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Magnetoresistance in quantum wires: Boundary-roughness scattering
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A quantum-mechanical calculation of the magnetoresistance of quantum wires is performed in
the presence of boundary-roughness scattering. The roughness is described by two parameters—
the root-mean-square deviation and the correlation length—and the Boltzmann transport equation
is used. The roughness scattering gives rise to a strong positive magnetoresistance when the wire
width is larger and the correlation length smaller than the Fermi wavelength. When the confining
potential is varied from hard wall to parabolic, the magnetoresistance is shown to have a sharper
peak for softer confinement. A numerical study based on Landauer’s formula is also performed.
The localization effect present in weak magnetic fields tends to suppress the positive magnetoresis-
tance in narrow wires but becomes less important with the increase of the wire width.

I. INTRODUCTION

Recent developments in microfabrication technology
have made it possible to obtain quantum wires by intro-
ducing a confining potential in a two-dimensional elec-
tron system. A typical sample is made on a modulation-
doped GaAs/Al,Ga,_,As heterostructure by the etch-
ing or split-gate techniques. Because of a long mean free
path compared with the wire width, a number of new
transport phenomena related to wire junctions have been
observed, such as anomalies in the low-field Hall
effect,’ * a bend resistance,* and a negative resistance.’
Quite recently, the magnetoresistance of long wires has
been measured,® in which scattering from boundary
roughness has a stronger effect on the transport. Such
quantum wires exhibit a large positive magnetoresistance.
A similar magnetoresistance has been observed in alumi-
num films’ and explained by a classical-trajectory mod-
el.> 11 However, if the wire width is comparable to the
Fermi wavelength, strong quantum size effects are ex-
pected. The purpose of the present paper is to study
effects of boundary roughness in such quantum wires.

The classical theory'? assumes that each electron fol-
lows a classical trajectory with the Fermi velocity and is
reflected specularly with the probability p and otherwise
scattered into a random direction. This electron-
trajectory model has been applied to study the magne-
toresistance in metallic films.!>!* In the absence of a
magnetic field, the roughness itself cannot produce a
nonzero resistivity because straight trajectories parallel to
film surfaces have an infinite mean free path and dom-
inate the current. In the presence of a magnetic field, the
resistivity becomes nonzero because all electrons follow a
curved trajectory and are scattered at a collision with the
boundaries. When the cyclotron radius R, becomes
smaller than half of the film thickness W, the resistivity
vanishes again because of the absence of backscattering.
A detailed numerical calculation'® performed for p =0
has shown that the resistivity increases with the magnetic

3

field at low fields, exhibits a maximum at W /R_.=0.55,
and decreases down to the bulk resistivity at W /R, =2.

Quantum-mechanical calculations have been reported
of the resistivity of films in the absence of a magnetic
field.'*"!® The roughness has been described by two pa-
rameters: the root-mean-square deviation of film boun-
daries and its correlation length along the film surface.
Calculations have recently been extended to consider
effects of the magnetic field classically in the transport
equation.!” The roughness scattering also plays an im-
portant role in other systems and some quantum-
mechanical studies have been performed. In a study of
the microwave surface impedance of metals in magnetic
fields, the lifetime of a magnetic surface state due to
roughness scattering has been discussed.?’ In a Si inver-
sion layer, roughness at the Si-SiO, interface is one of the
main scattering mechanisms for the electron transport
parallel to the interface.?! Their effects on the mobility
have been investigated by several authors.??”%7 Studies
on the mobility in quantum-well structures have also
been performed.?® 30

Effects of boundary roughness on the current distribu-
tion and the Hall effect have been studied in quantum
wires.>! It has been noted that the boundary roughness
can cause a peculiar current distribution among sub-
bands, giving rise to a considerable suppression of the
weak-field Hall resistance. In this paper the magne-
toresistance is calculated in quantum wires in the pres-
ence of boundary-roughness scattering. By solving the
Boltzmann transport equation, the dependence of the
resistivity on the wire width, the correlation length, and
the shape of the confining potential is studied in detail.
In Sec. II the model is introduced and the method of cal-
culation is briefly described. In Sec. III numerical results
are presented after a brief description of the analytic
treatment for some limiting cases. In Sec. IV a numerical
study is performed with the use of Landauer’s conduc-
tance formula®? for finite-length wires. Summary and
conclusion are given in Sec. V.
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II. MODEL AND METHOD

