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We present an analytical method for treating the tunneling current between a tip and a sample in
scanning tunneling microscopy (STM) that goes beyond the independent-electrode (Bardeen) ap-
proximation and is valid for smaller tip-to-surface separations. The extremity of the tip is
represented by a single spherical potential well. This well is strongly coupled to neighboring tip
atoms, as well as the sample electrode, both of which we leave in a general form. The wave function
for the entire system is obtained by a matching procedure, from which the total current is deter-
mined. If the current is associated with s-derived tip orbitals, the result is comparable in simplicity
with that of J. Tersoff and D. Hamann [Phys. Rev. B 31, 805 (1985)]. The low-bias tunnel conduc-
tance is proportional to the local density of states (LDOS) of the surface, but renormalized to in-
clude multiple reflections to all orders: o < p(ry, Er)/D, where D depends on both the tip and sam-
ple electronic structures and on the tip position ry. This effect includes the modification of the sur-
face LDOS due to the presence of the tip. A compact expression is also obtained for orbitals of
higher angular momenta: p and d states. The current then depends on the gradients of the surface
spectral density, and not on the LDOS, and also has a characteristic denominator. We discuss the
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significance of this effect, both in the interpretation of STM images and related spectroscopies.

I. INTRODUCTION

In view of the established importance of scanning tun-
neling microscopy (STM) and spectroscopy in surface
analysis, there have been a number of theoretical contri-
butions addressing problems related to these techniques.
The most widely used theory of STM is that of Tersoff
and Hamann,! based on Bardeen’s approximation? for the
tunneling current between weakly coupled electrodes and
adapted to suit the particular geometry of a metal tip in
front of a surface. Their result states that the tunneling
conductance at low bias and low temperature is propor-
tional to the Fermi-level local density of states (LDOS) of
the sample: o <p,(Ep)p,(1y, Ep), where t denotes the tip,
s the sample, and r, the position of the tip. This theory
has allowed one to clarify many important questions,
such as the resolution of the microscope,3 the interpreta-
tion of STM images,®> ® and to some degree the tip’s
influence.”'

Recently, however, some authors have stressed the
need to go beyond the independent-electrode approxima-
tion in the calculation of the tunneling current in
STM.®!2 One reason for this is straightforward: If the
tip-surface distance is small (often the case in practice), a
perturbation approach is insufficient. Strong coupling
has been fully considered in the past—for example, in the
case of metal-insulator-metal (MIM) junctions.!>”!°
There have also been a number of differing approaches to
calculate the tunnel current between a tip and a sample,
in this case.!6™1?

Among the main difficulties in the theory of STM

/2

remains its interpretation solely in terms of the unper-
turbed density of states of either the tip or the sample. It
is generally assumed that the barrier thickness is the only
relevant parameter (1/k~1 A being the length scale).
However, following a formally exact treatment of the
tunneling current,!! Noguera has shown that, quite gen-
erally, the reflection coefficients at each surface also play
an essential role.”’ Indeed, the Bardeen approximation
ceases to be valid under particular circumstances such as
at the energies of surface states, impurity states, or other
localized states at one of the surfaces, or states associated
with the barrier. We have illustrated this point explicitly
for simple one-dimensional models,?' the full three-
dimensional case being much more difficult to interpret.??
Furthermore, while the observation of surface states of
semiconductors is very well established,?>?* this is not
the case for metal surfaces.?’> The question that arises is
whether or not STM data can be interpreted only in
terms of the LDOS.

The achievement of atomic resolution on some com-
pact metal surfaces®® (such as gold and aluminum) came
somewhat as a surprise, as it was not expected on the
basis of the corrugation of the LDOS in Tersoff and
Hamann’s original calculations. Experiments give a typi-
cal value for the giant corrugation in the 0.3-A range,
and a number of different mechanisms, beyond the scope
of the present work, have been proposed to account for
these results.?’” The recent calculation of Doyen et al.,'?
however, has failed to account for such a corrugation
based on electronic effects alone.

