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Magnetoresistance in quantum wires: Boundary-roughness scattering

H. Akera and T. Ando
Institutefor Solid State Physics, Uniuersity of Tokyo, 7-22-1 Roppongi, Minato ku,-Tokyo 106, Japan

(Received 14 December 1990)

A quantum-mechanical calculation of the magnetoresistance of quantum wires is performed in

the presence of boundary-roughness scattering. The roughness is described by two parameters-
the root-mean-square deviation and the correlation length —and the Boltzmann transport equation

is used. The roughness scattering gives rise to a strong positive magnetoresistance when the wire

width is larger and the correlation length smaller than the Fermi wavelength. When the confining

potential is varied from hard wall to parabolic, the magnetoresistance is shown to have a sharper

peak for softer confinement. A numerical study based on Landauer's formula is also performed.
The localization effect present in weak magnetic fields tends to suppress the positive magnetoresis-

tance in narrow wires but becomes less important with the increase of the wire width.

I. INTRODUCTION

Recent developments in microfabrication technology
have made it possible to obtain quantum wires by intro-
ducing a confining potential in a two-dimensional elec-
tron system. A typical sample is made on a modulation-
doped GaAs/Al Ga& As heterostructure by the etch-
ing or split-gate techniques. Because of a long mean free
path compared with the wire width, a number of new
transport phenomena related to wire junctions have been
observed, such as anomalies in the low-field Hall
effect, ' a bend resistance, " and a negative resistance.
Quite recently, the magnetoresistance of long wires has
been measured, in which scattering from boundary
roughness has a stronger effect on the transport. Such
quantum wires exhibit a large positive magnetoresistance.
A similar magnetoresistance has been observed in alumi-
num films and explained by a classical-trajectory mod-
el. " However, if the wire width is comparable to the
Fermi wavelength, strong quantum size effects are ex-
pected. The purpose of the present paper is to study
effects of boundary roughness in such quantum wires.

The classical theory' assumes that each electron fol-
lows a classical trajectory with the Fermi velocity and is
refIected specularly with the probability p and otherwise
scattered into a random direction. This electron-
trajectory model has been applied to study the magne-
toresistance in metallic films. ' ' In the absence of a
magnetic field, the roughness itself cannot produce a
nonzero resistivity because straight trajectories parallel to
film surfaces have an infinite mean free path and dom-
inate the current. In the presence of a magnetic field, the
resistivity becomes nonzero because all electrons follow a
curved trajectory and are scattered at a collision with the
boundaries. When the cyclotron radius R, becomes
smaller than half of the film thickness 8' the resistivity
vanishes again because of the absence of backscattering.
A detailed numerical calculation' performed for p =0
has shown that the resistivity increases with the magnetic

field at low fields, exhibits a maximum at 8'/R, =0.55,
and decreases down to the bulk resistivity at W/R, =2.

Quantum-mechanical calculations have been reported
of the resistivity of films in the absence of a magnetic
field. ' ' The roughness has been described by two pa-
rameters: the root-mean-square deviation of film boun-
daries and its correlation length along the film surface.
Calculations have recently been extended to consider
effects of the magnetic field classically in the transport
equation. ' The roughness scattering also plays an im-
portant role in other systems and some quantum-
mechanical studies have been performed. In a study of
the microwave surface impedance of metals in magnetic
fields, the lifetime of a magnetic surface state due to
roughness scattering has been discussed. In a Si inver-
sion layer, roughness at the Si-Si02 interface is one of the
main scattering mechanisms for the electron transport
parallel to the interface. ' Their effects on the mobility
have been investigated by several authors. Studies
on the mobility in quantum-well structures have also
been performed.

Effects of boundary roughness on the current distribu-
tion and the Hall effect have been studied in quantum
wires. ' lt has been noted that the boundary roughness
can cause a peculiar current distribution among sub-
bands, giving rise to a considerable suppression of the
weak-field Hall resistance. In this paper the magne-
toresistance is calculated in quantum wires in the pres-
ence of boundary-roughness scattering. By solving the
Boltzmann transport equation, the dependence of the
resistivity on the wire width, the correlation length, and
the shape of the confining potential is studied in detail.
In Sec. II the model is introduced and the method of cal-
culation is briefly described. In Sec. III numerical results
are presented after a brief description of the analytic
treatment for some limiting cases. In Sec. IV a numerical
study is performed with the use of Landauer's conduc-
tance formula for finite-length wires. Summary and
conclusion are given in Sec. V.
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II. MODEL AND METHOD

