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Stable one-component quasicrystals
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The lowest-energy structures associated with a commonly used eff'ective metallic pair potential
are found for a wide range of values of the three parameters required by the potential. The struc-
tures tested include most of the lattices favored by the elements, the Bravais lattices with variable
c/a and b/a ratios, and a number of candidate three-dimensional one-component quasicrystal
structures. One of the quasicrystals is the stable structure for a region of parameter space close to
the virtual-crystal parameters appropriate to the observed simple-metal quasicrystals. Energies are
also evaluated for some crystalline approximants to the quasicrystals, and these structures are found
to be lower in energy than the quasicrystal only for a small portion of the region of quasicrystal sta-
bility, although it is still possible that sufficiently high-order approximants are lower in energy over
the entire region.

I. INTRODUCTION

It is now reasonably certain that a major contribution
to the stability of the observed quasicrystalline materials
comes from the electronic band-structure energy. The
stoichiometry of many of the alloys appears to be
governed by a Hume-Rothery rule, placing the Fermi
surface near an effective Brillouin-zone boundary' and
it has been shown through band-structure calculations
for the regular crystals which approximate quasicrystals
that the Fermi energy lies at or near a relative minimum
in the density of electron states. There are also phenome-
nological models of quasicrystal stability that rely in part
on the electron density and valence as parameters.
However, there are no published quantitative compar-
isons of the band-structure energy differences between
crystals and quasicrystals, in spite of the fact that a real-
istic estimate of energy differences would be very helpful
in understanding the relative importance of different con-
tributions to the stability. The energy comparisons that
have been done ' used simple and rather arbitrary pair
potentials, and the relevance of the results to the experi-
mental systems is unclear.

On the other hand, it is well known that the depen-
dence of the electronic band-structure energy on the ionic
structure can be approximated by a density-dependent
effective pair potential, ' ' provided that the overall
density is the same for the different structures considered.
This effective pair potential provides a qualitatively accu-
rate description of the structural preferences of the sim-
ple elemental metals, and gives good quantitative agree-
ment for the structural preferences of some of the simple
metal alloys as a function of pressure and
stoichiometry. ' ' One of the remarkable results of this
approach is the wide variety of difFerent crystal lattices
that are found to minimize the energy for different values
of the three parameters generally used: the ion valence
Z, the volume per ion Vo (these then determine the elec-
tron density parameter r, through Vo =4mZr, l3 ), and
the "core radius" r„which is the one parameter describ-

ing the pseudopotential in question. The purpose of this
paper is to apply this pair potential as formulated by
Hafner and Heine' to the question of structural energy
difFerences between crystals and quasicrystals, to discover
where we would most expect quasicrystals to form and to
estimate the magnitude of potential-energy differences be-
tween the quasicrystals and the crystals that compete
with them. The potential has been used in many studies
on glass and liquid-metallic structures, ' ' but it does
not seem to have been very closely examined to deter-
mine the ground states. This paper presents the lowest-
energy structures among the many lattices tested, in a
phase diagram similar to Fig. 14 of Ref. 12(a), and the re-
markable result here is that a particular model quasicrys-
tal is the stable structure in a region of the phase diagram
that borders the region of stability for the close-packed
structures.

Throughout this paper, the only quasicrystal models
that we consider are those of the simple icosahedral class,
with only one "acceptance domain" in the six-
dimensional cubic unit cell. ' In a previous paper, ' it
was found that two of the infinite number of possible ac-
ceptance domains stand out as being particularly good
candidate structures, since they have relatively high
sphere-packing fractions (for which the structures were
first selected) and they also have Madelung constants (as-
sociated with the electrostatic energy) that approach
those found for crystalline structures. These two struc-
tures, which I refer to as TSDo (truncated stellated dode-
cahedron) and RTDD (ruNed truncated dodecahedron)
following Ref. 19 (the names are derived from the shapes
of the nonconvex acceptance domains that specify the
structures), are used as candidate stable quasicrystals
here. It is the TSDo quasicrystal that is stable against all
the many crystalline structures tested in the parameter-
region referred to above, but there is no such region for
the RTDo quasicrystal.