This situation is somewhat unsatisfactory: It would
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then be very useful to obtain an analytical expression for
the tunneling current valid for smaller tip-to-surface dis-
tances, while retaining the relative simplicity of Tersoff
and Hamann’s approach in the weak coupling limit. In
an exact treatment, however, the wave function for the
electron in the barrier region must be correctly matched
at both the tip and the sample surfaces, and they are no
longer independent. In the geometry of the STM there is
no symmetry whatever to exploit, usually rendering
analytical calculations intractable. Even if the free sur-
face has a translational symmetry, the total wave func-
tion W, in the presence of the tip is not a Bloch function.
This is due to the multiple reflected waves at both of the
interfaces, whose contribution to the current is ignored in
a lowest-order perturbation theory. We therefore pro-
pose an approach in which the matching of the total
wave function in the barrier to the tip electrode is possi-
ble.

We consider the following model depicted in Fig. 1:
The extremity of the tip is represented by a single poten-
tial well (region III) strongly coupled to the remainder of
the tip (region IV), in addition to the sample (I) on the
left. We assume that the potential can be taken as con-
stant in the vicinity of the well and that the rest of the tip
is not directly coupled to the sample surface. These as-
sumptions are not required in principle, but they simplify
the mathematics considerably. Our method includes the
case of nonplanar surfaces (i.e., steps, adatoms, adsor-
bates, etc.) as well as a tip with a complex atomic struc-
ture (contained in region IV). The wave function ¥, for
the entire system is calculated by the matching procedure
at the well at the tip extremity, from which the low-bias,
low-temperature current can be found.

If Ep lies within an s-derived band of the tip, we find
that I takes the simple form:

[ = 4e2y ImAp; (r, Ep)

7 D (1)

FIG. 1. Schematic of the model for the tip-surface system.
The system is divided into the following regions: the sample (I),
the barrier region (II), the extremity of the tip electrode (III)
consisting of a single spherical potential well, and the remainder
of the tip (IV). In our calculation of the tunneling current, re-
gions I and IV are arbitrary. The plane S; need not be the sur-
face of the sample; it serves merely as a boundary to a region of
constant potential (II).
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pr(re, Er) is the Fermi-level LDOS of the surface evalu-
ated at the center of the tip, and A is proportional to the
tip reflection coefficient. D is a denominator representing
the renormalization of p; to include multiple reflections
between the tip and the sample, to all orders. D depends
explicitly on both the tip and sample electronic struc-
tures, and also on r,, (thus also on the barrier thickness).
The independent-electrode approximation is equivalent to
setting D =1, and one recovers the result of Tersoff and
Hamann. In general, we find that D can be greater or
smaller than unity, leading to a possible enhancement or
reduction of the tunneling current. Its importance de-
pends, however, on the surface electronic states at the
tunneling energy. We will also show that this effect can
be interpreted as the modification of the surface electron-
ic structure due to the presence of the tip. We expect this
to be significant, particularly in those instances described
above in which the perturbation expansion is known to be
invalid. We are at present considering various examples
of surfaces in which the interpretation of their STM im-
ages and related spectroscopies may require such con-
siderations.?®

The content of the paper is as follows: In Sec. II we
discuss the method of matching the wave function at the
tip. We do this first for an isolated potential well in front
of the surface (not connected to the rest of the tip). We
then treat the problem of the extended tip. In Sec. III we
use these results to obtain the tunneling current and dis-
cuss its general characteristics. In this section our
method is also applied to tunneling to tip orbitals of
higher angular momenta: p and d states. We also com-
pare our results to other approaches and discuss possible
extensions of our method.

II. MATCHING PROCEDURE AT THE TIP

A. Single spherical well near a surface

To illustrate our technique of determining W, by
matching at the tip, it is much simpler to first consider
the case of the isolated spherical potential well (radius R
and constant depth V) centered at rj in the vicinity of
the surface, as depicted in Fig. 2. Of course, such a sys-
tem carries no current, but the method we apply for the
extended tip is similar, and this case is instructive. Here
we match the total wave function W, in regions II and III
at the radius of the well and, as an example, determine
the local density of states at its center.