A. Hamiltonian

Consider a noninter acting two-dimensional system
confined in a wire in the xy plane. In the presence of a
magnetic field H perpendicular to the system, the Hamil-
tonian is given by

2

p+ —A + V(y),1 e

2m c

where m is the effective mass, e )0, and A=( Hy, 0—).
The spin Zeeman splitting is completely neglected and
the confining potential is assumed to be as follows:

where E„k is the eigenenergy, U„k,k the matrix element
of the scattering potential, and ( ),„means taking the
average over configurations of scatterers. We assume
that the scalar potential is described by a static and uni-
form electric field E along the wire: P= Ex—. Retaining
only the first-order correction in E and writing

g.k =f(E.k)+eEU.kr. k ~, (e.k»

with f(E) the Fermi distribution function, we have the
following set of equations, which determine the relaxa-
tion time r„(E) or the mean free path l„(E)=U„r„:

—,'m~,'(y+ —,
' IVp)' if y & —

—,'Wo g (I~„„+—K„+„+)l„(E)=1 (n =1,2, . . . , &),
V(y)= 0 if —Wp &y & —,

' Wp

ify& —,'Wo .

A self-consistent calculation of energy levels in wires
made at a split-gate GaAs/Al, Ga, ,As heterostruc-
ture has shown that the confining potential is close to
the above form and co, depends only a little on the wire
width. Experimental data of the quantized conductance
of ballistic narrow channels also support this choice of
the confining potential. Each eigenstate can be specified
by the subband index n = 1,2, . . . and the wave vector k
along the wire.

There can be various ways to define an effective width
in such a confining potential. Here we define an
effective width using the classical turning point of an
electron traveling along the y direction with energy corre-
sponding to half of the Fermi energy. We have

n'=1

where N is the number of subbands giving propagating
waves at c. and n+ denotes such a channel with velocity
v„+k =+v„ for c.„+k =c.. Further, K& is the "transition
rate per unit length" between channels a and f3, defined
by

& I &p. I'&.,(I-/x'IU. Upl) if' pea
+/3~

' —g Kr if P=a,
y(wa)

which satisfies K &=K& from the condition of the detail
balance. The conductivity is given by

2e 2 df dfg U„kink
&

(E„k)= dE — a(S),
BE

with

8'= 8'o+2y, , (3)

with

(10)

1 AkF
—m coqye =

with the Fermi wave number kF. A hard-wall potential is
obtained when co, becomes infinitely large.

B. Transport equation

We shall use the Boltzmann transport equation to cal-
culate the resistivity and therefore neglect any localiza-
tion effects and Auctuations. The Boltzmann equation in
a quantum wire is'

4e2
cr(e)= g l„(E),

n =1

where I is the wire length.

C. Boundary roughness

In general, boundary roughness ' is described by devia-
tions of boundaries, 6+(x), at y=+Wp/2 and modula-
tions in the strength of the potential, i.e., a variation of
m, + along the wire direction:

ag„k ag.k e ay ~g.k
+Unk

g
+

~ ~ ~k g ~n k nk(gn k ''gnk )''
n', k'

—,'mco, (x) (y —y )2 if y (y
V(x,y)= 0 if y (y &y+

—,'mcp, +(x) (y —y+)~ ify)y+
(12)

where g„k and v„k are the distribution function and the
group velocity, respectively, of a state with wave number
k in the nth subband and P is the scalar potential. The
scattering probability 8'„k.„k has the symmetry of the
detailed balance 8'„k «= W„«k and is given in the
Born approximation by

with

8oy+=+ +b, +(x) .
2

(13)

In this paper it is assumed that co,+(x ) =co, because the
self-consistent calculation shows that co, depends only a
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little on the wire width. Further, b, +(x ) is assumed to be
small compared with the Fermi wavelength A,F=2~/kF.
By taking into account terms in the lowest order of
6+(x ), the matrix element of the perturbation is given by

When the number of occupied subbands (=2W/kF) is
suSciently large, the replacement of the summation over
n by an integral gives

3

(n'k'~&'J nk ) = Y,—, „„k-
2m " " L

X f dx 6+(x)exp[i(k —k')x] (14) and

1 7/2 AA—2'JT v F fl
n F

3 2o. 1 e ~F 8'
3 3/2 h

(21)

(22)