A. Hamiltonian

Consider a noninteracting two-dimensional system
confined in a wire in the xy plane. In the presence of a
magnetic field H perpendicular to the system, the Hamil-
tonian is given by

2

L +V(y), (1)
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where m is the effective mass, e >0, and A=(—Hy,0).
The spin Zeeman splitting is completely neglected and
the confining potential is assumed to be as follows:

Ime(y +1W,)? ify<—1w,

Viy)= 10 if —IWy<y <1iW, (2)

Imel(y—1W,)? ify>1W, .

A self-consistent calculation of energy levels in wires
made at a split-gate GaAs/Al ,Ga,_,As heterostruc-
ture®® has shown that the confining potential is close to
the above form and w, depends only a little on the wire
width. Experimental data of the quantized conductance
of ballistic narrow channels also support this choice of
the confining potential.>* Each eigenstate can be specified
by the subband index n =1,2, ... and the wave vector k
along the wire.

There can be various ways to define an effective width
in such a confining potential.’> Here we define an
effective width using the classical turning point of an
electron traveling along the y direction with energy corre-
sponding to half of the Fermi energy. We have

W=Ww,+2y, , (3)
with
272
zyzziﬁkF 4)
PeYe ™5 om

with the Fermi wave number k. A hard-wall potential is
obtained when @, becomes infinitely large.

B. Transport equation

We shall use the Boltzmann transport equation to cal-
culate the resistivity and therefore neglect any localiza-
tion effects and fluctuations. The Boltzmann equation in
a quantum wire is*®

agnk v agnk
ot " ax

eéqz gnk_2
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wk'nk (8n'k’

(5)

where g,, and v, are the distribution function and the
group velocity, respectively, of a state with wave number
k in the nth subband and ¢ is the scalar potential. The
scattering probability W, has the symmetry of the
detailed balance W, =W, 1w and is given in the
Born approximation by
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Wn’k’nk=%< ,Un’k'nk|2>av8(8n’k'_8nk) ’ (6)
where €, is the eigenenergy, U, the matrix element
of the scattering potential, and ( - - - ),, means taking the
average over configurations of scatterers. We assume
that the scalar potential is described by a static and uni-
form electric field E along the wire: ¢ = — Ex. Retaining
only the first-order correction in E and writing

af
nk gg (Enk) @)
with f(e) the Fermi distribution function, we have the
following set of equations, which determine the relaxa-
tion time 7,(g) or the mean free path [/, (e¢)=v,7,:

N
2 (Knvn’+—Kn+n'+)ln'(E)=1

n'=1

8nk zf(ank )+9Evnk7

(n=1,2,...,N),

(8)

where N is the number of subbands giving propagating
waves at € and n = denotes such a channel with velocity
Vpix =xv, for €,,, =e. Further, Kg, is the “transition
rate per unit length” between channels a and 3, defined
by

U |?Y o L /8 |0 ) if BFa
Kpa=1- 3 K,, ifB=a, ©)
y (Fa)

which satisfies K ,3= K g, from the condition of the detail
balance. The conductivity is given by

2§ _df
o T %(v,,krnk 8 fds 3e ol(e),
(10)
with
Y
m—%}}nﬂw, (11

where L is the wire length.

C. Boundary roughness

In general, boundary roughness®! is described by devia-
tions of boundaries, A,(x), at y=xW,/2 and modula-
tions in the strength of the potential, i.e., a variation of
.+ along the wire direction:

Ime, (x)(y—y_)* ify<y_
Vix,p)=10 if y_<y<y, (12)
tmao, (x)Py—y )? ify>y,
with
Wo
ye=t——+AL(x). (13)

In this paper it is assumed that w,(x)=

w, because the
self-consistent calculation??

shows that w, depends only a
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little on the wire width. Further, A_.(x) is assumed to be
small compared with the Fermi wavelength Ap=2m/kj.
By taking into account terms in the lowest order of
A, (x), the matrix element of the perturbation is given by

Sl ﬁ 1
n'k ‘ﬂilnk) m Ynknk L
X [dx Ay (x)explitk —k')x] (14)
with
- aV
Ynknk hz f+W 2 ynnk a A Mnk > (15)

where 717, is the wave function for the motion along y. It
is shown in the Appendix that in the case of the hard-
wall potential (w,— oo ) the above integral leads to the
well-known expression?!

