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An interatomic potential based on the second-moment approximation of the tight-binding scheme
is developed for zirconium, by fitting its four adjustable parameters to the cohesive energy, atomic
volume, and elastic constants of the hcp phase. In this work we attempt to model realistically two
different crystallographic phases of a solid with the same potential. The reliability of our potential
is tested in both the hcp and the bece phases with regard to defect properties, thermal expansion,
phonon properties, and mean-square displacements. For this purpose, we perform quenched
molecular-dynamics relaxations, quasiharmonic lattice-dynamics calculations, and molecular-
dynamics simulations. The low vacancy-formation and migration energies found in the bcc phase
are consistent with the fast diffusivity experimentally observed. Unlike some other N-body poten-
tials recently proposed to model bcc transition metals, our potential is not affected by the flaw of un-
physical or even negative thermal expansion. We obtain thermal expansions that agree well with
experiments in both phases, although they turned out to be slightly too large. The phonon-
dispersion curves and, in particular, the anomalies in the bcc phase are well reproduced. We em-
phasize the stabilization with temperature of the 71 N-point phonon of the bcc phase, which is re-
lated to the bce- to hep-phase transition. We obtain a temperature dependence of this mode much
weaker than in the experimental case. This influences the temperature behavior of the vibrational
properties: In particular the mean-square displacement is markedly higher than the one extracted
from experiments in the bee phase at high temperatures. On the other hand, mean-square displace-
ments in the hcp phase are in excellent agreement with experiment. The results are quite satisfacto-
ry in view of the small number of fitting parameters and the difficulties commonly encountered in
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matching the properties of bcc metals.

I. INTRODUCTION

The development of many-body potentials witnessed in
recent years represents a major improvement in the
domain of atomic-scale calculations. In particular, for
transition metals, potentials based on the embedded-atom
method (EAM) of Daw and Baskes,! the Finnis-Sinclair?
(FS) scheme, and the Rosato-Guillopé-Legrand® (RGL)
scheme have been devised to model the metallic cohesion
and account realistically for a large variety of properties
treated inadequately by simple pair potentials. We recall
that pair potentials lead to a vacancy-formation energy
about equal to the cohesive energy and cannot describe
the elastic properties of metals since they yield a vanish-
ing Cauchy discrepancy, C;,=C,,. N-body potentials
have been implemented to cope with these limitations. In
the EAM case, the energy of the system is viewed as the
energy required to embed a given atom into the local
electron density provided by the remaining atoms plus a
core-core repulsion potential which takes the form of a
pair potential. The potential energy is written as

E=3Fph+3 3 o)), (1)
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F; is called the embedding energy of atom i, p; is the elec-
tron density at atom i, and ®(r;;) the repulsive interac-
tion between pairs of atoms separated by a distance r;;.
Equation (2) is obtained from (1) by approximating the
electron densities p; pertaining to each atom in (1) with
the superposition of the atomic electron densities pj from
the other atoms. Physical motivations for the EAM as
well as practical details of the empirical fitting leading to
a complete determination of the embedding energies and
pairs interactions have been documented elsewhere.*
We point out that a derivation of the EAM formalism
from first principles has been recently worked out.> An
analytical form closely similar to the one given in (1) but
based on a somewhat different physical interpretation has
been proposed first by Finnis and Sinclair? and later by
Rosato, Guillopé, and Legrand3 with the intent of per-
forming large-scale atomistic computations [Monte Carlo
(MC) and molecular-dynamics (MD) simulations]. Their
approach is related to the second-moment approximation
of the tight-binding electronic density of states and fol-
lows the line pioneered by Friedel® and Ducastelle.’
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Within this approximation, the energy of the d band is
proportional to the square root of the second moment of
the density of states. The latter is expressed in terms of a
sum of the square of the hopping or transfer integrals and
accordingly the potential energy takes the form

Epot:_z [ 2 fz(rij)]l/2+2 2 (I)(I’[j), (3)

i i #D i j(FD)

where f(r;;) is proportional to the transfer integral be-
tween atoms / and j separated by the distance r;; and the
repulsive pair potential & is once again required to
guarantee the stability of the lattice. The RGL and FS
approaches differ in the form of the f and ® functions:
They are taken to be exponentials in the first case (as sug-
gested by Friedel and Ducastelle) and polynomials in the
second. In practical applications, the range of the in-
teractions and the potential parameters are determined
by computational convenience and empirical fitting.>>%?
A remarkable feature common to the three families of
potentials outlined above is the introduction of the N-
body character through the functional appearing in the
attractive term (square root for the tight-binding-related
expressions, and F; to be fitted in the EAM case). EAM
and RGL potentials have been successfully employed to
calculate static and thermodynamical bulk,%!® sur-
face,*® 1112 and defect>!® properties of fcc metals. In
particular, thermal expansions calculated for a set of
EAM fcc potentials'* and for Cu (Ref. 12) in the RGL
case as well as phonon dispersions® ! were found to be in
good agreement with experiment. Applications of N-
body potentials to hcp metals are rather scarce and to our
knowledge limited to the work by Oh and Johnson'®
within the EAM scheme and by Igarashi et al.!” using FS
potentials. More problems were encountered for bcc
transition metals. Despite the modifications to the origi-
nal FS potentials introduced by Rebonato et al.” and by
Ackland and Thetford!® improving the pressure-versus-
volume relations, thermal expansions are modeled inac-
curately by most FS potentials constructed for bcc met-
als.’® As to phonon properties, the agreement with ex-
periments for the dispersion curves calculated by using
FS potentials®® was found to be satisfactory for Mo and
W but poor for Ta, V, and Nb. For this last metal, Eri-
don and Rao?! were able to achieve a good fitting to the
experimental data “but the predictive capabilities of this
model away from the region of the configurational space
in which it was constructed has not been tested.” More
promising in this direction appears to be the EAM ap-
proach as shown recently by Adams and Foiles that im-
plemented a highly satisfactory potential for vanadium??
to study bulk and defects properties of this metal. On the
other hand, no attention has been paid so far to the high-
temperature bcc phase of the elements of group IVa (Ti,
Zr, and Hf) that have the feature of undergoing a bcc- to
hcp-phase transformation when lowering the tempera-
ture. Given the intriguing and still unexplained peculiar-
ities of high-temperature diffusion in these metals® it
would be desirable to rely on an appropriate description
at the atomistic level of their bcc phases. Moreover, we
are unaware of any attempts to achieve a realistic model-
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ing of different crystallographic phases of the same ele-
ment by employing the same N-body interatomic poten-
tial. The main purpose of this work is to present the de-
velopment of an interatomic potential for Zr that meets
these requirements.