The final section of the paper will make contact with
experiment by examining the region of (Z, Vo, r, ) space
that is found in the "virtual-crystal" approximation from
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the parameters for the elements that make up the
simple-metal quasicrystalline alloys. This approximation
completely ignores the chemical ordering that is in fact
evident in many of these systems, ' ' but even so the fact
that all these alloys lie very close together and lie close to
the region of quasicrystal stability mentioned above sug-
gests that the approximation catches the most important
contribution to the energetic stabilization.

II. THE EFFECTIVE PAIR POTENTIAL

To second order in a local pseudopotential V, (ignor-
ing the fact that there are nonperturbative terms associat-
ed with the formation of a crystal lattice ) the total
band-structure energy is'

EBs= g [V,(G)] [1/e(G) —1]!S(G)l
G (WO)

C„(G) S(G)l',
G (%0)

and this expression is equally valid for a quasicrystal, if
the sum over the reciprocal-lattice vectors G is replaced
by a sum over the higher-dimensional reciprocal lattice,
for which S(G) is then an averaged geometrical structure
factor ' that is a decaying function of G, the higher-
dimensional complement of the reciprocal-lattice vector
G. Application of the Poisson formula as appropriate for
either a crystal or a quasicrystal allows the transforma-
tion of this sum to real space (aside from the zero-q and
zero-r terms that add a volume-dependent, structure-
independent contribution to the total energy) to give

then the form of the pseudopotential makes only minor
changes to the structural energies. Following Ref. 12
then, we take e(q) to be that described by Ichimaru and
Utsumi, and the pseudopotential to be the simple
empty-core form

V„,(q) = 4mZ—e cos(qr, )/q (4)

(a)10—

where the one parameter r, can be obtained for a particu-
lar element from values fitted to Fermi-surface properties
or liquid resistivities. The resulting real-space potential,
obtained by Fourier transforming the band-structure part
of Eq. (1) and adding the Coulomb part, is shown for
three different sets of parameters in Figs. 1(a), 1(b), and
1(c) (the corresponding parameter values are labeled 1, 2,
and 3 in Fig. 2, and are used for comparison of the ener-
gies of different structures in Table I). Note the repulsive
core, the long-range Friedel oscillations, and in particular
the change in the character and relative depths of the
first two wells as Z and r, change. The Fourier transform
that needs to be performed in calculating this potential
was accomplished here with a fast Fourier transform of
the reciprocal-space function using 4096 points with a re-
sulting real-space range of 150~/kz. Using more points
or a longer range had no perceptible effect on the result-
ing energies.

Eas =
—,
' y n, @as(Z;) .

R,. (WO)

(2)
Z = 1.96

Q —rJ'r. = 0.538
3

Vo = 150 ao

Here the factors n, give the average frequency with
which the interatomic displacement R; is expressed in the
structure. Since the direct-ion Coulomb interaction must
still be accounted for, the total energy per ion associated
with the ion-ion and ion-electron interactions to second
order in the pseudopotential is given by

—10—
(b)10—

2.6

Q —rJr, = 0.530
S

Vo = 150 ao

E =ED( Vo) =+—,
' g n;C&,s(R; ),

R,. (WO)

where 4,ff(r) =4&s(r)+Z e /r. The first term in the to-
tal energy here includes all the zero-body (electron gas)
and one-body (electron-ion interaction to first order, in-
cluding most of the electrostatic energy of the ion-
electron system) energies, which depend on the density of
the system but not on the actual positions of the ions.
This structure-independent energy is so much larger than
the structure-dependent part that minimizing it
effectively fixes the density of the system, and in what fol-
lows it will be assumed that we compare different struc-
tures at fixed ion density.