—_ ann‘k’ a’Y)nk

Yn;tk’nk = ay ay

(16)

w2

The roughness is conventionally characterized by the
root-mean-square deviation A and the correlation length
A defined by

(A (x))=(A_(x))=(A(x)A_(x"))=0, 1)
(AL (x)A L (x"))=(A_(x)A_(x"))
( . r)2
—Nexp | - =20

Within the Born approximation we obtain the following
expression of the transition rate:

—_ 2 —
Ky =Y | | ppr Yo Yo
Ba 4 vgU,
Xexp[ —1A*kg—k,)*] . (18)

III. RESULTS

A. Positive magnetoresistance

In the absence of a magnetic field and in the case of
small correlation length A <<Aj, we can easily solve Eq.
(8) since K, _,.. =K, ., and have

N
2w, S Ky_py . (19

n'=1

T_lzvn<Kn'n+_Kn+n+):

In the case of the hard-wall potential, we have

AA? | Ap N
— 5/2 _r 2 L2 20
Tn T AR W . mzl U, "o (20)
since | Y5, |=2m%n'n /W?3. The relaxation time is pro-

portional to 1/n2, i.e., the roughness is not effective in
the lower subbands. In a vanishing magnetic field the
conductivity is dominated by the current carried by the
lowest subbands having long relaxation time or long
mean free path. This is closely related to the vanishing of
the resistivity at H =0 in the classical-trajectory model.
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When the number of occupied subbands (=2W /A) is
sufficiently large, the replacement of the summation over
n by an integral gives

1 70 AA? | Ap 2
— 27" — | n (21)
T k‘; W

and
o _ 1 &M (w] o)
w 373/2 h AA2 kF

In the presence of a weak magnetic field, electrons in
the lower subbands start to suffer from roughness scatter-
ings due to the large Lorentz force. Therefore, the strong
dependence of the relaxation time on the subband disap-
pears and every subband is almost equally affected by
scatterings, leading to a reduction in the conductivity,
i.e., a positive magnetoresistance. A rough estimate of
the conductivity near the resistance peak (W ~0.5R,)
can be made if we assume that each subband has a relaxa-
tion time 7 obtained by the average of the zero-field
scattering rates over the occupied subbands:

i_< 1 2777 AA? Ap
T T,,(H=0)>’ 3w

where the last equality holds for W /A >>1.
we have

(23)

In this case,

L= F T (24)

This formula shows that near the peak resistivity o /W
increases linearly with the width. The classical calcula-
tion'! for p =0 predicts a linear dependence at the resis-
tance peak, giving roughly o /W ~(10e®/h)W /Ap. The
comparison with Eq. (24) suggests that AA2/A} < 1—p.
Equation (22) shows that o /W at H=0 increases qua-
dratically with the width. In the limit W /Ap— oo,
o/W? at the vanishing field diverges while it remains
finite at nonzero magnetic fields, in agreement with the
classical result.

Approximate expressions can be derived also for para-
bolic confinement, i.e., for y,=W /2. In this case, the
matrix element of the roughness, Eq. (15), is appreciable
only among subbands that are close to each other in ener-
gy. By replacing the velocity v, appearing in Eq. (19) by
v, and making use of

E | Y, |2=4& Sf dy y*n,(y)P=£"%2n—1) (25)
n'=1
with E=(WA,/2V27)'/2, we have

1 AA? }\F

?:25/2F3/20F—7E~ W (Zn‘—l) b (26)

In the limit W /A >>1, we have for H=0

o 1 e? )‘;7

W 232,372 B AA2

w

w w
Ap

Ap

(27)
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and for H#0
o 1 e A
W 2727172 [ AA2

W 2

Ap

(28)

These formulas show that the positive magnetoresistance
becomes less prominent in the case of the soft-wall
confining potential. Note also that the dependence on the
width is different from that in the case of the hard-wall
confining potential both for H =0 and H > 0.