1. Matching on the well

Let 9, (r) be the total incident wave on the sphere
from the surface, 1,(r) the reflected wave, and ¥,(r) the
transmitted wave (interior solution), shown schematically
in Fig. 2. The latter two are easily expressed in terms of
spherical functions about the center of the well:

Y ()= R, b (ikun)Y"(R) , (2a)
I,m

Y (0= T, . j,(ku) Y1) , (2b)
Lm
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FIG. 2. Simple illustration of the waves present in the tip and

sample system: ¥, is the wave from the surface as if the tip’

were absent, 1;,. is the sum of right-going waves in region II
(¢, +¢'), and ¥, and ¢, are the reflected and transmitted
waves, respectively. The presence of the additional waves v, ac-
counts for the coupling to the remainder of the tip.

where k=(—2mE /#*)'/?,
k=[2m(E+V,) /#]"?,

and u is the difference vector u=r—r,. R;, and T},,
are, as yet, undetermined coefficients. Here j;(z), h,+(z ),
and Y;" are the spherical Bessel functions, spherical
Hankel functions of the first kind, and spherical harmon-
ics, respectively. Due to the presence of the external
source (i.e., the surface), angular momentum is not a
good quantum number; hence the summation over all /
and m in Eq. (2).

The exterior solution can then be written as a superpo-
sition of the reflected waves given by (2a) and the waves
incident from the surface, which we denote ;. (r).
These are evanescent waves decaying in the direction per-
pendicular to the surface. The basis of our new approach
is to treat 1, (r) expressed in spherical functions about
the center of the well, which is essential for matching on
the tip:

Vinc D)= D, i liku) Y1) . (2¢)

Lm

Notice that i (r) is the full wave incident on the well
and is not simply the unperturbed wave function of the
surface in the absence of the well [which we term v, (r)
hereafter]. This is due to the additional reflected waves
at the surface due to the presence of the tip (denoted ¢’ in
Fig. 2). Indeed, the goal of our matching procedure,
rather than a perturbation approach, is to be able to ac-
count for such terms.

In Sec. III C and Appendix A, we discuss in detail the
determination of the expansion coefficients. However one
notices that the / =0, m =0 coefficient, Dy o=D, is re-
markably simple:

Do=(4m)" !, (1) ; 3)

it is proportional to the total incident wave evaluated at
the center of the well. This identity already contains the
result of Tersoff and Hamann for the tunneling current
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for the s-wave tip. We shall show below that the tunnel-
ing current is proportional to |Dy|? if only the / =0 waves
are retained. Then in the lowest approximation,
Yinc(ro) =9, (ry) and we shall recover their result. How-
ever, notice that no approximation has been made here to
arrive at Eq. (3).

Using the expansions (2a), (2b), and (2c), we can match
interior and exterior solutions in the usual way at the ra-
dius R of the well. Valid for all / and m, the coefficients
must satisfy

Rl,m :ﬁlj)l,m ’ (4a)
T, =T Dy > (4b)

where we have defined reflection and transmission
coefficients 2; and T ;:

R,=W{j(ikR),j,(kR)} /W{j(kR),h'(ikR)} ,  (5a)

T,=W{j,(ikR),h; (ikR)} /W {j,(kR),h;" (ikR)} ,

(5b)
and W is the Wronskian,
dg __df
w =f28 _gCol
(fgl=rg —8,.

The coefficients 7, and R, in (5) diverge precisely at
the energies of the bound states of the isolated spherical
potential well. Indeed, if the external source vanishes,
D=0 in Eq. (4), these are the only allowed energy eigen-
values (depending only on /). With an external source,
however, the matching is possible at all energies, and the
bound states are broadened into resonances. If E lies
near an / =0 resonance, for example, the T, and R,
terms are the most significant in the expansions (2a) and
(2b) for the transmitted and reflected waves. An analo-
gous argument holds for the / =1 case, and so on.

2. Matching with the surface waves

So far, the coefficients T, and R;, concerning the
well are only formally written in terms of the coefficients
D, ,, of the total incident wave. The D, ,, in turn must
also be functions of R;,, due to the additional reflection
on the sample surface, as depicted in Fig. 2. One there-
fore requires a further set of independent equations to ob-
tain the complete solution. One method would be to pose
a given surface structure for the sample, and again match
the wave function explicitly to the solution for the crys-
tal. However, for our purposes this would mean a con-
siderable loss of generality. We have therefore con-
sidered a different approach.