As discovered by Hafner and Heine, ' the most impor-
tant factor in getting at least the correct sign for structur-
al energy differences is to have a realistic and self-
consistent form for the dielectric function in Eq. (1), and

—10—
(&)10—

Z = 2.04

Q —rJ'r, = 0.3
Vo = 150 ao

2
r/Vo /

FIG. 1. The effective pair potential in real space. The sec-
tions (a), (b), and (c) are for the points 1, 2, and 3, respectively,
in the phase diagram of Fig. 2. The vertical lines are the in-
terionic distances (with heights proportional to their frequency)
for the hcp lattice stable at point 1 in (a), the TSDo quasicrystal
stable at point 2 in (b), and the diamond lattice stable at point 3
in (c).
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FIG. 2. The stable structures as a function of valence Z and
core radius r, (relative to r, ) at constant volume Vo=150ao, (a)
face-centered orthorhombic (fco), (b) body-centered cubic (bcc),
(c) body-centered orthorhombic (bco), (d) diamond, (e) centered
tetragonal (ct), (f) face-centered cubic {fcc), (g) cx-gallium, (h)
hexagonal close-packed (hcp, ideal), (i) hcp (arbitrary c/a), (j)
5-Sm (9R), (k) hexagonal, (1) base-centered orthorhombic {bsco),
(n) icosahedron-based approximant at 5/3 ratio (I5/3), (o) I2/1,
(p) I3/2, (q) XSDO quasicrystal, (r) I1/1, (s) simple cubic (sc), (t)
simple tetragonal (st), and (u) simple orthorhombic (so). (a), (c),
(e), (i), (k), (1), (t), and (u) are the variable lattices (for which the
c/a ratios were varied to minifnize the energy), while the
remainder are fixed structures. The three numbered points are
those covered in more detail in Fig. 1 and Table I.

III. RESULTS FOR CRYSTALS AND QUASICRYSTALS

Now that we have a real-space pair potential it is a
simple matter to compare the structural energies for
different crystal structures using Eq. (3), simply by tabu-
lating the neighbor frequencies n; out to an appropriate

cutoff distance which was here chosen to be 10VO, so
that the interaction between each ion and the 4000 others
nearest to it was included. Convergence in real space was
checked by cutting off the sum at shorter distances, and
although the absolute values of all the energies did
change because of the long-range Friedel oscillations in
the potential, this had the same effect on all the struc-
tures (recall that they all have the same overall density)
and the energy differences appeared to have converged
fairly well by a cutoff of about 4VO (roughly 270 neigh-
bors) but the larger cutoff was retained for the calcula-
tions just to be safe. The energies were also compared in
reciprocal space, by evaluating the band-structure sum
Eq. (1) and adding on the Madelung term, and aside from
an overall volume-dependent shift of the energy, the ener-

gy differences between crystalline structures was the
same, and in fact convergence was better for the crystals
in reciprocal space than in real space. However, the
quasicrystal energies had great difhculties in converging,
because the six-dimensional sum involves the factor
IS(G )], which has only a 1/~G

~
decay at best. By

altering the G cutoff, a roughly 1/G, „convergence of
the reciprocal-space band-structure energy was found,
and fitting the results to that inverse-power-law function
gave limiting energies in good agreement with the results
of the real-space evaluation. It is because of this poor
convergence of the quasicrystal sum in reciprocal space
that we compare energies via real-space evaluations in
the following.

The lattices tested included eight variable lattices (with
b la and c la ratios that could be altered) and 20 fixed lat-
tices, some of which are listed in the caption to Fig. 2,
and in the case of the variable lattices the ratios were
varied to minimize the energy. Many of the fixed lattices
(such as for 5-Sm and a-Ga) were taken from the struc-
tures of the elements found in Ref. 28. Also among the
fixed lattices tested were a number of quasicrystal
approximants —regular crystals that are obtained from
the six-dimensional representation of the quasicrystal by
embedding the three-dimensional real space at a com-
mensurate angle, so that the golden ratio ~ is replaced
by one of its Fibonacci-sequence approximations (1/0,

TABLE I. The energy in milliHartrees per atom from Eq. (3) (with Eo =0) for some of the lattices at
the points marked in Fig. 2, for a volume per atom of 150 atomic units. The c/a and b/a ratios are
shown in parentheses, where needed, and the asterisks mark the lowest-energy structure for each point.