When the correlation length is nonzero, the wave-
number change at each scattering is limited to the order
A~ ! due to the exponential factor in Eq. (18). At corre-
lation lengths comparable to the Fermi wavelength, for-
ward scattering among subbands is dominant and back-
scattering is suppressed considerably. Therefore, the
mean free path of all subbands is determined by the rate
of the largest backscattering which occurs within the
highest occupied subband. This backscattering rate
remains the same up to the field corresponding to
W /R_.~0.5, because the Lorentz force acting on elec-
trons in the highest subband is small due to its small ve-
locity along the wire. Consequently all subbands give al-
most equal contributions to the current and only a small
positive magnetoresistance is expected.

The essential ingredient of this positive magnetoresis-
tance is that the conductivity is a sum of the mean free
paths of each subband and is essentially determined by
the longest mean free path. There is another formula for
the resistivity using a memory function used frequent-
1y.37:38 If it is applied to a multisubband case, the current
is, roughly speaking, proportional to 7 given by Eq. (23).
Therefore, this memory-function approach gives no posi-
tive magnetoresistance.

B. Examples

In the examples shown in the following, the magnetic
field is varied with fixed Fermi energy Ep=(#k)*/2m.
Calculated results are functions of the following five pa-
rameters: the wire width W /A, the correlation length
A /A, the width of the edge regions y, /W, the strength
of the magnetic field H, and the temperature kT /E.
The conductivity o is plotted in units of (e?/h )\ /AA2
The magnetic field is measured in units of mcv,/eW or
by the ratio of the wire width and the cyclotron radius.

Figure 1 presents the calculated energy dependence of
the contribution of each subband to the conductivity for
wire width W /Ar=3 confined by a hard-wall potential in
the absence of a magnetic field and at the magnetic field
corresponding to W /R.=0.5. The correlation length is
assumed to be vanishingly small, i.e., A <<Ap. The singu-
lar one-dimensional density of states causes a vanishing
conductivity because of the divergence in the probability
of scattering to the highest subband when the energy is
just at its bottom. This gives rise to a quantum oscilla-
tion of the resistivity when the magnetic field is varied.
When the energy is away from subband bottoms, the con-
tribution of subband n is proportional to v, /n*( ~vg/n?)
and is largest for the lowest subband at zero field, as dis-
cussed in the preceding section. In the presence of a
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L W/ap = 3.0
W/R, =05
| Alap << 1
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FIG. 1. Calculated conductivity as a function of energy for a
wire width W=3A; and a hard-wall potential when the correla-
tion length of roughness is much shorter than Ay (a) in the ab-
sence of a magnetic field and (b) at the magnetic field satisfying
W=0.5R.. The Fermi energy is at 36E, with E,
=(#/2m)(7w/W)? and six subbands are occupied by electrons
at zero temperature. Contributions from each subband
(n=1,2,...) are also shown.

magnetic field, such a strong dependence on the subband
index disappears and every subband carries almost an
equal amount of the current.

The corresponding results for a large correlation length
are given in Fig. 2. The current is carried by different
subbands almost equally at both vanishing and nonzero
magnetic field. Note that the reduction in the conduc-
tivity near the bottom of each subband is strongly
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FIG. 2. Calculated conductivity as a function of energy at
the correlation length A=0.6A.
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enhanced in comparison with the case of short-range
roughness. The backscattering rate within the highest
occupied subband drops considerably when the energy is
away from its bottom. It can be concluded that the
long-range boundary roughness tends to make the ampli-
tude of the quantum oscillation larger.