For writing the complete solution, let us introduce the
Green’s function g; (r,r’, E), corresponding to the Hamil-
tonian for the surface in the absence of the tip,

(H, —E)g;(r,r',E)=—8(r—1'), (6)

from which the LDOS is obtained via its imaginary part,

pL(r,E)“—‘—iImgL(r,r,E) .
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This Green’s function, as well as the corresponding
LDOS, includes the possibility of nonplanar surfaces
(such as steps, adatoms, adsorbates, etc.). Our only as-
sumption is that, in the vicinity of the well, the potential
is constant.

Now we add the spherical potential well centered at r,
and the Lippmann-Schwinger (LS) equation for the (total)
wave function reads

W)=y (1) =V, [ d*r'g (r,r )W), @)

where ¥, (r) is the unperturbed wave function of the sam-
ple. (We shall throughout suppress the E dependence of
gr). This form for the wave function is particularly con-
venient: It automatically satisfies the boundary conditions
of the problem, and also includes the effects of the surface
being nonplanar.

Since the integration in (7) is only over the volume 7 of
the well, ¥(r’) in the integrand is exactly the interior solu-
tion found previously:

Y ()= T, ,j,(ku)Y"(@) . (2b")
Lm

If the Green’s function, g;(r,r’) is also expanded in

spherical functions about the center of the well, then the

integral over 7 can be done analytically. We give the de-

tails in Appendix A.

The LS equation can then be solved in terms of quanti-
ties related to the unperturbed surface and tip. Retaining
only the / =0 contribution in the present discussion, the
result is

Wi(r) =9, (r) = A, (10)88, (r,10) — Aty (108 f (1, 1)
(8)

with A related to the well reflection coefficient through
A= —27#R,/mk. Here we have written the Green’s
function as the sum

g (r,x')=g,(r,r')+8g, (r,1') .

g is the free-particle Green’s function

—klr—r'|

m e

—_—— 9)
27 |r—r'|

g(r,r')=
whose imaginary part vanishes for energies below the
vacuum level. The second term 8g; is the contribution
only due to the electronic structure of the sample. The
wave function in region II can thus be decomposed into
these three terms: (i) the unperturbed wave function
from the surface, (ii) the reflected waves off of the surface
whose source is at the point ry: 8g; (r,ry), and (iii) the
waves reflected by the spherical well g,(r,ry). In Fig. 2
these three terms are labeled ¥ , ¥, and 1,, respectively.
The solution that follows for the total incident wave is
then

Vinc(1) =1 (£) = Ay (10)8g, (1,10) . (10)
In particular, by taking r=r,
(ry)
Y1) = Tl an

B 1+A8g, (rg,ry)
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We see that the LS equation can be solved in this unique
situation. Indeed, ¥;,.(r,) is written only in terms of
quantities of the surface unperturbed by the presence of
the well. The electronic structure of the well is only con-
tained in the factor A. Notice that we have completely
avoided mathematical difficulties associated with the
divergence of g,(r,r’) at r=r’, which is apparently not
the case in the method of Ref. 17. [8g; (r,r’) has no such
divergence at r=r’.] In view of Eq. (8), we then have the
complete solution for the wave function. Equivalent ex-
pressions to (11) for higher angular momentum states (p
and d) are derived in Appendix A.

As an example, consider the local density of states at
the center of the well,

(10, E)= |¢,(ro)|*S(E,—E) , (12)

which is now straightforward to calculate: Using the in-
terior solution v¥,(ry) in the I =0 case, together with the
result (11), we obtain

pL(ro, E)

E)=|T,|? , (13)
plroE)=|Tol |1+ 18g, (rq,10)|?

where p; (ry, E) is the unperturbed LDOS of the surface.
Equation (13) has the expected resonance behavior near
the energy of the bound states, caused by the energy
dependence of the denominator. Here, the unperturbed
LDOS is renormalized to include multiple reflections be-
tween the tip and the sample. Notice that all orders must
be included to obtain the correct resonance behavior. In
Sec. II B we consider the case of the extended tip and find
that a similar resonant effect is obtained.

