next sec-
tion we discuss the spin-flip response function of a disor-
dered strong-field 2D EG within the self-consistent Born
approximation. The following section discusses the
effects of adding electron-electron interactions in the
time-dependent Hartree-Fock approximation. Both of
these approximations have deficiencies but are adequate
to illustrate the important physical features which are
misrepresented when vertex corrections are neglected. In
Sec. IV we use these results to calculate the nucl ar-spin
relaxation rate. We conclude in Sec. V with a discussion
of the implications of our results for the interpretation of
experimental nuclear-spin relaxation data.

Imp+ (xy, xg,'co )
T '=A 'A'n'~y(z)~'k~rltm

ci)~0 %co T=O

where P(z) is the envelope function for the quasi-2D EG
evaluated at the site of the relaxing nuclei, 0=45 A is
the unit cell volume, A =40 peV, and y+ (x~, xz, co) is
the local spin-fIip response function for the quasi-2D elec-
trons. For an ideal 2D EG in a strong magnetic field the
single particle spectrum is discrete because of the quanti-
zation of kinetic energy into macroscopically degenerate
Landau levels. As emphasized by Vagner and co-

II. SPIN-FLIP RESPONSE IN THE SCBA

In this section we neglect electron-electron interactions
and include only the efFect of disorder within the self-
consistent Born approximation (SCBA) which provides a
qualitative and semiquantitative description of disorder
effects of a 2D EG in a strong magnetic field. The SCBA
is expressed diagrammatically in Fig. 1. We will assume
that the field is sufficiently strong that the low-energy
spin-Aip transitions in the disordered 2D EG do not in-
volve a change in orbital Landau-level index. (The spin-
splitting is about 65 times smaller than the Landau-level
splitting in GaAs 2D EG systems when electron-electron
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interactions are neglected. ) Assuming that Landau-level
mixing by disorder can be neglected in a strong field, we
follow Ando et al. in summing' the disorder ladders and
evaluate" the remaining frequency sum' by performing
a contour integration. The result for the low-frequency

(i.e. , intra-Landau-level) spin-(lip response function is

dq
(x, x', co) = y+ (q;co)e'q'"

(2~)
where

(2)

' ' "[I- (q'&'/2)]'
x+-(q, ~)= JdcnF(c)

2m. l

G (c.—ci)G (c.—et+co)
1 —B(q )6 (c—ci )G (c—et+co)

6+(c—ci)G (c—et+co)
1 B—(q)G+(c —c~)G (c—c&+co)

G (c—c&)G+(c—c&+co)

1 —B(q)6 (c—c&)6+(c—c&+co)

G+(c —ci)G+(c.—et+co)
1 —B(q )6+(c—c) )6+(c—et+co)

where

P i(qxP) zl iP i !2~ y (p)~~L (p2/2/2)
(2m. )

(4)

and l =A/eB. Here n is the index of the Landau level at
the Fermi energy and Vo(p) is the Fourier transform of
the disorder potential from one of the impurities which
are taken to be randomly distributed. In Eq. (3) c, t and c)
are the energies for the unbroadened up and down-spin
levels and

2 +& den' +I—co' /I6(z)=- —r I z —~'

la+

FIG. 1. Diagrammatic summary of SCBA.

is the SCBA Green's function [6—+(c)=6(c+iO+)]
where 21 is the Landau-level width [I ~/4=B(q =0)].
Note that the Landau-level density-of-states in the SCBA
goes strictly to zero for energies farther than I from the
Landau level center. This feature of the SCBA is an ar-
tifact' but it does not inhuence the qualitative con-
clusions we wish to draw concerning g+ . The factor
outside the integral in Eq. (3) is the form factor for the
cyclotron orbit of an electron in the nth orbital Landau
level. All the results presented in this paper and dis-
cussed below will be for the extreme quantum limit where
n =0. (Only trivial changes are necessary to consider
other value of n as long as the magnetic field is strong
enough that Landau level mixing can be neglected. )

We plot Imp+ (q, co)/co versus co for ql=0. 6, in Figs.
2 and in 3. The results shown in Fig. 2 are for spin split-
ting, 0„—:c