A recent self-consistent Thomas-Fermi calculation in a
split-gate device shows that density fluctuations of ion-
ized donors give a roughness with a correlation length
larger than the Fermi wavelength.® A roughness can
also be produced by deviations of a line drawn by the
lithography technique, but no roughness with short
correlation lengths is expected because such a line is
drawn several hundred angstroms away from the two-
dimensional electron system. So far, wires exhibiting a
clear positive magnetoresistance have been made by ion
exposure® and may contain short-range roughness due to
damage of the crystal structure.

The magnetic-field dependence of the resistivity is
presented in Fig. 3 when the temperature is zero. The
positive magnetoresistance is accompanied by quantum
oscillations reflecting the density of states. At larger
magnetic fields the resistivity decreases due to the forma-
tion of edge states. As the temperature increases (Fig. 4),
the quantum oscillations are smeared out and the positive
magnetoresistance is more clearly seen. For short corre-
lation lengths and moderate temperatures, the resistivity
exhibits a behavior similar to the classical calcula-
tions'>!! and the experiments.® At correlation lengths
larger than 0.6\ magnetoresistance disappears.

At higher temperatures, the resistivity drops abruptly
at high magnetic fields (W /R R 1.3 at kz T /E;=0.06).

3 W/AF = 3.0
| kgT/Eg = 0.0

15

L Alag << 1

b
o

Resistivity [(h/e?]Aa2/xg4]

05t e s
.
; |
/ 04 / /'
b 7
I yd
[ ————~ v
0'0 "P-O:SI 1
0 1 2 3

Magnetic Field (mcve/eW)

FIG. 3. Calculated magnetoresistance for wires with width
W /Ap=3 at absolute zero for several correlation lengths.
Along the horizontal axis the ratio of the wire width and the cy-
clotron radius is plotted.
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Electrons near the bottom of the lowest few subbands
have extremely long mean free paths because they are
subject to weak backscattering. Such well-defined edge
states start to participate in the current and give a large
conductivity at high temperatures.

Figure 5(a) presents calculated results of the resistivity
as a function of the magnetic field for a wider wire width
W /Ap=5.5 at kyT /Er=0.02. As the number of sub-
bands increases, the resistivity dip at H=0 becomes
deeper and sharper. Such strong width dependence of
the low-field behavior has been reported also in the resis-
tivity of films.!® When the number of subbands decreases
down to one, the resistivity becomes a decreasing func-
tion of the magnetic field even at the vanishing correla-
tion length, as shown in Fig. 5(b).

The conductivity divided by the wire width, or the
averaged two-dimensional conductivity, is plotted as a
function of the width for A <<A in Fig. 6. The value at
the vanishing magnetic field shows a parabolic depen-
dence on the width with quantum oscillations, while that
at W/R_ =0.5 shows a linear dependence. A crossover
occurs at W /Ap~1. The analytic expressions (22) and
(24) are also given in the figure and explain the numerical
results quite well.

Figure 7 shows how the shape of the confining poten-
tial affects the magnetoresistance. The effective width is
fixed at W /Ar=3 and the percentage of the edge region
with potential gradient, y,/W, is varied. As y./W be-
comes larger, the resistivity at the peak decreases because
roughness scattering becomes weaker at a fixed A and A.
The ratio of the zero-field resistivity to the peak does not
change much except in the very vicinity of y, /W =0.5.

(a) (b)
T A T
- W/).F = 3.0 E W/).F = 3.0 g
kgT/Ef = 0.03 | kgT/Eg = 0.06 |
15} 1t .
- Aag << 1 ]
< ]
g
=
< 10 s s
£ |
2 Mg = 0.2
= N
2 ; S ]
o g5 | AN .
| ___04 H
” N—————— \ ‘.‘
\ ) 1
0.0 ‘—'~~r-—v.—6—-;t—‘—"'.\\\“~
-0 1 20 2

Magnetic Field (mcve/eW) Magnetic Field (mcvg/eW)

FIG. 4. Calculated magnetoresistance for wires with width
W /Ap=3 at temperatures (a) kz T /E;=0.03 and (b) 0.06.
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FIG. 5. Calculated magnetoresistance for wires with width
(@) W/Ap=5.5and (b) W/Ap=1.
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o/W [units of (e2/hlag3/Aa2]
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FIG. 6. Width dependence of conductivity. The conductivity
divided by the width is plotted at the vanishing magnetic field
(solid line) and at the magnetic field satisfying W=0.5R, (dot-
ted line) for the correlation length A <<Ap. The ratio of the
temperature and the averaged level spacing is fixed. The asymp-
totic formula Eq. (22) (parabolic curve) and Eq. (24) (straight
line) are also shown.
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Near y, /W =0.5 the amount of positive magnetoresis-
tance is smaller than that at y, /W =0, as has been pre-
dicted in the preceding section.