B. Extended tip

The procedure we use for matching the wave function
at the extended tip follows very closely the discussion of
Sec. IIA. We write down the exterior solution in the vi-
cinity of the spherical well, and the corresponding interi-
or solution, with exactly the identical expansions [(2a),
(2b), and (2c)]. However, to these we must add the pres-
ence of the remainder of the tip. This implies waves in-
cident on the spherical well, as in Fig. 2, of the form

Y (1)=3 D, . j)likn) Y1) , (14)

Lm

which we add to the external solution and which com-
pletely accounts for the coupling to the remainder of the
tip. We shall now discuss how both the matching at the
tip extremity, and the solution to the LS equation, are
modified by the presence of ¢,.

First, since the total incident amplitude on the spheri-
cal well is now the sum D, ,, + D, ,,, the matching condi-
tions at the radius of the well simply become

R, ,,=R|(D,;,,+D;p,)
T,,, :CTI(‘@I,m +D;,,) .

(15a)
(15b)

Notice that while the reflection coefficient for the isolated
well was 77, the reflection coefficient for the entire tip is
found to be
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D, _ 2ut ., _ 2mW D,
Rip=Rim /Dim =R, [14‘@1: ] (16) l——Wﬁﬁp—-——;’;—K-ﬁo 1+E (19)

If the extension of the tip is infinite, then 72, may be
complex in some energy ranges. We shall show below
that this is the important factor determining whether or
not the system carries current.

As an example of these results, consider the special
case of the semi-infinite linear chain as the extension of
the tip, discussed in detail in Appendix B. In the / =0
case, we obtain the factor

D, /Dy=—1+explikga)/x ,

where Y is the coupling between nearest neighbors distant
by a lattice constant a: Yy =R h, (ixa). Here kj is the
Bloch vector related to the energy E of the state via
2y cos(kga)=1, which defines the s-derived band. Y
plays a similar role as the factor B/(E —E,) in a tight-
binding approach,’ 8 being half the width of a band cen-
tered at E,. The tip reflection coefficient can then be
written as
eIKBH
ﬁtipzﬁo X

Since the factor 72, cancels, #;, no longer has poles at
the energies of the bound states. This is consistent with
the broadening of the spectrum into bands: If E lies
within a band, the reflection coefficient for the tip does
have an imaginary part.

As the matching problem is done, consider then the LS
equation for the wave function in region II, which we
write symbolically:

Y=y, +g, VV¥. (17)

We then separate the Green’s function into two parts,
g1 =8, 108g,, and do similarly for the perturbing poten-
tial V="V +V,. Theterm V,, is the spherical poten-
tial well, while V, is the contribution due to the extension
of the tip. Assuming no direct coupling between the ex-
tension of the tip and the surface, we obtain Wy, as the
sum of four contributions:

Y=t +0g, Vyen ¥ +8&sVyen ¥ +8,V.¥ . (18)

The first two terms represent the total incident wave
from the surface, which we have previously called #;,.(r).
The third term is the reflected wave from the well on the
extremity of the tip ¢,, while the last term is the reflected
wave from the remainder of the tip (which in turn is in-
cident on the spherical well) and is identified with ¢,. It
then suffices to consider only the part of the LS equation
concerning the total incident wave:

¢inc = ¢L +8gL Vwelllp .

This equation, however, is formally identical to the one
solved in Sec. IT A for the single potential well, leading to
the simple expression for ¥;,.(ry). However, we obtain a
factor A which is now related to the fotal tip reflection
coefficient:

We thus have the complete solution for the wave function
throughout the barrier region II, in the case of the ex-
tended tip.

III. TUNNELING CURRENT AND DISCUSSION

The total tunneling current can be calculated by in-
tegrating the normal flux density j, over any plane paral-
lel to S; and summing over the relevant states:

1=2e*V3 [ j,dS8E,—Ep), (20a)
= Im |wr o, (20b)
J: = m m v 9z

We use the general expression for Wy (r) found in Sec. II,
for the I =0 case:

Wi(r) =1, (r)— A (15)8g, (r,10)
— Ainc(1o)g (1, 19) + 1 (1), 21

with A given by Eq. (19). Higher-tip angular momenta
are considered in Sec. III C. The calculation of I is then
relatively straightforward, and we omit the details.