&

—8
&

=0.3I and those in Fig. 3 are for
0,„=1.7I. As discussed in more detail below Imp+
shows the oscillator strength weighted spectrum of the
spin-Aip excitations in the system. Note that in the low-
frequency limit Imp+ (q, co)/co approaches a constant.
According to Eq. (1) the nuclear relaxation rate is pro-
portional to the integral over wave vector of these low-
frequency limits. Comparing Figs. 2(a) and 2(b) we see
that the vertex corrections change the results qualitative-
ly. When vertex corrections are not included [B(q)—:0],
eq ~ Imp+ (q, co) is independent of q and is proportion-
al to the convolution of the density states of occupied
majority-spin electrons with the density of states of unoc-
cupied minority-spin electrons at an energy larger by co as
illustrated schematically in Fig. 4. In the limit where co is
small compared to I it follows that Imp+ (q, co) is pro-
portional to ~ times the product of the majority and
minority-spin densities of states at the Fermi level. For
the case illustrated in Fig. 3 where I is small compared
to 0„, Imp+ (q, co) would be sharply peaked for co near
0,„.On the other hand for I large compared to A„, as il-
lustrated in Fig. 2, Imp+ (q, co) should fall smoothly
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from a weak maximum near co=A„and reach zero when
u=2I +0,„. As seen in Figs. 2 and 3 the e6'ect of the
vertex corrections may be described as leading to a reduc-
tion of the apparent Landau-level width, which is espe-
cially strong at small q. In fact as we show below using
an exact sum rule argument, the width of the peak in

Imp+ (q, co) approaches zero and its position is centered
around ~=A„as q goes to zero. Despite its deficiencies,
the SCBA treatment of disorder is able to capture this
qualitative property of y+ because it conserves total
particle number. ' The importance of this property in in-
terpreting nuclear-spin relaxation experiments will be dis-
cussed in Sec. IV.

In order to derive a sum rule for the spin-Hip response
function we first construct a Lehmann representation
that is appropriate for the case when an orbital Landau
level is spin-split. If the energies are measured with
respect to the centers of the Landau levels (which are at
+A„/2) we can write the response function as
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FIG. 3. Same as Fig. 2 but with 0„/I = 1.7.
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FIG. 2. Plot of Imp+ (q, co)/co vs co for the case 0„/I =0.3
for two values of ql, (a) when no vertex corrections are included,
{b) when disorder vertex corrections are included.

FIG. 4. A schematic plot of the density of states vs energy
for the disordered broadened, overlapping spin bands. The
shaded part denotes occupied states



43 NUCLEAR-SPIN RELAXATION AND SPIN-WAVE COLLECTIVE. . . 11 689

where A is the area of the system, and f and i range over the labels of the exact eigenstates ( ~P) ) of the orbital Hamil-
tonian,

%Ace,

2
+ g Vd;, (k)p(k) .

Vd;, is the impurity potential and p is the projection of the density operator on the 1owest Landau level. We define the
quantities A —

( q, co ) to be

A (q, co')

co+ co ass+1 l7

In particular,

Imp+ (q, co) = —~[A+(q, co —6„)—A (q, —co+0„)] .

Using the Hamiltonian, Eq. (7), we can evaluate the first
two moments of A —:

f 2 —1 + — I /2dco A —(q, co)=(2~l ) 'v —e

f dcocoA (q, co)

d k—
q i /2 y (k) (k)( il (kxq) i

1 )
(2ir)

(12)

where v —is the filling factor and n —is the density for ma-
jority (minority) spins. For isotropic disorder the right-
hand side of Eq. (12) vanishes as q in the long-
wavelength limit. Note that the first moment of A —(q, co)
wi11 remain small at all q if the disorder potential is
smooth. It follows from these sum rules' that the typical
value of co' contributing to the right-hand side of Eq. (9)
vanishes as q goes to zero and hence that

v v 1
limy+ (q, co) =
q 0 2~+ co Aqs+ t 7j'

(13)

Imp+ approaches a 6 function centered at 0„. This is
an exact result which is badly violated when vertex
corrections are neglected that the SCBA is able to recap-
ture when im, purity ladders are included.