The change in the overall magnetic-field dependence of
the resistivity should also be noted. As the confining po-
tential becomes softer, the peak in the positive magne-
toresistance becomes sharper and at the same time the
resistance starts to have a longer tail at higher magnetic
fields. The experimental results by Thornton et al.® can
be best fitted by the result for y, ~0.3W. Notice, howev-
er, that some caution is necessary to compare the results
with experiments due to the presence of localization
effects in weak magnetic fields. See the following section
for the importance of such localization effects.

Figure 8 shows the energy dependence of the conduc-
tivity and contributions from each subband at zero mag-
netic field. For large y, /W the amplitude of the quantum
oscillation in o(g) becomes extremely small. This is a
direct consequence of the fact, discussed in the preceding
section, that the transition rate from the nth to n'th sub-
band decreases rapidly with increasing |n—n’|. At
y./W=0.5 (the parabolic case), the relaxation time or
the mean free path is roughly proportional to (2n —1)71,
as is given by the approximate result Eq. (26).

IV. NUMERICAL STUDY

A. Model

Effects of boundary-roughness scatterings can be stud-
ied numerically within the lattice model used for the

"

| W/).F = 3.0
kgT/Ef = 0.06 |

sl Alap << 1

0.0

1.0

Resistivity [(h/e?)AaZ/xg*]

0.0
Magnetic Field (mcve/eW)
FIG. 7. Calculated magnetoresistance for wires with several

confining potentials at A <<Ap. Wire width is fixed at W=3Ar
and an extent of soft walls y, is varied.
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FIG. 8. Calculated conductivity as a function of energy for
wires with width W=23A for the correlation length A <<Aj in
the absence of a magnetic field. An extent of soft walls is (a)
y./W=0.3 and (b) y,/W=0.5. The Fermi energy is at 36E,
with Ey =(#*/2m)(w/W)*. Contributions from each subband
(n=1,2,...) are also shown.

study of the localization of edge states.** The Hamiltoni-

an is given by
H= g.clc;— >V c, Ci s (29)

i ij

where the magnetic field is included in the form of

Peierls’ phase factor in the nearest-neighbor transfer in-

tegral. We have

2y,

(i, i, Vi, +1,i,)=Vexp[ —i(i,—1)a

(30a)

i,+1)= (30b)

x2"y ')M),

(i, V1 Vo (i,=12,
with a the lattice constant and / the magnetic length
defined by (#ic /eH)'?. For sufficiently large width M,
this lattice system corresponds to a continuum system
with width W, if we choose the parameters such that

2
vy,

g, =—4V, o

and W=(M+1)a. (31)

In order to model effects of boundary roughness we
separate the wire into narrow sections. The length of
each section takes nd, (n=1,2, ..., n,) with probability
n;!. Within each section, the left and right boundaries
of the wire are shifted by an amount =*nA,
(n=1,2,...,n,) with probability g /n,. The probabili-
ty that each boundary remains unshifted is given by
1—2q. This gives the correlation function

(AL (x))=(A_(x))=(A (x)A_(x"))=0,
(32)
X)A_(x"))=V7A®Ag(x —x'),

(AL (A (x))=(A_(
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with
6
g(x)= 2
ng(ng,+1)2n,+1)dg
nq
X3 (nd0—1x|)8(ndo—|x|)
n=1
2 an+
A= (ndy)P?=——=d,, (33
‘/Wnd(nd+l)do nzl n O 3\/ 0 ( )
"a g(ny+1)2n,+1)
2 2 2 3 A(?i ,

nA n=1

where O is a step function defined by ©(¢)=1 for t >0
and O otherwise. The correlation function satisfies

and fj ocg(x

g(0)= Jdx=1. (34)

VA
Because g(x) is different from the Gaussian function, the
correlation length A can be slightly different from that
defined in the preceding section. The present choice
guarantees at least that the scattering strength calculated
in the Born approximation, determined by the product
AA?, agrees with that given in the preceding section in
the limit A <<A.