A. Characteristics of the current

We find the following expression for the current:
_ 4e’v
#

1 ImA 3 |inc(r0)[*8(E, —Ef) , (22)

where ¥;,.(r,) is given by (11) above. It presents two ma-
jor characteristics:

(i) The current is proportional to ImA, which is also
proportional to the imaginary part of the total tip
reflection coefficient ;. We see here that the tip must
be infinite in extent (the resulting spectrum must have a
continuum). Even a ‘““cluster” tip yields a real value for A
and hence no current can pass through such a system. In
the simple case of a semi-infinite linear chain, as calculat-
ed in Appendix B, we obtain

ImA=(27%*/m )ae"“sin(kga) ,

which is also proportional to the group velocity of the
electron in the tip. This is in agreement with one-
dimensional propagation.

(ii) The second factor implies that the tunneling
current is proportional to the local density of states of the
surface, but in the presence of the tip. More precisely,

_ 4e’V pL(ro,Ef)

1 m .
# |1+ A8g; (ry,1y)|?

(23)

The latter resembles the result of Tersoff and Hamann,!

except for the presence of the denominator

D =[1+k5gL(r0,r0)|2 ’
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which we shall presently discuss in some detail. Here
pr(rg, Ep) is the LDOS of the unperturbed surface in the
absence of the tip, while p; (ry, Ef)/D is the correspond-
ing quantity with the tip present. Then the denominator
D can equivalently be interpreted as renormalizing the
surface LDOS.

The quantity D involves the waves induced by a source
at r,, reflected by the electrode surface, and detected at
ro. Then 8g, (ry,1y) contains the reflection coefficient at
the surface, as well as the usual barrier penetration fac-
tor. Furthermore, we have noted that A is proportional
to the tip reflection coefficient; our expression for the tun-
nel current in (23) is then quite symmetric in the physical
quantities related to the tip and sample electrodes.

As an example, for a plane surface in a free-electron
(Sommerfeld) model, and taking the potential step U at
z =0, 8g, (r,1;) can be written

d’q 1
(27T)2 aq

a,(z+zq)

8g..(r,10)=(m /#) [ r(qle’dre % ,

(24)
where
r(q)=(ik +a,)/(ik —a,)
and p=x—Xx,. Both the normal wave vector k and the
decay length 1/a, are g dependent:
k=[2m(E+U)/#*—q?]'?,
aq:(x2+q2)”2 _

Choosing either z or z, sufficiently far from the surface in
the barrier, Hurault?® uses the approximation

exp[ —kV/ pP+(z +24)?]
V pP+(z +2z4)?

8g, (r,1o)=(m /2mw#%)r(0)

(25)

which, however, neglects the g dependence in the
reflection coefficient but is reasonable for free-electron
metals. In this case, &g, (r,ry) is a spherical wave whose
source appears to be at the image of r, across the surface.
Therefore, for the perfectly planar surface, the quantity
88 (rg,1g) in our expression for the current goes roughly

as r(0)e ° /2zy). Then 8g; —0 as the barrier thick-
ness increases, and in this limit we obtain complete agree-
ment with an LDOS interpretation for the current, since
only the numerator in (23) remains through first order in
8g; . This is not surprising, since in this case no particu-
lar electronic effects are encountered, as evidenced in Eq.
(25). For example, r(0) is a smooth function of energy
near the Fermi level. If the tip is close to the surface, on
the other hand, 8g; is not an exponentially small func-
tion with z,, and the denominator must be included in
the calculation of the current.