III. EXCHANGE-ENHANCED SPIN
SPLITTING AND SPIN-WAVE MODES

We turn our attention now to study the effect of the
electron-electron interactions on the spin-fIip response
function. As we have discussed in the previous section

In terms of A —the spin-Aip response function is given by

(q, co)= f dco' A+(q, co')

y+ depends qualitatively on the ratio of the spin-
splitting to the Landau-level width. It is well known '
that in a 2D EG system the spin-splitting is often
enhanced by a factor of 10 or more because of electron-
electron interactions. In this paper we use a Hartree-
Fock approximation to the electronic self-energy to de-
scribe this spin-splitting. We expect that this approxima-
tion will overestimate the spin-splitting, ' at least at inter-
mediate magnetic fields, but a quantitative estimate of the
exchange enhancement is not important to our present
purposes. The Hartree-Fock approximation for the self-
energy has the advantage that the consistent vertex
correction (the "conserving" approximation in the sense
of Kadanoff and Baym' ) entering the spin-fiip response
function is a simple ladder sum which can easily be evalu-
ated as we describe below. This consistency is essential.

The Hartree-Fock approximation in the treatment of
electron-electron interactions is the precise analog of the
SCBA for the perturbative treatment of disorder and it
may be summarized by the same set of diagrams as in
Fig. 1 if disorder lines are replaced by Coulomb interac-
tion lines. In the Hartree-Fock approximation' the
spin-splitting between the centers of the disorder
broadened Landau levels is given by

A„=gop~H —X)+X), (14)

1/2

I(q)=2vrl — ei I ( I /2)
2 el

(15)

where Io is a modified Bessel function. The result for the

X is the self-energy of electrons with spin o. . The
Hartree-Fock result for the self-energy of electrons in the
lowest Landau level is 2 = —v &m/2(e /ec ). The
filling factors v must be determined self-consistently' by
minimizing the total energy including that from the
occupied states within the disorder-broadened Landau
levels. We observe' that the sum of the Coulomb inter-
action ladders is equivalent to a random-phase-
approximationlike sum of bubbles with the Coulomb in-
teraction replaced by an exchange effective interaction

I(q). When only—the lowest Landau level is occupied
(the filling factor v is smaller than 2) this efFective interac-
tion is equal to
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spin-Hip response function is

(16)

the previous section that Eq. (13) may be used for Rey+
at all wave vectors. When this is done an explicit expres-
sion for the resonance frequency follows from Eq. (18):

where y+ (q, co) is the result obtained neglecting
electron-electron vertex corrections, i.e., when the ex-
change enhancement of the spin splitting is included in
the single-particle energy levels but interactions are oth-
erwise neglected.

In trying to understand the physical content of these
electron-electron vertex corrections it is useful to start
from the weak disorder limit where the exchange
enhanced spin splitting, Q„, is much larger than I . In
Fig. 5 we plot Imp+ (q, co) against co for several values
of q and Q„=31. (In the Hartree-Fock approximation
this occurs when e /1 I =&18/~). Without the
electron-electron vertices this quantity would be zero for
co(O„—2I =I . In Fig. 5 we see that sharp peaks occur
in Imp+ at q-dependent resonance frequencies below
co=I". From Eq. (16) we see that

Imp+ (q, co)

Imp+ (q, co )

[ I+I(q)Rey+ (q, co) ] + [I(q)Imp+ (q, co) ]

(17)

It follows that the positions of the resonances shown in
Fig. 5, which are associated with spin-wave excitations of
the spin-polarized electron gas, are given by the equation

+
co=A„+ I(q) .

2~8
(19)

3
—200—3

U"
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Note that the second term on the right-hand side of Eq.
(19) exactly cancels the self-energy contribution to the
spin-splitting. Equation (19) agrees with the result ob-
tained by Kallin and Halperin' for v+=1 and v =Q in
the absence of disorder. As they discuss, the cancellation
of the many-body corrections to the resonance frequency
in the q~O limit is an exact result which the time-
dependent Hartree-Fock approximation captures because
it conserves total particle number. In the next section we
discuss the consequences of this cancellation for the in-
terpretation of nuclear-spin-relaxation experiments.

In Figs. 6(a) and 6(b) we plot Imp+ (q, co)/co versus cu

for several values of q with the electron-electron vertex

I(q )Rey+ (q, co) = —1 . (18)
ql=0. 2

(In Fig. 5 the resonances are artificially broadened by
adding a constant to Imp+ .) For the case where the
resonance frequency is separated from Q„by more that
—I it follows from Eq. (9) and the sum rules discussed in
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FIG. 5. Plot of Imp+ (q, co)/m vs co for several values of ql
for the case 0„/I =3.0. Both disorder and electron-electron
vertex corrections are included ( a small constant has been add-
ed to Imp+ in order to make the width of the peaks visible).