As shown in a preliminary report,?* the potential that
we constructed in the framework of the RGL scheme is
well behaved when tested against elastic and phonon
properties of both hcp and bee phases and accounts prop-
erly for the stabilization of the bee phase at high temper-
atures. This paper details the implementation and the as-
sessment of the reliability of the potential with respect to
defect properties, phonon-dispersion curves, and dynami-
cal behavior. For this purpose, we performed quasihar-
monic lattice-dynamics computations and molecular-
dynamics simulations. A forthcoming paper will be de-
voted entirely to the mechanisms and the energetics of
the hcp-bee phase transition.?> The paper is organized as
follows. In Sec. II we describe the implementation and
the practical layout of the fitting procedure and we place
special emphasis on the cutoff-radius dependence of the
stability of a given phase. We compare also the elastic
properties of the static lattice in the hcp and bcc phases
to experimental results. In Sec. III we describe the com-
putational techniques. Section IV is devoted to a presen-
tation of the results for defect properties, thermal expan-
sion, phonon properties (highlighting, in particular, the
temperature dependence of the T1 N-point mode), the
mean-square displacements. Conclusions are drawn in
Sec. V.

II. THE MODEL
A. Interatomic potential for Zr

The potential we use has the analytical form intro-
duced in the original paper of RGL,® namely, the total
potential energy of an assembly of NV atoms is

N
Enw= X E;, 4)
i=1

where E;, the contribution of atom i, is the sum of two
terms:

E,=E/+E!, (5)
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where A4, &, p, and g are the four adjustable parameters of
the potential. E/ is a repulsive pairwise interaction of the
Born-Mayer type and E? is the tight-binding d-band en-
ergy for transition metals approximated by its second
moment. The interactions in (6) and (7) are calculated up
to a distance r_,, whereas r, is taken to be the nearest-
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neighbor distance; p and g are thus dimensionless. Note
that r, is not an additional fitting parameter. We fixed
the value of ry by extrapolation to zero temperature of
the experimental value of the nearest-neighbor distance
in the hcp phase of zirconium (r;=0.31744 nm). It is
worth commenting at this stage on the suitability of the
second-moment approximation in the form given by (6)
and (7) to describe correctly the cohesion in transition
metals for different crystalline structures. For closed-
packed phases (hcp or fcc), the second-moment approxi-
mation gives an excellent representation of elastic proper-
ties.>” On the other hand, the second-moment approxi-
mation in the RGL form is commonly unfit to reproduce
the shear anisotropy ratio C,,/C’ of bce metals. With
interactions restricted to nearest neighbors, C’ is equal to
zero for the equilibrium structure, regardless of the
analytical form of the f and ® functions in (6) and (7).
By accounting for next-neighbor interactions and keeping
the same cutoff radius for both attractive and repulsive
contributions, we found empirically the following behav-
ior: Whenever we tried to fit the potential to the cohesive
energy, the lattice parameter and the elastic constants of
any bcc metal, we obtained a value for C’ between
—0.1X 10" and 0.1X10'? dyn/cm? Consequently, the
form of the potential that we adopted does not allow one
to match the much larger C’' (from 0.5X10'2 up to
1.6 X 10'? dyn/cm?)?¢ typical of the elements of columns
V and VI (V, Nb, Ta, Cr, Mo, and W). Conversely, met-
als of column IV, such as zirconium, characterized by a
relatively small C’ (0.06X 102 dyn/cm?) (Ref. 27) are
likely to be described more adequately. This stumbling
block regarding the C’ behavior displayed by potential
models for bcc metals has been noted also by Oh and
Johnson'® using the EAM approach. In this context, we
draw attention on a recent numerical work performed by
Legrand®® that obtained a good agreement with experi-
mental results for the variation of C’ as a function of the
filling of the d band. Legrand made use of a tight-binding
expansion of the energy up to the fifth moment of the
density of states (the result remains unchanged while go-
ing up to the nineteenth moment). Elastic constants of
Fe, Nb, Mo, and W were also successfully calculated by
Masuda et al. using a tight-binding recursion method.?

B. Fitting procedure

The parameters 4, &, p, and q in (6) and (7) are fitted to
static properties of hcp zirconium at zero temperature.
We performed a series of fits for different cutoff radii 7.
For a given r,, we fitted 4, &, p, and g to the cohesive
energy, the atomic volume, and the elastic constants as
follows: The cohesive energy of our model is required to
be equal to the experimental value E, and, therefore

AS,—&V'S,=—E, , (8)

fl—l]” ©)
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The summations include all neighbors j of a given atom i
for which r; <r.,. The condition of zero pressure im-
plies that

M/

2
q"o

S,= 3 exp{*

Jj (i)

’

AS| —E—2—=0, (11
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Equations (8) and (11) can be rewritten as follows:
_ E_.S)
§,51—5,53
_ ES\VS,
§,81—5,53 .
This means that for a given choice of the lattice constants
a and ¢ and of the parameters p and g the values of 4 and
£ leading to the experimental cohesive energy and zero
pressure are given in (14) and (15). The equilibrium
atomic volume is set equal to the experimental volume
Qy, namely, the lattice parameters a., and c., corre-
sponding to zero stress-tensor components o;; are such
that

ac. V3/4=Q, . (16)

€q-eq

where

Si=3 prijexpy— |p
J(#D

and

S3= 3 qriexpi— |2q

JFLD

’ (14)

(15)

In a noncubic structure, Eq. (11) does not necessarily
imply that o;;=0. To satisfy this condition, we proceed
in two independent steps. First we set the ¢ /a ratio equal
to the ideal value V'8/3, a and c¢ being calculated from
(16). Then p and g are determined by minimizing the
difference between experimental and calculated elastic
constants. We performed a minimization involving all
elastic constants, rather than choosing some of them and
obtaining poor agreement for the others. With these
values of p and g, we then by trial and error looked for
the c/a ratio leading to o;;=0: We chose a value for
c/a, recalculate 4 and & by (14) and (15) until
IU,-j| <0.05 kbar. The best fit was obtained by setting
p=9.3 and ¢ =2.1 throughout the fitting procedure. The
cohesive energy is then calculated for the fcc and bce
structures with their lattice parameters corresponding to
Zero pressure.