Lattice Point 1 Point 2 Point 3

fcc
bcc
hcp
hex
bsco
fco

diamond
I1/1
I2/1

TD3/2
Do

RTDO

—37.16
—39.93

—46.26 (1.602)
18.4 (0.956)

18.4 (0.957,1.74)
—41.1 (1.16, 1.16)

227.61
—22.49
14.75

—16.39
—16.29
—11.19

—12.73
7.12

—5.69 (1.690)
24.55 (1.055)

24.5 (1.04, 1.70)
—12.74 (1.0, 0.995)

201.3
—13.45
—7.07
—2.88

—15.32*
—1.98

43.69
36.69

23.34 (3.390)
23.24 (1.693)

18.96 (0.422, 0.588)
23.47 (1.866, 0.536)

11.71*
42.48
41.45
40.49
42.54
40.71
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1/1, 2/1, 3/2, 5/3, . . . ). Unfortunately, the acceptance
domain (the unit-cell structure) must also be modified in a
consistent way to preserve the local structure proper-
ties, ' and it is not known how to do this for a noncon-
vex domain. Therefore, the only approximants used for
comparison were for the convex icosahedral domain (and
also the truncated dodecahedral domain, but those were
not energetically favored), so that strictly speaking the
higher-order (5/3, at least) approximants could probably
be improved upon by using the correct nonconvex-
domain approximant crystals. The properties of the ap-
proximants used here are listed in Table II. In addition,
the neighbor frequencies for the two good quasicrystals
(TSDo and RTDo) had previously been tabulated' and
were used here, and the neighbor frequencies for a quasi-
crystal with a spherical acceptance domain were also
used for comparison purposes.

The results are presented in Fig. 2, showing the regions
over which different phases are energetically stable, for a
volume per atom of 150ap, to compare with Fig. 14 of
Hafner and Heine. ' " Note in particular the region of
stability of the TSDo quasicrystal (labeled "q") in the
figure, bounded on one side (lower valence or higher r, )

by the close-packed structures and on the other by the
approximants, which are followed by the n-gallium struc-
ture and other more open lattices. The general trend
from close-packed to open and then to close-packed go-
ing diagonally across the diagram was noted and ex-
plained in Ref. 12. The curves (a), (b), and (c) of Fig. 1

are at the parameter values of the points labeled 1, 2, and
3 ig Fig. 2, and the vertical lines in Fig. 1 indicate the in-
terionic distances found in the optimal structure at those
three points. In particular, note that the position of the
first potential well for points 1 and 2 is quite similar to
the close-packing distance for this density, so that in par-
ticular for point 1 the hexagonal close-packed structure
(with slightly nonideal c/a) is best. For point 2, the first
well is at a slightly shorter distance, and it seems the
TSDp quasicrystal is best able to achieve that at this den-
sity. For point 3, however, the close-packing distance is
very near the relative maximum in the potential, and it is
optimal for the structure to have a small number of much
closer neighbors, leading to stabilization of the diamond
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FIG. 3. The packing fractions for the structures of Fig. 2.
Within each contour the packing fraction is within 0.05 of the
value displayed. The quasicrystal region of Fig. 2 is shaded.

structure. Actually, the approximations here are likely to
start to break down for the potential of point 3, particu-
larly because the large value of the first minimum in the
effective potential here will most likely cause the metal to
expand, and the result may even be nonmetallic.