FIG. 6. Same as Fig. 5 but for different values of spin-

splitting: (a) 0,„/I"=0.3, (b) 0„/I = 1.7.
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corrections included at Q,„=O.3I and 0„=1.7I . Using
the bare g factor of GaAs (go =0.5) these values of II„,
calculated within the Hartree-Pock approximation, cor-
respond to enhancements of approximately 10 and 40
times, respectively, when the magnetic field is B =16 T.
Figures 6 may be compared with Figs. 2(b) and 3(b) to see
the effect of adding the electron-electron ladders. For
Q„=0.3I the collective resonance discussed above lies
within the continuum of particle-hole excitations de-
scribed by Imp+ and is "Landau" damped. (Damping
occurs when the resonance frequency exceeds 0„—2I . )

For the A„=1.7I however the damping is weak and, in
fact, the resonance peaks shown in Fig. 6(b) are still
artificially broadened. Even for 0„=0.3I the shape of
Imp+ is strongly altered by the electron-electron
ladders although the spin-wave resonances are no longer
clearly identifiable.

15
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0
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0
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IV. NUCLEAR-SPIN RELAXATION RATE

We are now in a position to discuss the effect of vertex
corrections on the relaxation rate TI ' from Eq. (l). Re-
sults for the relaxation rate as a function of the filling fac-
tor are shown in Figs. 7(a), 7(b), and 7(c) with no vertex
corrections, disorder vertex corrections, and disorder and
electron-electron vertex corrections, respectively, for
0„=0.3I and 0„=1.7I . Note that the vertex correc-
tions do not change the range of the filling factor over
which the relaxation rate is nonzero but do change the
shape of the curve describing its dependence on the filling
factor. (We emphasize that the fact that the relaxation
rate drops strictly to zero at some filling factors is an ar-
tifact of the SCBA.)

We start by discussing the role played by disorder ver-
tex corrections. (We expect that interactions will play a
minor role in relatively low-mobility systems where the
exchange enhancement of the Landau-level spin-splitting
is small. ) Comparing Figs. 7(a) and 7(b) we see that the
disorder vertex corrections cause a slight enhancement of
the relaxation rate for the smaller spin-splitting and a
more substantial decrease in the relaxation rate for the
larger value of the spin-splitting. (This conclusion
disagrees with the claims of Vagner et aL. that vertex
corrections are negligible. ) This behavior can be under-
stood in terms of the results presented in Sec. II where it
was pointed out that the effect of the vertex corrections is
to produce an effective narrowing of the Landau level.
When the spin-splitting is small the narrowing increases
the effective density-of-states for both up spins and down
spins at the Fermi level and increases the number of al-
lowed low-energy spin-Aip transitions. When the spin-
splitting is larger, however, the decrease of the effective
Landau-level width causes the Fermi level to lie more in
the tails of the effective majority and minority-spin densi-
ties of states and the relaxation rate is lowered. This ten-
dency is illustrated in Fig. 8 where we plot the relaxation
rate with and without disorder vertex corrections as a
function of Q„ for v=1.

Comparing Figs. 7(b) and 7(c) we see that the electron-
electron vertex corrections can increase the relaxation
rate by more than an order of magnitude when the spin-
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FIG. 7. Plots of the relaxation rate vs filling factor for
0„./1 =0.3 (solid line) and Q„/I =1.7 (dashed line) (a) when
no vertex corrections are included, (b) when disorder vertex
corrections, and (c) when both disorder and electron-electron
vertex corrections are included.



ll 692 DIMITRI ANTONIOU AND A. H. MacDONALD 43

40

30

10

0
0.0 0.5 1.0

n„/r

I I I I I

2.0

can be expected in agreement with the differences be-
tween Figs. 7(b) and 7(c). As in the case of disorder
scattering electron-electron vertex corrections partially
offset the effects of electron-electron self-energy correc-
tions on the nuclear-spin relaxation rate which reduce the
relaxation rate by enhancing the spin-splitting. Since the
Hartree-Fock approximation, which we employ, is ex-
pected to overestimate the enhanced spin-splitting, the
above results may overestimate the importance of
electron-electron vertex corrections to the relaxation rate
in typical situations. As in the disorder case the motiva-
tion for using the Hartree-Fock approximation is that the
consistent vertex correction is a simple ladder sum which
can be evaluated without difficulty. We do not expect
that improvements on the Hartree-Fock approximation
will alter any of the qualitative conclusions which we
draw below.