As shown in Fig. 1, the stable phase is alternatively
hcep, bee, or fee for different values of r,,. For small r_,,
the stable phase is generally the one which has the largest
number of interacting neighbors per atom. For larger
rou» the potential stabilizes the hcp structure. The
cohesive energies of the fcc and hep phases are very close
to each other as observed in the case of the Lennard
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-5.2 TABLE 1. Parameters of our potentials for Zr for two
| different cutoff radii. The properties of the hcp phase used for
-5.4 the fit are the cohesive energy, E., the atomic volume, ,, and
the elastic constants, C;;. 4, §, and E, are expressed in eV per
-5.6 atom, the distances in nm, €, in cm>mol ™!, and C; in 102
— dyncm 2.
% 58 WM?2 WwM1 Experiments
~ wM1
v -6.0 | eut 0.54 0.68
K Yo 0.31744 0.317 44
-6.2 F | P 9.3 9.3
q 2.1 2.1
-6.4 1 1 L 1 L L L A 0.16702 0.179 364
0.32 0.44 0.56 0.68 0.80 £ 2.254948 2.20142
r ( nm ) a 0.32196 0.3202 0.32261?
cut c/a 1.60325 1.629 8 1.595°
FIG. 1. Cohesive energy in various crystal structures, hcp gc 12;—5/ 13;; lg.;;
(long dashed), fcc (short dashed), and bcec (solid) as a function of CO 1'54 1.62 1'554b
the cutoff radius for the RGL potential fitted to hep Zr. A fit is C“ 070 077 0.672 3
made for every additional neighbor shell of the hcp structure. C12 0‘65 0.65 0.646"
The fitting procedure requires the cohesive energy in the hcp C‘3 0'34 0'30 0.363b
phase to be equal to its experimental value, i.e., 6.17 eV. BM 0'97 1'01 0.973413

Jones potential which stabilizes either one of the two
phases, depending on the cutoff radius.>® In Zr the hcp
phase is stable at zero temperature but the energy
difference with the bcc phase is quite small. To repro-
duce this feature and obtain the largest cohesive energy
in the hcp structure, we choose 7, =0.68 nm (see Fig. 1).
Hereafter the potential resulting from the fit performed
with this value of 7, will be denoted WM 1. The total
number of neighbor shells is six in the hcp phase and five
in the bcc phase, leading to 56 and 58 interactions per
atom, respectively. As we shall see in Sec. IV some pho-
non frequencies in the bcce structure are imaginary within
the quasiharmonic approximation for this potential.
Therefore a different potential stabilizing the bce struc-
ture is needed to perform quasiharmonic calculations in-
volving sums over phonon modes. For this purpose, we
employed a potential (hereafter denoted WAM2) issued
from the fit with r_, =0.54 nm and characterized by pos-
itive phonon frequencies and largest cohesive energy in
the bcec phase with respect to the hcp and fcc phases.
The parameters of the potentials WM1 and WM 2, as well
as the comparison between the experimental and calculat-
ed values of physical quantities entering the fit, are sum-
marized in Table I.

A comment is in order on some outcomes of the fitting
procedure. First, we notice, from Table I, that the exper-
imental value of the c/a ratio [(c/a)*P'=1.595] is
slightly smaller than the ideal value [(c/a)9?=1v'8/3
=1.633] for the hexagonal structure. Ducastelle®
demonstrated that the second-moment approximation
with interactions restricted to nearest neighbors yields
the same cohesive energy for the hcp and the fcc phases
and a c/a ratio equal to the ideal value. The fourth-
moment approximation is required to make a difference
between fcc and the hep and to give values of ¢ /a other
than V'8/3. That ¢ /a(c /a )% in our models is there-
fore due to the extension of the interactions to further

#Reference 31.
"Reference 27.

neighbors. Furthermore, we observe that the agreement
between experimental and calculated values of elastic
constants is more satisfactory in the case of the WM2 po-
tential and, in particular, for the elastic constant Cy,.
This pecularity has to be related to the value of the ¢ /a
ratio which is closer to the experimental one. Indeed, we
obtain a much better agreement for C,, by employing the
WM 1 potential on a nonequilibrium structure by impos-
ing a c¢/a ratio equal to (c/a)™P'. We mention that
Igarashi et al.,'” in their application of FS potentials on
hcp metals, were able to reproduce the experimental ¢ /a
ratio. This has been made possible by writing the f and
@ functions in Eq. (3) as sums of interactions of different
range, but this strategy required up to ten adjustable pa-
rameters.

C. Static properties of the bce phase

It is of some interest to compare static properties of the
bee phase of our WM potential with experimental
values at temperatures larger than the hcp-bee experi-
mental transition temperature (T"=1136 K) or extrapo-
lated therefrom. As expected, given the choice of the
cutoff radius, the enthalpy difference between the bcc and
the hep phase, Hy. — Hy,o, =0.027 €V, is positive and re-
markably close to the experimental value at T'". Table II
contains elastic-constant calculations on the static lattice
and their experimental counterpart at 7T=1188 K. We
find reasonable agreement for C|, and C,,, but an unsa-
tisfactory one for C,4. It is instructive to compare the
shear moduli C’ relative to the instability of the bcc
phase and the mechanism of the phase transformation.
In the experimental case, C’ is equal to 6 X 10'° dyn/cm?,
the calculated C' being equal to 7X 10° dyn/cm?. The
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TABLE II. Characteristics of the WM potential in the bce
phase at zero pressure compared with experiments. The energy
are expressed in eV per atom, the elastic constants in 10'?
dyn cm?, and the lattice parameters in nm.

WwM1 Experiments
Hy.. —Hy, 0.03% 0.04°
Ch 1.011* 1.04¢
Cp, 0.997% 0.93¢
Cy 0.656* 0.38°
B 1.002% 0.97¢
a 0.3595% 0.3574¢

#Static calculations.

YExperimental value at 1135 K (Ref. 31).

°Experimental value at 1188 K (Ref. 27).