Table I lists the energies found for a selected number of
the tested structures in the potentials associated with
these three points in the phase diagram. We note that
the energy differences between the two nearest competing
low-energy structures can range from about 4 mRy (50
meV) per ion for point 2, to 14 mRy (175 meV) for point
3. It is also well known that the local approximation for
the pseudopotential tends to overestimate energy
differences by about a factor of 2, and so these energy
magnitudes should be taken as approximate at least to
that extent. In any case, the temperature associated with
the difference in energy between TSDp and its nearest
competitor (the 1/1 approximant) is roughly 500 K,

TABLE II. The nontrivial approximant crystals associated with the convex acceptance domains Io
(an icosahedron of the ideal dimensions) and TDo (an ideal truncated dodecahedron) (Ref. 19). The p/q
value is a rational approximation to the golden ratio r [—:(1+&5)/2] used in the construction in the
Jaric coordinate system (Ref. 29). The underlying crystal lattice is always either simple- or body-
centered cubic.

Approx.
polyhedron

TDo
TDo
TDo

Io
Io
Io
Io
Io

p/q (lattice)

2/1 (sc)
3/2 (sc)
5/3 (bcc)
1/1 (bcc)
2/1 (sc)
3/2 (sc)
5/3 (bcc)
8/5 (sc)

Basis size

4
30
61
13
93

413
847

7201

Packing fraction

0.321 135
0.568 575
0.545 835
0.652 630
0.551 084
0.577 667
0.559 398
0.561 354
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IV. VIRTUAL-CRYSTAL APPROXIMATION
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FIG. 4. The coordinations for the structures of Fig. 2.
Within a contour the coordination is greater than or equal to
the stated value, and here coordination is defined as the number
of near numbers no more than 15%%uo further than the near-
neighbor distance.

which is a reasonable number when compared with the
temperatures at which the experimental systems trans-
form (about 800'C).

Figures 3 and 4 clarify the close-packed versus open
division of the phase diagram by plotting contours of
constant packing fraction and coordination, respectively.
The packing fraction is the fraction of the volume that
would be filled by nonoverlapping spheres, and is given
by g=mpo. /6, where p is the ion density and o. is the
near-neighbor distance. The coordination is here defined
to be the average number of neighbors in a sphere of ra-
dius 1.1So.. The TSDO quasicrystal clearly lies right on
the border of the close-packed region, with a packing
fraction of 0.628 and a coordination of 10.7.

Up until now the system under consideration has con-
tained only one ionic component, characterized by the
three parameters Z, r„and Vo. Since the observed ma-
terials are usually alloys with at least three components,
it is useful to ask what connection there may be between
the apparently stable one-component quasicrystals we
have found and the experimental systems. Some of the
experimental systems show clear signs of chemical order-
ing, but if we ignore that, then they can be crudely ap-
proximated as systems where each ion position can ran-
domly be occupied by any one of the three different ions.
The structural energy of the virtual-crystal approxima-
tion, where the system is approximated by a single ionic
species with averaged valence Z=g; x;Z;, and an aver-
aged pseudopotential V, (q) =g, x; V~, (q), is then identi-
cal with that of the original system (there are additional
energy terms that only affect the structure-independent
terms in the energy) in the second-order pseudopotential
perturbation theory. ' If we further assume that
Vegard's law holds, the average volume per atom can be
computed for any set of relative concentrations as
Vo~ =g, x; Vo~ . Furthermore, the averaged pseudopo-
tential is reasonably well approximated by another
empty-core pseudopotential, and requiring a matching of
the first zero in the pseudopotential this gives an aver-
aged core radius,

r, =gx, Z, r„/Z .

In Table III the parameters calculated in this way for the
combinations of elements that form sp-type quasicrystals
are shown, and it is remarkable that all these lie close to
one another in the phase diagram, although Vaks has
claimed that they really fall into two groups according to
the Hume-Roth cry condition they satisfy —one for
valence 2.17 and one for average valence 2.42. The phase
diagram for an atomic volume of 124ao (representative of
the observed quasicrystals) is shown in Fig. 5, and we
note that for this volume the region of quasicrystal stabil-

TABLE III. The valence, free-electron radius, and core radius {the last two in units of the Bohr ra-
0

dius ap =0.529 A) appropriate to the various sp elements that form quasicrystals, and the virtual-crystal
parameters for several observed quasicrystals calculated from the elemental parameters. The corre-
sponding volumes per atom are listed in the last column.