The transmission coefficients can be calculated using
the technique of Green’s function (a more detailed
description will be given elsewhere)*! and the conduc-
tance is calculated through the multichannel version*? of
Landauer’s formula,*?

G=e—22|t 2 (35)
h o~ pvio?

with the transmission coefficient i
w and incoming channel v.

B. Results

, for outgoing channel

In numerical calculations we choose the lattice con-
stant a such that A;/a ~=8.2. This gives a slight nonpar-
abolicity in the subband dispersion in the absence of a
magnetic field but is small enough for the purpose of
simulating a continuum system. Further, the magnetic
flux passing through the unit cell is at most 2-3 % at the
highest magnetic field and therefore the so-called Harper
broadening**** is not important. The conductance is ob-
tained by the average over the results for about 10000
different samples.

Figure 9 gives the results of the numerical calculations
for narrow wires with width W /A;=2.25. The correla-
tion length of the roughness is A/Ap=0.22, i.e., still
smaller than the Fermi wavelength, and the average
height is A/A;=0.17 in (a) and 0.33 in (b). In weak mag-
netic fields, the conductance always becomes slightly
larger than the zero-field value with increasing magnetic
field. This increase is due to the reduction of the localiza-
tion effect in magnetic fields. As a matter of fact, it is
more pronounced for stronger boundary roughness [Fig.
9(b)]. With further increase of the field, the conductance
starts to decrease, takes a minimum around W /R, ~1,
and then starts to increase again. This reduction in the
conductance around W /R_.~1 corresponds to the posi-
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FIG. 9. Calculated conductance as a function of the magnet-
ic field for wires with width W /Ar=2.25 and the correlation
length of the roughness A/Az=0.22. (a) A/A=0.17,
L /A;=50, 100, and 150. (b) A/Ar=0.33, L /Az=25, 50, and
75. The magnetic depopulation occurs at the fields denoted by
the vertical dotted lines and N, is the number of occupied sub-
bands. The parameters characterizing the lattice are as follows:
M=18, g=0.4, ny=n,=2, dy/a=2, and Ay/a=1 in (a) and
Ay/a=2in (b).
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FIG. 10. Calculated conductance as a function of the mag-
netic field for wires with width W /A=35 and the correlation
length of the roughness A/A=0.23. (a) A/A=0.17. (b)
A/Ar=0.34. The wire length is L /A=50, 100, and 150. The
parameters characterizing the lattice are as follows: M =40,
qg=0.4, n,=n,=2,dy/a=2,and Ay/a=1in (a) and Ay/a =2
in (b).
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tive magnetoresistance obtained in the preceding section
with the use of the Boltzmann transport equation. A
quantum oscillation due to the singular one-dimensional
density of states appears in strong magnetic fields. Its
amplitude decreases for wires with rougher boundaries.
In the case of the rough wire, the localization effect is so
strong that the conductance around W /R, ~1 is still
larger than that at the vanishing magnetic field, i.e., the
positive magnetoresistance is suppressed.

Figure 10 gives the results for wider wires with
W /Ap=5. The correlation length is A/A;=0.23 and
the average height is A/A;=0.17 in (a) and 0.34 in (b).
For such wide wires, the localization effect is reduced
considerably and the conductance always decreases first
with the increase of the magnetic field. The maximum
length of the wire considered is 150 i in units of Ag, which
is about 6 um for typical Ap~400 A. The conductance
takes a minimum around W /R~ 1 but its exact position
is influenced by the quantum oscillation. For wires with
smoother boundary [Fig. 10(a)], the conductance be-
comes quantized into integer multiples of e /7 in strong
magnetic fields where well-defined edge states are formed
and electrons are transmitted through the wire ballistical-
ly.