YExtrapolation at 0 K of the linear fit on the experimental
values of Ref. 27 in the range 1200 to 1600 K.

agreement is favorable, both values being quite small
compared with C’ for bcc metals of columns Va and VIa
(0.5X102 < C’ <1.6X 102 dyn/cm?).26

III. CALCULATIONAL TECHNIQUES

A. Molecular-dynamics simulations

The goal of MD simulations is to reproduce the time
evolution of a system of NV particles by solving numerical-
ly their equations of motion.>* We rely on MD simula-
tions to study the thermal behavior of our system
through the analysis of thermal expansion, mean-square
displacements, and temperature dependence of phonons.
Our simulations in the hcp phase are performed at vari-
ous temperatures and zero pressure by using a combina-
tion of the Nosé3* constant-temperature and Parrinello-
Rahman>® constant-pressure techniques, this latter allow-
ing the shape and the size of the simulation cell to vary in
time. At low temperatures, the bcc phase of our model
spontaneously transforms into the hcp phase when using
the variable size and shape method, as shown in Ref. 24.
Thermodynamical properties of the bcc phase at these
temperatures can be obtained via N-V-T simulations in
which the temperature is still controlled by the Nosé
thermostat and the shape of the cell is kept fixed at values
of the lattice parameter corresponding to the desired
pressure. Under these conditions the crystal cannot
transform in a perfect hcp structure. In our simulations,
the fictitious mass parameter for the cell variables of the
Parrinello-Rahman method is equal to 10m ., where m,,
is the atomic mass of Zr, while the mass associated with
the thermostat degree of freedom is equal to 0.1 eV ps?.
The equations of motion are integrated with use of a
fifth-order Gear predictor-corrector algorithm3® with a
time step of 107 !° s. Periodic-boundary conditions are
applied in three directions. Most simulations in the bcc
phase are performed on a cubic cell containing 432
atoms. In the hcp phase, 384 atoms are arranged in a
parallelepipedic cell, the axes of which are along the
orthohexagonal directions. The basic orthorhombic cell
defined by the [100], [120], and [001] vectors is then
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reproduced 6, 4, and 4 times in the three directions. A
biased form of the MD algorithm is employed to relax
the system upon introduction of a defect. The idea was
introduced by Beeler and Kulcinsky and consists in set-
ting to zero the velocity of a particle whenever the scalar
product of its velocity and acceleration becomes nega-
tive.’’ This procedure is also known as quenched molec-
ular dynamics.'® When performing this calculation at
constant volume, we choose the lattice parameters lead-
ing to zero pressure for the relaxed configuration.

B. The quasi-harmonic approximation

In the harmonic approximation, the full interatomic
interactions are replaced by a second-order expansion of
the potential energy about the ideal equilibrium lattice
positions.3® In this approximation, the lattice expansion
is zero but effects of the lattice expansion on the phonon
frequencies are accounted for by imposing temperature-
dependent lattice parameters (the quasiharmonic approx-
imation). In our case, the latter were determined by MD
calculations, requiring zero pressure on the lattice. The
phonon frequencies are then determined by diagonaliza-
tion of the dynamical matrix, which is the Fourier trans-
form of the atomic-force-constants matrices.’®> An ex-
pression of the dynamical matrix is given for the EAM
potential in Ref. 15 and for the RGL potential in Ref. 40.
Thermodynamical properties such as the mean-square
displacement or the vibrational entropy can be computed
within this approximation by sums over the phonon
modes.>® This method can also be used to determine the
thermal expansion.'*

C. Dynamical properties of phonons

The quasiharmonic approximation is valid only for
infinitesimal atomic displacements. For most of the pho-
nons this approximation remains valid even at high tem-
peratures. However, for some particular phonons it is
necessary to go beyond this second-order expansion and
include anharmonic effects. This can be achieved by
higher-order expansion*'*? but the N-body character of
our potential complicates dramatically these calculations.
We therefore resorted to MD calculations that incorpo-
rate all anharmonic contributions. The dynamical behav-
ior of a phonon is then revealed by the time evolution of
its normal coordinate a(t):

a(t)= Y ri(t)-e,cos(q-l;) , (17)

where q and e are the wave vector and polarization of
the phonon and I; and r; the lattice site and atomic posi-
tion of atom i. At low temperatures the normal coordi-
nate has a sinusoidal behavior and the frequency of the
phonon can be directly determined. At higher tempera-
ture this is no longer possible because of the emergence of
anharmonic effects. Following Dickey and Paskin** we
introduced a perturbation of wave vector q, polarization
€4, and amplitude ¢, on the atomic positions. The per-
turbed positions r; are related to the initial positions by

r;=r;+eqa,cos(q-l;) . (18)
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The normal coordinate is seen to oscillate with exponen-
tial decay.** The phonon frequency v can be inferred
from the oscillation period and the phonon lifetime 7
from a fit on the exponential decay.

We applied this technique to study the behavior of the
T1 N-point phonon of the bce phase of our model. How-
ever, as it will be given in detail in Sec. IV F, the frequen-
cy of this particular mode depends on the strength of the
applied perturbation. To calculate the zero-perturbation
limit of the response to the displacements imposed in
(18), we found it highly convenient to comibine the per-
turbation technique of Dickey and Paskin to a procedure
closely related to the subtraction technique invented by

Ciccotti and Jacucci.** The latter method consists in
measuring directly the mechanical response of a system
to a suitable perturbation in the range of infinitely small
applied fields. This is made possible by following simul-
taneously the paths of the particles in the perturbed and
unperturbed trajectories and calculating the temporal
variation of the response as the difference in the relevant
dynamical variable. Provided that the trajectories are
not too long (a few picoseconds), this procedure yields a
noise-free response of the variable coupled to the external
perturbation. The statistical average of this quantity is
obtained by taking averages over several pairs of such
perturbed and unperturbed trajectories. Since the pertur-
bation can be infinitesimal, use of this technique does not
modify the thermodynamical properties of the system. In
our case, the perturbed trajectory is generated according
to Eq. (18) and the dynamical variable of interest is the
normal coordinate a(?).

IV. RESULTS

A. Monovacancy properties

The defect properties are calculated at constant zero
pressure. Accordingly, the lengths of the edges of the
simulation box are adjusted for both the perfect and the
defective crystal to ensure zero pressure. The formation
energy, Ef, and formation volume, Q/, of a defect are
defined by comparing the properties of a system of N
atoms containing one defect with those of a perfect crys-
tal as follows:

where E; and E, are the potential energies per atom in
the defective crystal and in the perfect crystal, respective-
ly. Similar notations are used for the volumes per atom
Q, and Q.