2m +~ BV
+~ /2

=+
y

(15)

where q, k is the wave function for the motion along y. It
is shown in the Appendix that in the case of the hard-
wall potential (ru, ~ ~ ) the above integral leads to the
well-known expression '

9n'k' Ink
(16)

The roughness is conventionally characterized by the
root-mean-square deviation 6 and the correlation length
A defined by

( })=&6, ( ))=&& ( )& ( '))=0,
(17}

(b+(x)b+(x')) =(6 (x)A (x'))

gg2 ~F
r„(H =0) 3 g4F W

(23)

where the last equality holds for 8'/kF ))1. In this case,
we have

In the presence of a weak magnetic field, electrons in
the lower subbands start to suffer from roughness scatter-
ings due to the large Lorentz force. Therefore, the strong
dependence of the relaxation time on the subband disap-
pears and every subband is almost equally affected by
scatterings, leading to a reduction in the conductivity,
i.e., a positive magnetoresistance. A rough estimate of
the conductivity near the resistance peak ( W-0. 5R, )

can be made if we assume that each subband has a relaxa-
tion time ~ obtained by the average of the zero-field
scattering rates over the occupied subbands:

(x —x')=6 exp
A

3o. 3 e ~F 8'
h AA2 AF

(24)

X exp[ —
—,'A (k& —k ) ] . (18)

III. RESULTS

A. Positive magnetoresistance

In the absence of a magnetic field and in the case of
small correlation length A (&A,F, we can easily solve Eq.
(8) since K„„+=K„+,+ and have

~„'=u„(K„,+ IC„+„+)=2u„—g K„. „+ . (19)
n'=1

Within the Born approximation we obtain the following
expression of the transition rate:

, ( Yp. }'+( Yp }'
K = —AA

UpUa

This formula shows that near the peak resistivity o. /8'
increases linearly with the width. The classical calcula-
tion" for p =0 predicts a linear dependence at the resis-
tance peak, giving roughly cr/W-(10e~/h ) W/AF. The
comparison with Eq. (24) suggests that Ab, /A, F ~1 —p.
Equation (22) shows that o. /W at H=O increases qua-
dratically with the width. In the limit 8'/kF ~ ~,
o. /8' at the vanishing field diverges while it remains
finite at nonzero magnetic fields, in agreement with the
classical result.

Approximate expressions can be derived also for para-
bolic confinement, i.e., for y, =8'/2. In this case, the
matrix element of the roughness, Eq. (15), is appreciable
only among subbands that are close to each other in ener-
gy. By replacing the velocity u„, appearing in Eq. (19) by
U„and making use of

In the case of the hard-wall potential, we have
6

gg2 gF N UF5/2 (20)

since
~

Y„—.k. „& ~

=2vr n'n /W . The relaxation time is pro-
portional to 1/n, i.e., the roughness is not effective in
the lower subbands. In a vanishing magnetic field the
conductivity is dominated by the current carried by the
lowest subbands having long relaxation time or long
mean free path. This is closely related to the vanishing of
the resistivity at H =0 in the classical-trajectory model.

In the limit 8'/A, F ))1,we have for H=0
3 2

o 1 e2 ~F
ln

28'
kF

Y,„.~

=4/ I dyy q„(y) =g (2n —1)
n'=1

with g = ( WXF /2&2~ )
' ~, we have

3

1 AA ~F UF
25/2 3/2 (2n —1)

(25)

(26)

(27)
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and for H&0
3 2

e ~F 80
7/2 1/2 h +g2 ~F

(28)
2

agnetoresistaa ncep ositive ma
h

h
ro min ent in

ndenceon t e1 th t th dial. Note a so
hard-wa 11

nfining potentia .
the case of the

g
' g'

1fA ' due to the exp
the Fermi wavele gm arable to t e e1 tion lengths comp

war sc on sub an s
'

b ds is dominant anward scattering am g
siderably. Therefor,e the

d b hb d d t
hich occurs withi h

1 sub an s
'n the

mean r
kscattering w ic

rate
o e

Th' b ksubband. is
in tofi ld dsame up to the e

ctin on elec-

1 'ty along the wire.oci
q ntributions to t e cuh rrent and on y a sm

fhtial ingredient oThe essen ia
ivit is a sum otance is t a

'
ll c1

' c1bd is essentia y
th f 1

paths o eac
h There is ano ethe longest mean

or function use
th1iIf it is applied to a mu

hTherefore, this mern
tive magnetoresistance.