Element or alloy

Li
CU

Mg
Zn
Al
Ga

A16pLi3pCu, p

A15 5Li3 3Cu
G a23Zn4pMg37
Mg»Zn37A126
A15, Li32Zn, 7

A151Mg36. 5Cu12. 5

A154Mg37Cu9

z
1

1

2
2
3
3
2.20
2.12
2.23
2.26
2.19
2.39
2.45

r, /ap

3.26
2.67
2.65
2.30
2.07
2.19
2.33
2.37
2.39
2.35
2.36
2.30
2.29

r /ap

1.06
1.24
1.39
1.27
1.115
1.10
1.113
1.112
1.26
1.20
1.13
1.21
1.20

Vp/a p

145
80

156
102
112
132
117
119
127
123
120
122
123
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FIG. 5. The stable phases for V0= 124, using the same labels
as for Fig. 2. The asterisks mark the parameters appropriate for
the simple metal quasicrystals of Table III.

V. CONCLUSIONS

The density-dependent effective pair potential ap-
propriate to the metallic state, and in particular the Axing
of the density by other terms in the energy, results in a
very wide range of possible structures that are stabilized
for different values of the three basic parameters. Rela-
tive to the other one-component crystalline structures ex-
amined here, the TSDO quasicrystal appears to have no
real disadvantages, in that it occupies the portion of the
phase diagram that would be expected given its coordina-
tion and packing fraction. The location on the phase dia-
gram also implies that the quasicrystals and their approx-
imants are reasonable as metallic structures, in that they
are considerably more closely packed than the distorted
structures found elsewhere in the phase diagram. How-

ity is considerably wider than for Vo=150, although the
range of average valences for which the r, /r, range is
particularly wide extends from Z =2.3 to Z =3.2, and so
the results here do not predict a restricted range of aver-
age valences for quasicrystal stability. The location of
the points of Table III is shown, and we note that they lie
close to, but note quite in, the theoretical region of stabil-
ity.

ever, we have not compared even with all the possible
Bravais lattices (there remain four that were not tried,
i.e., the two monoclinic, the triclinic, and the rhom-
bohedral structures) and in addition there are all the lat-
tices with bases. In principle, a search over all lattices
with reasonable bases (restricted to at most X points in a
unit cell) could be attempted, and perhaps should be, con-
sidering the richness that has already been seen in this
effective pair-potential approximation.

If a crystal can be found with a lower energy than the
quasicrystal (and this is to be expected for at least part of
the region occupied by the quasicrystal in the phase dia-
grarn here), the energy difference is likely to be of the
same order as the 50 meV between the quasicrystal and
the 1/1 approximant. At this level of energy difference it
is clear that in a realistic model thermal effects, phonons,
and other terms in the energy not considered here may
still conspire to make the quasicrystal stable in spite of a
disadvantage in the electronic energies. ' ' ' On the
other hand, a prediction of stability for a quasicrystal
does not mean it will necessarily be observed, since it is
likely that the TSDO quasicrystal does not have as simple
growth mechanisms as the screw dislocations found in
crystals, and therefore there would be a much greater
likelihood for growth into a metastable crystalline form
than into the quasicrystal.

Finally, it is certainly interesting to note that the
virtual-crystal approximation places many of the known
quasicrystals near the quasicrystal stability region pre-
dicted here, but the crude approximations used in treat-
ing the interionic interactions in the multicomponent sys-
tem do not render this a valid means of predicting the lo-
cation of quasicrystals. The replacement of these approx-
imations by pseudopotentials appropriate to the elements
involved should not be terribly dificult, and should yield
pair potentials that are considerably more realistic. One
of the problems that remains to be worked out with the
multicomponent systems is selecting multicomponent
analogs of the TSDo acceptance domain, but considerable
progress is being made in the characterization of the or-
dering in the experimental systems, ' and perhaps true
predictions of quasicrystal formation will soon be forth-
coming.
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