FIG. 8. Plot of the relaxation rate vs spin-splitting when the
filling factor v= l. The solid line is for the case when disorder
ladders are included and the dashed line for the case when no
vertex corrections are included.

splitting is exchange enhanced. This is easily understood
using Eq. (17) from which it follows that

lim olmg+ (q, co)
lim Imp+ (q, co) =

o [ I+I(q )Rey+ (q, co=0)]
(20)

1 ~ 0

0.8
C)

3
0.6

v 0.4

0.2

0.0

FICz. 9. Plot of 1+I(q)Rey+ (q, co=0) vs q for 0,„,/I =0.3
(dashed line) and 0,, /I =1.7.

In Fig 9we .plot I+I(q)Rey+ (q, co=0) versus q for the
two values of II„ illustrated in Fig. 7(c). The inverse of
this quantity is the exchange-enhancement of the static
long-wavelength limit of the spin-Rip response function.
We can evaluate this quantity exactly in the long-
wavelength limit q ~0 using Eq. (13) for p+ and noting
that (v+ —v )I(q=0)/(2ml ) is the exchange contribu-
tion to 0,, [see Eq. (19)]. The result is
1+I(q=0)y+ (q=O, co=0)=Q„'"/0„, i.e., the inverse
of the enhancement of the spin-splitting. For the range
of q which contributes importantly we see that enhance-
ments of the contribution to the relaxation rate of -20

V. SUMMARY AND DISCUSSION

The nuclear-spin re1axation rate for electrons near a
two-dimensional electron gas is proportional to the in-
tegral over wave vectors of lim„oImy+ (q, co)/co, i.e.,
to an oscillator strength weighted sum over the low-
energy spin-Aip excitations in the system. In the case of
electrons in a strong magnetic field, there are no low-
energy spin-fiip excitations unless the majority-spin and
minority-spin Landau levels are sufficiently broadened
that they overlap. Thus disorder is essential in determin-
ing the nuclear-spin relaxation rate. We find that when
the vertex corrections consistent with the SCBA for the
disorder averaged Green's function are included, the
effective Landau-level broadening seen in nuclear-spin re-
laxation is reduced. The results presented here are for
the case of a disorder potentia1 from randomly located
short-range scatterers. If follows from the exact sum
rules discussed in Sec. II that the effective Landau-level
broadening seen in the relaxation will be reduced com-
pared to the thermodynamic Landau-level broadening
which appears in the one-particle Green's function's
spectral weight to an even greater degree if the impurity
potential is smooth, as it is in typical high-mobility two-
dimensi. onal electron systems. The reduction in the
effective Landau-level broadening occurs because of the
local nature of the spin-relaxation probe of the electron
system; the effective density of states seen is the local den-
sity of states at the position of an individual nucleus.
Simultaneous measurement of the nuclear-spin relaxation
rate and of thermodynamic properties such as the magne-
tization or the specific heat ' can potentially be a useful
probe for distinguishing inhomogenous broadening of the
Landau level by long-distance fluctuations in the disorder
potential from the local broadening produced by short-
range scatterers.

In high-mobility 2D EG systems the spin splitting may
be strongly exchange enhanced. When vertex corrections
are neglected the larger value of the spin splitting will
lead to a large reduction of the relaxation rate. However,
when vertex corrections are included this effect can be
substantially reduced or, in some circumstances, even
overcome. The inclusion of electron-electron vertex
corrections increases the relaxation rate by the square of
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the exchange-enhancement of the static spin-Aip response
function averaged appropriately over the wave vectors
which contribute importantly to the relaxation.

Our results suggest that the quantitative interpretation
of nuclear-spin relaxation data is quite complicated. This
is especially true in light of the screening dependence
and hence magnetic-field dependence of the Landau-level
width, which is treated as a parameter here. However
our results also show that the nuclear-spin relaxation
data provide information about electronic structure
which is qualitatively diff'erent from that available from
transport, optical, or thermodynamic experiments in that
the relaxation rates depend on the local Landau-level
broadening and are insensitive to large length scale inho-
mogeneities. When combined with separate measure-

ments of the enhanced Landau-level spl&ttsng and possi-
bly also thermodynamic properties this probe has the po-
tential to provide unique information on the nature of the
disorder potential and also to provide new information on
exchange-enhanced response functions.
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