B. Examples

he following, the magnetic

1

a its are functions o
tion lengthF

of the edge iegions
hfieldH, and t e e kg0

is lotted in un'

e8' or
p

field is measured in un
n radius.h h lo

1 td d
e wire widt an

endence ofi ur the calcu a eF re 1 presents
and to the conductiv' y

'
it forn of each subban o

w /A, =3 con ne
ma netic fieldfi ld d }1ga netic e

len th isnding to 8'/R, =0.5. ecorrespon
1 small, i.e., F

~ ~

d' '
thy

er is
con uc

'

hi hest sub an
oscilla-

g o g0 sca
This gives rise

varied.
jus a

of the resistivity whent em
bband bottoms, the con-

tion o
r is away from su an

n ( —uF/n )

When the energy is aw
nd n is propo

ld as dis-
tri u

of a
and is arge

I hsection. ncusse ind the prece ing

(a)

N/&F

0/Rc&l

A/xF
Lt

0
U)

O

O

I I
I

I I 5 ~
I

I

- 3.0
0.0

~ ~ ~
i

I I I

(b)

0/xF - 3.0
W/R, - 0.5
A/xF «1

30 35 40 455 40 45 25 3

Energy (units of Etf](units of E)i() nergEnergy

ivit as a function of energy for aFIG. 1. Ca cu a~ y

h X ()i h b-
nce of a magnn f gnetic field an

is att 36E withh Fermi energy
e occupie y

fat zero temperature. Contn u
. . ) are also shown.(n=1, 2, . . . a

de endence on t e subbandfield, such a st ong epe

ding results for a arge correspon in
t is carrie y

11 at both vanishing an nsubbands aimmost equa y a
hat the reduction

' uc-in the con uc-etic field. Note t at
subband is strong yivi bottom of each su antivity near the o o

CV
4

CV
6)

(a)
200 I I I ~

t
~ I I I

i
~ & ~ c

i
~ ~ r s

1
~

0/iF - 3.0
N/R, = 0.0
A/&F = 0.6

(b)

IlzF = 3.0
I/Rc 0.5
A/xF = 0.6

O
100

0

O

I I I

40 4545 25 30 35
0

of E ) Energy ur (units of Eg)Energy (units o

as a function of energy at. 2. Calcu a el t d conductivity as a unc
'

the correlation lengt



ERA AND T. ANDO11 680

ort-rang F,lecn with the cas'
hi hest hav

enhanced '
kscattering rate

the energy is su
ughn

d s considera
The bac

bl when
at the s ata

band droP~
conclu e

occcupied subb
It can be cts bottom.

stomaket eaampli- con
away from 1

oughness tendslong-ra g
m oscillation larg ',

lculation

boundary ro g
er.

A recent s —

h s that density
1 t; n length ba,

~

d ice sho
with a correlationdonors g1ve a1zed on

larger than h
oduced by ev

u hness wi
also be pro

1

technique,
cause suc atd bn lengths is ex
away from

g

a ne have been ma e
osure6 an may contain s

ld dependence f t
ft ecrys

e of tea netic-fie
erature is ze. 3 hen the tempe zepresented

--dma netoresistan
of states.th d t

the forma-
s reAecting

ses due to e
(Fi . 4),f ed e states. s

eared out an e
tion o e

F h„more clear y

ntum osci a
'

1 seen. ormagnetore sistance is m

1 1 1

ratures, t e rhsa dmo erlation eng

1 tjon lengths6 At corre
exhi its a

s' '" and the exp

1i atures, the resistivity rP
at high magnetic e

subbandslowest fews near the bott
aths bee~use th ye extreme y

tro
1 long mean free p

ll-defined edgeSuch wek bac
nd give a large

ject to wea
the current antart to partic pate in

f the resistivityF,. „re 5(a) presen s .
f,e)d for a wider w'

p. p2.
=O becomes

ton o e
As the numA, =5-5 at B F

t dip at Hresjstivity
h d endence o

nds
er Such strong

0 in the resls-

increases,
wjdth eprper u

d iso in t
eePer

b havior has been P
bb nds decreasesWhen the num

low feld be avi
er of sub anfilms.

es a ecre
ivity O

as»g funcs»tivlty becom
correla-

to one the resis
t the vanis»g

own o '
tjc field eventhe magne

e conductiv y
nductivjtytwo- 1meensional con

6 The value at
average,

d h for p
1 depen-

in Fig.
a arabo ic

unct»n
etic field sho~s P „, whiledence On

s a )(near dep
(p2) and

p 5 shows
~

x resslOnS

p /8 ~ '