Values of the vacancy-formation and migration ener-
gies and the vacancy-formation volume calculated with
use of the WM 1 potential are reported in Table III. Ex-
perimental results with which to compare are rather
scarce. Hood* inferred from the absence of positron
trapping at vacancies in hep Zr an upper limit for the va-
cancy concentration (c,~107°) and then a lower limit
for the formation free energy, G, =1.35 eV at T=1136
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K. It is worth mentioning that Oh and Johnson'® have
included the vacancy-formation energy in their fit of an
EAM potential for hcp Zr. We feel that the experimental
value they take (Ef,=1.35 eV) is underestimated, this
value being the lower limit of the free energy Gj}. From
Table III one deduces a relaxation energy unusually high
(25%) in the bce phase compared with fcc (Ref. 3) (at
most 3%) and other bcc elements®® (15%). This high
value and the small formation volume are evidence for a
strong relaxation® around the vacancy and provide a vi-
able explanation for the very weak tendency towards pos-
itrons trapping at vacancies in bcc Zr.’? Diffusion is
most likely to occur via vacancies in both hcp* and
bee?”? zirconium at least for T<0.8T,,, where T, is the
melting temperature. Under this assumption, values for
the activation energy Ej can be inferred from the
diffusion rate (see Table III). The agreement between the
model and the available experimental data is excellent.
Because of the lack of experimental data and realistic cal-

TABLE III. Defect properties in hcp and bee zirconium. EJ
and E/ are the vacancy and interstitial formation energies, EJ'
is the vacancy migration energy, EJ is the vacancy activation
energy, and Qf and Qf are the vacancy and interstitial forma-
tion volumes. The energies are expressed in eV and the volumes
are normalized to the atomic volumes Qf and Q3. Here E/
refers to the most stable configurations: in the hcp phase and C
configuration defined in Ref. 54 and in the bcc phase the
crowdion configuration.

hep bee
Qf 0.712 0.49*
2.07° 1.53
Ef 2.14° 2.10°
1.55°
0.322
Er 0.88? 0.78°
0.28¢
1.852
E} 2.952
1.2-2.8¢8
2.85¢
2.46f
Qf 0.84* 0.90°
E/ 4272 3.0°

“Calculated value for the WM 1 potential by quenched MD.
°Calculated value for the WM 1 potential prior to relaxation.
‘Lower limit inferred from the experimental value of the free
energy of Ref. 45 at 1136 K (G{ > 1.35 eV) and by assuming
that S} =2k,.

YMD result for the WM 1 potential obtained from the vacancy
jump rate (Ref. 46).

“The value estimated in Ref. 47 from the melting point rule
(Ref. 48) for “normal” diffusion assuming a melting temperature
equal to 1870 K in hcp Zr.

‘Lower limit deduced from the experimental diffusion coefficient
assuming reasonable values for the preexponential factor (as de-
tailed in Ref. 45).

£Estimated from the slope of the Arrhenius plot of the experi-
mental values of the diffusion rate (Ref. 49).
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culations, our result for the vacancy-formation energy in
the bee phase is of particular interest. Further details on
the properties of vacancy diffusion in bee Zr will be given
elsewhere.?’

B. Self-interstitial properties

Self-interstitial formation energies for various
configurations in the hcp phase calculated for the WM1
potential are listed in Table IV and compared to the
values found by Oh and Johnson using an EAM potential
for Zr. The notation for the self-interstitial sites is that
used by Johnson and Beeler.’* In agreement with Ref.
54, we find that the C configuration is the most stable.
Self-interstitial properties in bce structures have attracted
more attention mostly because the presence of a curva-
ture in the Arrhenius plot calls for the possible existence
of a second mechanism for diffusion at high temperatures
in addition to the vacancy-related one.” In this respect,
a recent simulation study showed the spontaneous forma-
tion of Frenkel pairs in bce Zr close to the melting point
and lent support to the conjecture that interstitials may
play a key role in the diffusion process.*® Self-interstitials
have been investigated experimentally in Mo and Fe and,
in both cases, the favored structure is a dumbell along the
[110] direction.’® Most calculations predict the stability
of a dumbell configuration in the [110] direction in Fe
(Ref. 57) using a pair potential and in V, Nb, Ta,”!® and
Mo (Ref. 9) using FS potentials. A different dumbell
orientation is found for V (Ref. 22) (in the [100] direction)
modeled by an EAM potential. The crowdion
configuration is found in Ta, Cr,’® and W (Refs. 18 and
58) by using FS potentials. In Table III, we list the re-
sults of our calculations of the self-interstitial formation
energy and volume in Zr. The system relaxes toward the
crowdion configuration, regardless of the initial
configuration. The formation energy is also noteworthily
low, compared with the one found in V (Ref. 22) (3.0 eV
versus 4.58 eV).

On the basis of the above results for both vacancies and
interstitials, we conclude that our model yields ‘“not
anomalous” defect properties in the hcp phase, low for-
mation energies of both vacancy and interstitial, and very
low vacancy-migration energy in the bcc phase. The low
energies in the bce phase are partly due to important re-
laxation energies.

TABLE 1IV. Self-interstitial formation energies in hcp Zr ex-
pressed in eV.

Self-interstitial formation energy

Configuration WwM1 Oh and Johnson
(Ref. 16)
C 4.27 4.52
B, 4.32 4.73
o 4.48 4.62
S Unstable, decays to C 4.92
T Unstable, decays to C
B¢ Unstable, decays to By
By Unstable, decays to B, Not determined
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C. Thermal expansion

Thermal expansion is a crucial property to assess the
reliability of our potential with respect to temperature-
dependent properties. Thermal expansion of EAM-based
models has been the object of recent investigations. %1422
The thermal equilibrium lattice parameters are calculated
for the WM 1 potential at temperatures where the quan-
tum effects are unimportant [the Debye temperature in
hep Zr is equal to 265 K (Ref. 29)] and zero pressure by
molecular-dynamics simulations. In Fig. 2, we compare
the thermal linear expansion of the model with experi-
ment. The experimental and calculated [Aa(T)]/a and
[Ac(2)]/c are normalized to the corresponding values at
T.s=293 K in the hcp phase and T, =1200 K in the
bcc phase as follows:

Aa(T) . a(T)_a(Tref)
a a(Tref)

21

In the hep phase, the lattice parameters, a and ¢, display
a very similar behavior with increasing temperature. On
the other hand, the experiments show a more pronounced

2.5
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FIG. 2. Thermal linear expansion of (a) hcp and (b) bee zir-
conium. The symbols are the values obtained for the WM 1 po-
tential from MD simulations and the lines are experimental data
(Ref. 59). In (a) Aa/a is represented by the squares and the
short-dash line, and Ac /c by the triangles and the dash-dotted
line.
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anisotropy. In both phases, we find an absolute value of
the thermal expansion in good agreement with experi-
ment though slightly too large. These results are quite
satisfactory in view of the unphysical behavior displayed
by most bcc metals modeled within the FS scheme for
which thermal expansion is too small or even negative.'®
Adams and Foiles?? suggested that this difficulty may be
overcome by fitting the potentials to the full equation of
state of Rose et al.,®0 as done for fcc metals. Along this
line, an EAM potential for bcc iron has been proposed®!
but its thermal expansion has not been tested.