Unfortunately, only a qualitative comparison is possi-
ble between these results and those calculated based on
the Boltzmann transport equation, partly because of the
difference in the correlation function of boundary rough-
ness. The conductance is shown to be modified even in
relatively weak fields by the level broadening and to not
be proportional to the inverse of AAZ In the latter calcu-
lation, this broadening has not been included and the
temperature average has been introduced instead. This
leads to a difference in the detailed magnetic-field depen-
dence. Actually the nonzero temperature causes addi-
tional effects, such as the contribution of low-energy edge
states, leading to the sudden drop of the resistivity in
strong magnetic fields and a shift of the resistivity peak to
lower fields, as demonstrated in Fig. 4.

The conductance calculated by Landauer’s formula is
not exactly proportional to the inverse of the length,
which is true particularly in strong fields where it is near-
ly quantized into integer multiples of e?/x#% and also in
weak fields where the localization effect is important.
This is another factor that makes a quantitative compar-
ison difficult but may have partly been overcome if other
multichannel versions of Landauer’s formula*™*® are
used instead of Eq. (35). Equation (35) has been used for
the purpose of seeing whether characteristic features of
the positive magnetoresistance are reproduced within the
framework of the transmission approach. It has been
demonstrated above that qualitatively a similar positive
magnetoresistance is predicted for wide wires by both
Boltzmann and transmission approaches, showing that
the Boltzmann transport equation can be safely used for
the study of the magnetoresistance in the present system.

V. SUMMARY AND CONCLUSION

In conclusion, we have studied the effects of
boundary-roughness scatterings on the magnetoresistance
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of quantum wires, using the Boltzmann transport equa-
tion. Roughness gives rise to a strong positive magne-
toresistance, on which quantum oscillations are super-
posed at low temperatures. This positive magnetoresis-
tance is explained by the disappearance of the singularly
long mean free paths of electrons in the lowest few sub-
bands present at zero magnetic field. The effect is less
prominent for narrower wires and vanishes when the
width is less than the Fermi wavelength. The correlation
length of the roughness, which does not appear in the
classical theory, is also an important parameter. Rough-
ness with a large correlation length gives no positive
magnetoresistance because of dominant forward scatter-
ing. The magnetoresistance is affected also by the shape
of the confining potential and tends to be more sharply
peaked at its maximum value when the confinement be-
comes softer.

The magnetoresistance has also been studied numeri-
cally with the use of Landauer’s conductance formula. In
narrow wires, the localization effect is important and
leads to the negative magnetoresistance in weak magnetic
fields (W /R, <0.1). For very rough wires, the positive
magnetoresistance can be suppressed by the localization
effect. With the increase of the wire width, however, the
localization effect becomes less and less important and a
clear positive magnetoresistance is obtained. The posi-
tion of the resistance peak depends on whether or not the
quantum oscillation due to the singular one-dimensional
density of states is smeared out.
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APPENDIX: PROOF OF EQ. (16)

By making integration by parts, we have

97
77a+77/3 a <

Viy). (A1)

Yf;ia: f+W /2

Using the Schrodinger equation with Hamiltonian Eq.
(1), we obtain

+ o0 a 877/3 ana
Yﬁa W, /2dy a-y “ay 3y
+ oo 37]/3 ana
W, /zdy _ay N8 T 855 3y ] , (A2)

with
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_2m ﬁzk(zz
ga_-ﬁT Sa_ 2m

—imoly*+hok,y |, (A3)

where w,=eH /mc. The first term of Eq. (A2) gives the
formula Eq. (16). When the confining potential ap-
proaches the hard wall, 9(y) and d7/dy in the integrand
of the second term are negligible except in the vicinity of
y==1W,/2 and the slowly varying function g(y) can be
replaced by g(£ W, /2). Therefore we have
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+ oo anB
W, /2 Y ay Na

+ oo anﬂ
< iwo/zdy—g InEW,/2)]
=|ng(£Wo/2)|InEW,/2)], (A4)

which vanishes in the limit of the hard-wall confining po-
tential.
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