The analytic exP
in the nume rjcal

occurs at ~ +
fi ure and explajven in the g(24) are a)so g

nin poten-
1ts qujte wel

f the con fini g PFj ure
resu

h ws how the s aP
h g'ective width isnce. I eegnetoI esis

f the edge I egion

tial a&ec s

3 nd the percentag
~ /p' he-ot tial gradjent, pe '

k decreases becau
1 h

h s1st1vity at the pea
fi d ~ and A

ar er the res1s
er at a «e

comes la g
'

becomes wea
k does not

roughness s

fi ld resistivity to
scattering e

.
to the pea oe raii«f t

h very vjcinit

~

e zero- e
* of /exce t jn t e vchange much ex

1.5—

e/LF - 3.0
kBT/EF = 0.

1.5—

l

0/LF 30
k T/EF = 0038

(b)
I

I

Nt/aF - 3.0
k T/EF = 0.068

4

CV

1.0—

M
M

~ 0.5

A ILF

S'

xF-0.2 t]

/iIJ

/

/
0.6 .~

2

netic Field (mcvF/eW)

0.0 '

Nag

nce for wires with width

the horizontal axis t e ra
'

Along t e
clotron radius is p o

Li

CV
&l

1.0

A/xF « '(

04
~eau/

0.6
00

Magne tc i
t' Field (mc YF/eW)

I

1

I
I

I

I~gyet ~
1

20

pagne tct' Field (mcvF/eW)

tance for wires wit width4. Calculate d magnetoresistance orFIG.
res(a) k, T F ——.8'/L = aF =3 t temperatures



11 68143 ES: BQUNDARY- .UANTUM WIRESISTANCE IN QMAGNETOR

amount(a)
0.6

0.5—

I
I

WlxF = 5.5
k T/EF - O02B

I
I

W/&F = 1.0
k T/EF = 0.10B

~ 0.4
&I(
~ 0.3

02
CA

4)

O.t

l

I

2'0
1

Field (mcvF.-/eW)

0.0

Magnetic ieMagne ict' Field (mcvF/eW

a netoresis-of positive mag/8'=0. 5 the
=0, as has been pre-h that at /8'=ce is smaller t an

eding sectiondin the prece i
a netic-fie ep

dicte
han ein e g

ld iso be noted Ast ecoshou a
e ositive

the es st ty
tentia

h h t
Ths. The experimen afields.

f 1 calization
me caution

sence o o
er, that som

S h folio
to the pres

section
with experim

tic fields. Seeeffects in w
of such localizati

f the conduc-
im ortanceo suc

endence of t e cure 8 shows e
each subban a

( ) becomes ex

a h transition ra esection, t a
y

'
inc e gp y gban e

arabolic case,
I roportional toath is roughly prop

1as is given yb the approxima

widthfor wires with w'a netoresistance or w'5. Calculated magneFIG. 5. a ne

(a) 8 /XF =5.5 and (

XV. NUMMERXCAL STUDY

A. Model

).0

s can be stud-ess scatterings can
odl d fo t1 within t eied numerical y

'
e

C4

4

CV
0)

O
0)

S~

~ 0.5
b

0.0 I

2 31

Wire Width (units of ~F)

1.5—

I
I

W/zF - 3.0
k TlEF - 0.06B
h/zF « '(

d

1.0—

O~
O~
0)S~
Co
C~ 0.5

I 0.4
~~ I

I
I .: '/'OSSA g,

~ ]

t . The conductivityde endence o c
'

hin magnetic
and at the mag

1 t' 1 ththe corre a
'

in is fixe
ted line) for th

ra ed level spacing
24) (straight

gtemperatur
E . (22) partotic formula q.

line) are also shown.