In our model, the volume change in the hcp-to-bcc
transition is positive, as expected from the nearly ideal
c¢/a ratio leading to a higher density in the perfectly
close-packed hcp structure. On the other hand, a
compression is observed experimentally; it is known as
the Goldschmidt compression and seems to be related to
the nonideal c/a ratio.’! This difference, together with
the fact that the fitting procedure involves the atomic
volume in the hcp phase, leads to a calculated lattice pa-
rameter for the bcec phase about 1% higher than the ex-
perimental one at T=1200 K (a®**'=0.3614 nm,*”>’
a™°d=0,3652 nm).

D. Phonon properties

Phonon-dispersion curves in a-Zr have been measured
by Bezdek et al.®? and then by Stassis et al.,®* who em-
phasized, in particular, on the temperature dependence of
the [001] LO-phonon frequencies. It appears indeed that
the I'[001] LO phonon has an anomalous behavior in the
hep phase of Ti, Zr, and Hf:% it softens appreciably with
decreasing temperature and at room temperature the
[001] LO branch exhibits a dip at the zone center. As ex-
pected our calculation is in excellent agreement for the
small wave-vector acoustic phonons because the fitting
involves the elastic constants. The major discrepancy is
observed for the branches issued from the high-frequency
I point phonon, i.e., the [001] LO, and [100] TOl, and
the [110] TOL, as shown in Fig. 3(a). The anomalous ex-
perimental behavior of these branches is attributed to the
detailed topology of the band structure near the Fermi
energy.%* The second-moment approximation is only sen-
sitive to the band width and does not describe these de-
tails, therefore the RGL potentials cannot account prop-
erly for these anomalies. The same discrepancy has been
observed in the case of Hf with a FS potential.!’

Phonon-dispersion curves in 3-Zr have been measured
by Stassis et al. Recently Petry et al.?”-°® have under-
taken a systematic study of the phonon properties of
three elements of group IVa, namely, Ti, Zr, and Hf.
These three metals undergo the same phase transforma-
tion from the bce to the hep phase on lowering the tem-
perature, and from the bce to the w phase under pressure.
Moreover, they are characterized by the same diffusive
behavior in the bee phase. The phonon-dispersion curves
of Ti, Zr, and Hf in the bcc phase display two low fre-
quencies and strongly damped phonons at the T1 N point
and L 2[111] points. These modes are, respectively, re-
lated to the displacements promoting the two martensitic
transformations mentioned above. A whole low-
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frequency branch connecting these two modes was
found.®® The frequency of the T1 N-point phonon has
been calculated using the first-principles frozen-phonon
method®” and it turns out to be imaginary within the
quasiharmonic approximation.®® At high temperatures,
substantial displacements are responsible for important
anharmonic effects and the phonon-phonon coupling
strength revealed by a fourth-order expansion is large
enough to stabilize the T1 N-point mode.*! The phonon-
dispersion curves, calculated in the quasiharmonic ap-
proximation using the WM1 potential, are compared
with experiments in Fig. 3(b). The overall agreement is
remarkable in view of the fact that the fitting procedure
deals with properties of the hcp phase only. We recall
that FS potentials for bcc metals as V and Nb lead to
discrepancies in the phonon-dispersion curves are as high
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FIG. 3. Phonon-dispersion curves of (a) hcp and (b) bee Zr.
The symbols are the experimental values at 295 K (Ref. 63) in
(a) and 1188 K (Ref. 66) in (b). The solid lines are the result of
quasiharmonic calculations with the WM 1 potential (the imagi-
nary frequency branch is represented by a long-dashed line).
The equivalence between the 2[111] and +[211] modes is indi-
cated by two identical vertical dash-dotted lines.
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as 50%.2° Furthermore, our potential is successful in
reproducing the two relevant anomalies of bce-Zr, name-
ly, the low frequency of the L 2[111] mode and the insta-
bility of T1 N-point mode in the quasiharmonic approxi-
mation.

Figures 4(a) and 4(b) show the phonon densities of state
in the hcp and the bec phases, calculated within the
quasiharmonic approximation by integration in the first
Brillouin zone.®® The result in the hcp phase is compara-
ble to that obtained by Stassis et al.®® by quasiharmonic
calculations with force constants fitted to experimental
dispersion curves. The discrepancy in the shape at high
frequencies is related to the difference mentioned above
regarding the branches issued from the high-frequency I'
point. The phonon densities of state in the bcc phase do
not present any peculiarity with respect to those current-
ly obtained for bee structures.’® The curves obtained for
the WM1 and WM?2 potentials are very similar except at
low frequencies where the first singularity due to the N
T1 mode in the WM?2 plot is replaced by imaginary fre-
quencies in the WM 1 plot. We recall that the WM?2 po-
tential, resulting from a fit with a different cutoff radius
(see Sec. II B), has been purposely selected because all its
phonon modes are stable.

(arb. units )

g(v)

1 | 1 1 1

0 1 2 3 4 5 6 7
Frequency ( THz )

(arb. units)

g(v)

Frequency (THz)

FIG. 4. The phonon density of state in (a) hcp and (b) bec Zr
calculated for the WM 1 (solid) and WM?2 [(dashed in (b)] poten-
tials.
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E. Temperature dependence of the T1 N-point mode

The displacement associated with the T1 N-point pho-
non of the bcc phase is related to the shuffle of every
second (110) plane necessary to achieve the bce- to hep-
phase transformation according to the Burgers mecha-
nism.?* Its wave vector q and polarization e, are the
(m/a)(1,1,0) and (—1,1,0) vectors. The experimental
study of the T1 N-point phonon is highly critical because
of both its low frequency (=1 THz) and its very short
lifetime (~1.2 ps). Heiming et al.®® have studied the
temperature dependence of this mode by neutron-
scattering measurements. According to their results, the
frequency appreciably decreases as the temperature ap-
proaches the bcce-to-hep transition temperature, but the
transition occurs before it completely softens.