0.0
1

Field (mcvF/eW)

2

Magnetic

ires with severald agneto esses tance for wires wG. 7. CalculateFI

f ll, i i d.
otentia s a . ire

and an extent of soft wa s



11 682 H. AKERA AND T. ANDO 43

~ ~ ~ ~
i

I I ~ I
i

I I I I
i

I I l ~ i I I ~

d

5C4
Q)

0
CO

C:
3

2

~4
25 30 35 40 45

Energy (units of E)I)

II
25 30 35 40 45

Energy (units of EI)

study of the localization of edge states. The Harniltoni-
an is given by

FIG. 8. Calculated conductivity as a function of energy for
wires with width 8'=3XF for the correlation length A «A.F in
the absence of a magnetic field. An extent of soft walls is (a)

y, /8'=0. 3 and (b) y, /8 =0, 5. The Fermi energy is at 36F.~
with E~=(A'/2m)(~/8') . Contributions from each subband
(n = 1,2, . . . ) are also shown.

with
6g(x)=

nd(nd+1)(2nd+1)do

X y (nd. —Ix
1
)e(nd —~x

~ ),

2 2nd+ 1
(ndo) = do, (33)v'~n„(n„+ l)do „, 3V ~

q(n ~+ 1)(2n ~+ 1)
g (neo) = Q2

3

where 6 is a step function defined by e(t ) =1 for t )0
and 0 otherwise. The correlation function satisfies

g(0)= 1
and f g(x)dx = 1 . (34)

Because g(x ) is different from the Gaussian function, the
correlation length A can be slightly different from that
defined in the preceding section. The present choice
guarantees at least that the scattering strength calculated
in the Born approximation, determined by the product
AA, agrees with that given in the preceding section in
the limit A «kF.

The transmission coefficients can be calculated using
the technique of Green's function (a more detailed
description will be given elsewhere) ' and the conduc-
tance is calculated through the multichannel version of
Landauer's formula,

&= pc;c, c; —g V, c;c, , (29)

(35)
where the magnetic field is included in the form of
Peierls' phase factor in the nearest-neighbor transfer in-
tegral. We have

(i„iy ~
V~ii + l, iy)= Vexp[ —i(i —1)a /l ],

(30a)

(i„,i
~
V~ii„i +1)=V (i'd =1,2, . . . , M), (30b)

(32)

(b+(x)b+(x') & =(5 (x )b. (x') & =V orb, Ag(x —x'),

with a the lattice constant and I the magnetic length
defined by (Ac/eH)'~ . For sufficiently large width M,
this lattice system corresponds to a continuum system
with width W if we choose the parameters such that

Q2
E, = —4V, = Va, and 8'=(M+1)a . (31)

2Pl

In order to model effects of boundary roughness we
separate the wire into narrow sections. The length of
each section takes ndo (n =1,2, . . . , nd ) with probability
nd '. Within each section, the left and right boundaries
of the wire are shifted by an amount +n Ao
(n =1,2, . . . , nz) with probability q/nz. The probabili-
ty that each boundary remains unshifted is given by
1 —2q. This gives the correlation function

&& (x)&=(& ( )&=«( )& ( ')&=0,

p, v

with the transmission coeKcient t„ for outgoing channel
p and incoming channel v.

B. Results

In numerical calculations we choose the lattice con-
stant a such that kF/a =8.2. This gives a slight nonpar-
abolicity in the subband dispersion in the absence of a
magnetic field but is small enough for the purpose of
simulating a continuum system. Further, the magnetic
Aux passing through the unit cell is at most 2—3% at the
highest magnetic field and therefore the so-called Harper
broadening ' is not important. The conductance is ob-
tained by the average over the results for about 10000
different samples.

Figure 9 pives the results of the numerical calculations
for narrow wires with width )V/A, F=2.25. The correla-
tion length of the roughness is A/A. +=0.22, i.e., still
smaller than the Fermi wavelength, and the average
height is b, /kF =0.17 in (a) and 0.33 in (b). In weak mag-
netic fields, the conductance always becomes slightly
larger than the zero-field value with increasing magnetic
field. This increase is due to the reduction of the localiza-
tion effect in magnetic fields. As a matter of fact, it is
more pronounced for stronger boundary roughness [Fig.
9(b)]. With further increase of the field, the conductance
starts to decrease, takes a minimum around W/R, —1,
and then starts to increase again. This reduction in the
conductance around W/R, —1 corresponds to the posi-
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tive magnetoresistance obtained in the preceding section
with the use of the Boltzmann transport equation. A
quantum oscillation due to the singular one-dimensional
density of states appears in strong magnetic fields. Its
amplitude decreases for wires with rougher boundaries.
In the case of the rough wire, the localization effect is so
strong that the conductance around 8'/R, —I is still
larger than that at the vanishing magnetic field, i.e., the
positive magnetoresistance is suppressed.