The dynamical behavior of the T1 N-point phonon of
our model is revealed by the temporal evolution of its
normal coordinate. In Fig. 5 we have represented typical
signals obtained from N-V-T MD simulations at various
temperatures for 10~ !!s. At the lowest temperatures our
simulations are somewhat inadequate because they do not
include the quantum effects. However they are instruc-
tive to elucidate the classical behavior of our potential
model with temperature. As shown in Fig. 5, at 1 K, the
normal coordinate does not oscillate about zero, and its
finite value reveals a finite amplitude of the shuffle of
every second (110) atomic in the [110] direction. This is
the first step necessary to achieve the transition towards a
close-packed structure, the second being a contraction in
the [100] direction and an extension in the [110] direc-
tion.?* From Fig. 5 one deduces that at 1 K the phonon
is unstable while at 10 K and above the phonon is stabi-
lized. The frozen-phonon scheme helps to understand
this stabilization. Following Ref. 41 we calculate the po-
tential energy as a function of the lattice displacement
corresponding to the T1 N-point mode [see Eq. (18)].
The change in energy with respect to the perfect bee lat-
tice is represented in Fig. 6. The negative curvature at

0F ] (@)
E o <N )
& oA A ©
o ]
S oh AWN /\v/\V/\ ] (d)
VAR R arae
E 0:/\\/ I\vp/\vj\v\/v/\./\v/\vl\v/\'\/f (e)
)2 4 6 8 10
Time (ps)

FIG. 5. Time evolution of the normal coordinate of the T1
N-point phonon at various temperatures. (a) 1 K°, (b) 10 K°, (¢)
50 K°, (d) 600 K°, (e) 1200 K"°.
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FIG. 6. Calculated potential energy as a function of the am-
plitude of the lattice displacement «; corresponding to the T1
N-point phonon in the bce phase with the WM 1 potential. « is
expressed in units of the lattice parameter a. Inset shows the
same curve with different axis scales: at high temperatures the
barrier becomes negligible.

zero displacement is characteristic of the instability in the
harmonic approximation. The height of the barrier be-
tween the two minima (AE /kg=1.7 K) gives the tem-
perature separating the unstable and stable regimes, in
excellent agreement with Fig. 5. The phonon stabiliza-
tion is to be distinguished from the energetics-related sta-
bilization of the bcc phase with respect to the hep phase
which occurs at much higher temperatures.?* With in-
creasing temperature, the phonon frequency increases
and anharmonicity emerges. At the lowest temperatures,
the phonon frequency is directly determined from Fig. 5,
while at 1200 K and above the disturbance technique de-
scribed in Sec. III C needs to be applied.

Dickey and Paskin showed in Ref. 43 that the frequen-
cy and the lifetime measured by the perturbation tech-
nique are independent of the perturbation amplitude, say
a, in Eq. (18). In our case, for the T1 N-point mode, at
1200 K (=0.56T,,) oy must be as high as 10% of the lat-
tice parameter to overcome the background noise. The
perturbation is no longer small, and unlike the case re-
ported by Dickey and Paskin, the frequency—
determined from the time interval between the first and
the third zero of the normal coordinate—strongly in-
creases as a, increases (see Fig. 7). Indeed as « in-
creases, the anharmonic effects, which stabilize the pho-
non, are enhanced and the frequency rises. We thus ap-
plied the procedure described in Sec. III C to obtain a
response independent of the perturbation. We employed
a perturbation of amplitude a; equal to 0.001a (a being
the lattice parameter) and we averaged the signal over 40
pairs of segments of 2 ps each. Such a small strength
does not alter the thermodynamic properties of our sys-
tem and, in particular, the anharmonic effects are not
enhanced. We find that the phonon lifetime strongly de-
creases with temperature: From 1.2 ps at 1200 K to 0.6
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FIG. 7. Time evolution of the normal coordinate of the T1
N-point phonon at 1200 K when, initially, the atomic positions
have been perturbed with various perturbation amplitudes a.
The amplitude is normalized to the initial value. The average is
taken over 20 runs for the “large” perturbations: a;,=0.042a
(dashed), 0.085a (dash-dotted), and 0.13a (solid), where a is the
lattice parameter. For the infinitesimal perturbation (dotted
line), @;=0.001aq, the average is taken over 40 runs and the pro-
cedure described in Sec. IIIC is used. Inset: variation of the
frequency with the perturbation amplitude.

ps at 1900 K. The temperature dependence of the pho-
non frequency is shown in Fig. 8.

We conclude that our model is successful in reproduc-
ing the harmonic instability of the T1 N-point phonon
and its stabilization with temperature in agreement with
the first-principles frozen-phonon calculations of Ref. 41.
Moreover, the frequency of the stabilized phonon is close
to the experimental value, i.e., of the order of 1 THz. On
the other-hand, the frequency of our phonon is too weak-
ly dependent on the temperature compared with both the
experiments of Ref. 66 and the calculations of Ref. 41
(see Fig. 8). It is worth keeping this difference in mind
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FIG. 8. Temperature dependence of the frequency of the T1
N-point phonon. The squares represent the result for the WM 1
potential, the solid circle the experiments of Ref. 66, and the
open circle the calculation of Ref. 41 (the short-dashed line indi-
cates the predicted temperature dependence).
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because the low frequencies of the mode about the T1 N-
point contribute significantly to the mean-square dis-
placements and the vibrational entropy.

F. Mean-square displacement

Further insight into the dynamical properties of our
system can be gained by looking at the means-square dis-
placement (MSD) defined by

(u2y={([x;()—%,1*) , (22)

where x;(¢) and X; are the coordinates along the x axis of
the atomic position and of the lattice site of atom i. In
Eq. (22) the average is taken over several ten thousands of
time steps and includes all particles. The simplest
method of determining (u2?) experimentally is to mea-
sure the reduction in the intensity of the elastic com-
ponent of a Bragg diffraction peak produced by thermal
vibrations.®® Such experiments, to our knowledge, have
not been performed on Zr. The only data available for
(u?2) in Zr are those calculated by Schober’ in the
quasiharmonic approximation from the experimental
phonon-frequency data:*8

fiw
2kgT

coth

fwmax g((D) da) , (23)

#
2y —=_"°
(ug) 2m Yo

where g(w) is the phonon density of state normalized as
follows:

J ™ gdo=1. 4)

The high-temperature expansion, which is an excellent
approximation for T > T'pg,ye =265 K reads

k T wmax
(u2y="E2 [rgl@)y, 25)
m 0 w

The phonon densities of state used by Schober are ob-
tained by fitting force constants to the experimental
phonon-dispersion curves at various temperatures.?” 70

In our computations the MSD are determined by per-
forming MD simulations and by taking into account
finite-size-effect corrections.>*® The mean-square dis-
placements in the hcp phase are found to be isotropic
((u})=(ul)=(u?)) and in excellent agreement with
the calculations of Schober’ (see Fig. 9). The MSD are
larger in the bee than in the hep phase, thereby revealing
the very different vibrational behaviors of the two phases.
Our model and the calculations of Schober lead to rather
different temperature dependence of the MSD in the bcc
phase (see Fig. 9). When g(w) is independent of the tem-
perature, (u2(T)) is a linear function of the temperature
for T > T'pepye, as can be seen from Eq. (25). Usually one
expects the phonon frequencies to be shifted toward
lower values upon increasing the temperature because of
the softening of the interactions due to the lattice expan-
sion. As a consequence, g(w, T ;) is also shifted towards
lower frequencies relative to g(w, T,) for T greater than
T, and therefore {(u2(T,)) increases relative to the value
given by Eq. (25) in which g(w) is taken to be equal to
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FIG. 9. Variation of the mean-square displacement as a func-
tion of temperature in hcp (square) and bec (circle) zirconium.
The values obtained for the present model (solid symbol) are
compared with the quasiharmonic calculations of Schober (open
symbol) (Refs. 27 and 70).

g(w,T,). This is indeed the case in our model in both
phases. On the other hand, in the experimental case for
Zr the frequencies of the modes about the T1 N point
significantly increase with temperature. Because of their
low values, these frequencies strongly contribute to the
MSD, and lead to its decrease relative to the value ob-
tained from Eq. (25) with g(w) taken to be equal to
g(w, T=1200 K).

The difference between the model and the calculations
of Schober on the mean-square displacement can be illus-
trated by their leading to different Lindemann parame-
ters. Gilvarry’! reformulated the Lindemann criterion
for melting’? to state that melting should occur when the
root-mean-square displacement reaches a critical fraction
8 of the nearest-neighbor separation d. This, known as
the Lindemann law, can be written as

(uXT,))=8d>. (26)

This formula has been difficult to verify because of the
very few direct experimental determinations of (u2)
close to the melting point, but calculations based on elas-
tic constants data’> or Debye temperature data’® do sug-
gest that the relation may be valid for crystals with simi-
lar structures. Indeed & is of the order of 0.1 but depends
on the structure, namely, 8., <8g. <8y The extrapola-
tion of Schober’s calculations of {u?) to the experimen-
tal melting temperature (2141 K) leads to 8 equal to
0.092. In our model fusion occurred at 2000 K after a
N-P-T MD run of several 10710 52540 At this tempera-
ture we find for 8 a value of 0.106.

V. CONCLUSIONS

N-body potentials for transition metals have been the
subject of a large number of investigations in recent
years. Common to most EAM or FS applications is the
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use of elaborate fitting procedures developed with the in-
tent of obtaining the best possible match between experi-
mental and calculated quantities and based on a some-
times exceedingly high number of adjustable parameters.
This paper shows that the RGL approach allows a realis-
tic modeling of zirconium properties while conserving the
intrinsic simplicity of its analytical formulation that re-
quires only four adjustable parameters. To develop an in-
teratomic N-body potential for zirconium, we fitted a
standard, unmodified RGL form to cohesive energy, elas-
tic constants, and equilibrium atomic volume of a-Zr.
Then we checked the reliability of the potential with
respect to experimental quantities other than those in-
cluded in the fit, by employing various computational
techniques such as static computations, quasidynamical
relaxation procedures, quasiharmonic lattice-dynamics
calculations, and molecular-dynamics simulations in en-
sembles at constant temperature and either constant
volume or constant pressure.

In summary, our results are as follows. Defect proper-
ties of both the hcp and the bec phases of Zr are con-
sistent with the available experimental data. In particu-
lar, our results point towards low formation energies for
both vacancy (E{=1.53 eV) and interstitials (E/=3.0
eV) (the last one being most stable in the crowdion
configuration) in the 3 phase and low vacancy-migration
energy in the B phase (E,)"=0.32 eV). Our potential
meets a certain degree of success with regards to thermal
expansion in both phases. This is satisfactory in view of
the fact that the potential was not specifically devised to
obey the universal equation of state by Rose et al.®° giv-
ing the total energy of the lattice under uniform compres-
sion and dilation.

Within the limitations of an inaccurate description of
the details of the band structure inherent in the second-
moment tight-binding approximation, we obtained
phonon-dispersion curves and a phonon density of states
in the hep phase in very good agreement with experimen-
tal results. More significantly, computations of the
phonon-dispersion curves in the 8 phase prove that the
potential, fitted to properties of the a phase only, ac-
counts properly for the instability of the T1 N-point
mode in the harmonic approximation.

We paid special attention to the temperature depen-
dence of the T1 N-point mode which promotes the bce-
to hcp-phase transformation. On the experimental side,
the frequency of this phonon is seen to decrease sharply
with decreasing temperature, a behavior confirmed by
first-principles calculations. Our analysis of the dynami-
cal behavior of this phonon reveals that the potential
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correctly models its stabilization with temperature. Less
satisfactory is the weak temperature dependence of the
calculated frequency of the T1 N-point mode. At high
temperatures this particular frequency is obtained by per-
turbing the appropriate normal coordinate to overcome
the coupling between modes caused by the anharmonici-
ty. Due to the strong dependence on the applied pertur-
bation of the calculated frequency, we proposed and test-
ed an approach that leads to the zero-perturbation limit
of the response and predicts a value of the frequency of
the T1 N-point mode which is close to the experimental
one at high temperatures.

Finally we focused on the comparison between our cal-
culated mean-square displacements and the analogous
quantity extracted from neutron-scattering experiments.
The two sets of results agree in the hcp phase and display
a marked discrepancy in the bcc phase. We were able to
explain this difference in terms of the discrepancy be-
tween calculated and experimental temperature depen-
dence of the T1 N-point mode.

The model constructed and tested in this work appears
suitable for a microscopic description of both phases of
Zr. We recall that recently we achieved an accurate and
meaningful modeling of the dynamics of the B<«<>a transi-
tion and a sensible determination of the vibrational con-
tribution to the excess entropy stabilizing the 8 phase.?*
Globally, the results we presented here, together with
those concerning the mechanism and the energetics of the
phase transformation, indicate that our model can be
used with confidence in an attempt to clarify the high-
temperature features of diffusion in B-Zr. Work along
this direction, based on preliminary results contained in
Ref. 46, is currently in progress.
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