Figure 10 gives the results for wider wires with
8'/A. F=5. The correlation length is A/A. F=0.23 and
the average height is b, /A, F =0.17 in (a) and 0.34 in (b).
For such wide wires, the localization effect is reduced
considerably and the conductance always decreases first
with the increase of the magnetic field. The maximum
length of the wire considered is 150 in units of XF, which

0
is about 6 pm for typical A,F-400 A. The conductance
takes a minimum around 8'/R, —I but its exact position
is influenced by the quantum oscillation. For wires with
smoother boundary [Fig. 10(a)j, the conductance be-
comes quantized into integer multiples of e /~A in strong
magnetic fields where well-defined edge states are formed
and electrons are transmitted through the wire ballistical-
ly.

Unfortunately, only a qualitative comparison is possi-
ble between these results and those calculated based on
the Boltzmann transport equation, partly because of the
difference in the correlation function of boundary rough-
ness. The conductance is shown to be modified even in
relatively weak fields by the level broadening and to not
be proportional to the inverse of AA . In the latter calcu-
lation, this broadening has not been included and the
temperature average has been introduced instead. This
leads to a difference in the detailed magnetic-field depen-
dence. Actually the nonzero temperature causes addi-
tional effects, such as the contribution of low-energy edge
states, leading to the sudden drop of the resistivity in
strong magnetic fields and a shift of the resistivity peak to
lower fields, as demonstrated in Fig. 4.

The conductance calculated by Landauer's formula is
not exactly proportional to the inverse of the length,
which is true particularly in strong fields where it is near-
ly quantized into integer multiples of e /~A and also in
weak fields where the localization effect is important.
This is another factor that makes a quantitative compar-
ison difficult but may have partly been overcome if other
multichannel versions of Landauer's formula are
used instead of Eq. (35). Equation (35) has been used for
the purpose of seeing whether characteristic features of
the positive magnetoresistance are reproduced within the
framework of the transmission approach. It has been
demonstrated above that qualitatively a similar positive
magnetoresistance is predicted for wide wires by both
Boltzmann and transmission approaches, showing that
the Boltzmann transport equation can be safely used for
the study of the magnetoresistance in the present system.
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APPENDIX: PROOF OF EQ. (16)

By making integration by parts, we have

2fpz + cc Ip
~~ —+

2 +'
&

1.+up
&+ 80/2 Qy Qy

(A1)

Using the Schrodinger equation with Hamiltonian Eq.
(1), we obtain

+ Q '077p '0 g
Y—=+ dyp — +w. /2 ay ay By

of quantum wires, using the Boltzmann transport equa-
tion. Roughness gives rise to a strong positive magne-
toresistance, on which quantum oscillations are super-
posed at low temperatures. This positive magnetoresis-
tance is explained by the disappearance of the singularly
long mean free paths of electrons in the lowest few sub-
bands present at zero magnetic field. The effect is less
prominent for narrower wires and vanishes when the
width is less than the Fermi wavelength. The correlation
length of the roughness, which does not appear in the
classical theory, is also an important parameter. Rough-
ness with a large correlation length gives no positive
magnetoresistance because of dominant forward scatter-
ing. The magnetoresistance is affected also by the shape
of the confining potential and tends to be more sharply
peaked at its maximum value when the confinement be-
comes softer.

The magnetoresistance has also been studied numeri-
cally with the use of Landauer's conductance formula. In
narrow wires, the localization effect is important and
leads to the negative magnetoresistance in weak magnetic
fields ( W/R, ~0. 1). For very rough wires, the positive
magnetoresistance can be suppressed by the localization
effect. With the increase of the wire width, however, the
localization effect becomes less and less important and a
clear positive magnetoresistance is obtained. The posi-
tion of the resistance peak depends on whether or not the
quantum oscillation due to the singular one-dimensional
density of states is smeared out.

V. SUMMARY AND CONCLUSION

In conclusion, we have studied the effects of
boundary-roughness scatterings on the magnetoresistance with

+co gp
+~ g2 y

g
9 g Rp9p

y
(A2)
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Ak —
—,'mes, y +A~, k y2m

(A3)

where co, =eH/mc. The first term of Eq. (A2) gives the
formula Eq. (16). When the confining potential ap-
proaches the hard wall, ri(y ) and Bg/By in the integrand
of the second term are negligible except in the vicinity of
y =+Wo/2 and the slowly varying function g(y ) can be
replaced by g(+ Wo/2). Therefore we have

which vanishes in the limit of the hard-wall confining po-
tential.
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