For real surfaces, with a more complex band structure,
the general validity of the perturbation expansion in-
volves the condition

[A8g; (1o, o) << 1,
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which depends not only on the barrier width (through the
argument z,) but also on both the reflection coefficients at
the surface and the tip. Such a condition, then, may not
be satisfied for all values of the tunneling energy. This
effect could be significant, and we expect even qualitative
differences predicted by Eq. (23), particularly in those in-
stances described previously in which the perturbation
expansion is known to be invalid.?° The denominator D,
being a function of the tip position ry, may even be neces-
sary to interpret topographic images and the associated
corrugations. We also note that the above condition is
certainly not satisfied if the tip is close to the surface.

B. Small tip-surface separation

Other authors have treated the coupled states of the tip
and sample in the calculation of the tunneling
current.!®”'® Here we compare our results to those of
Tekman and Ciraci,’ Ferrer et al.,'° and Doyen et al.,1?
all of whom use different methods to treat the tunneling
current.

In one approach of Tekman and Ciraci,’ they first cal-
culate the influence of an additional atom near a graphite
surface and interpret its modified electronic structure.
This modification, baptized “tip-induced localized states”
or TILS, is then included in the matrix elements govern-
ing the tunneling process. The authors apparently as-
sume that the TILS for a single atom will be the same as
those for an extended tip. The net result of their calcula-
tion is an enhancement of the tunneling current, leading
also to a larger corrugation. This result depends, howev-
er, on a subtle phase relation between the bare sample-tip
and the TILS-tip tunneling matrix elements. This must
also imply a definite phase relation between the bare sam-
ple wave function and the corresponding tip-induced
term.

Tip-induced modification of the surface electronic
structure is included in our calculation via the total in-
cident wave from the surface ;,.(r). Indeed, examining
our expression for this quantity (10),

1»[}inc(r)z‘(I)L(r)_)upim:(ro)agL(r’ rO) ’

we note that the second term is precisely the induced
wave due to the presence of the tip. In addition, evaluat-
ing the above at the center of the tip, r=r,, we find the
relative amplitude of the induced wave with respect to
the bare surface wave to be

—Adg (1o, 1)
8L\ To, T ) (26)
1+A8g; (ry,1y)
the argument of which is the relative phase. Such a

phase can take any value depending on the detailed na-
ture of the electronic structures of both the tip and the
sample, the position of the tip, and the value of the tun-
neling energy. Consequently, the relative amplitude
given above can lead to an enhancement or a reduction of
the tip-induced wave from the surface. In contrast to
Tekman and Ciraci’s result, the form of this wave is not
the same for a single atom tip as for an extended one. It
suffices to compare the values of A, or the reflection
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coefficients, obtained for the single well and the semi-
infinite chain.

In a quite different approach, using a tight-binding for-
malism, Ferrer et al.!® express the tunneling current in
terms of the Green’s functions for the surface and the tip
multiplied by a tunneling matrix element |7|2. They fur-
ther neglect the imaginary part of the Green’s function
compared to its real part, for half-occupied bands. The
main goal of their work is to obtain the current for small
tip-to-surface separations and to deduce a value for the
contact resistance. Within the approximations men-
tioned above, they find the critical conductance to be ex-
actly o,=2e?/h, corresponding to a maximum in the
current as a function of distance.

In order to compare with their result, let us select simi-
lar conditions, i.e., by taking A imaginary. For the semi-
infinite chain this corresponds to kza =mu/2 (E lies at
the center of the band). Our expression for the tunneling
current then becomes

_4e’V f
mh (1+f)12+s?’

with f =7 ImAp; and s =ImA Redg; . If we argue that s,
appearing in the denominator, is small compared to f
[equivalent to neglecting Re(8g;) in comparison to
Im(8g; )], Eq. (27) is then a function only of f and gives a
maximum current for f =1, or a critical value for the
conductance of exactly ac=2e2/h. However, in general
it is difficult to argue that Re(dg, ) is small compared to
the imaginary part. Indeed, for the free-electron case de-
scribed above, it is easy to check that both can be of the
same order, and our result gives a lower value for o..

In Fig. 3 we plot the conductance versus tip-surface
separation, in the free-electron case, to illustrate this
point. The tip was taken to be the semi-infinite chain dis-
cussed in Appendix B, while Eq. (24) was used for the
surface Green’s function. We conclude that the argu-
ments leading to a contact resistance of 4 /2e? need to be

(27)

o e¥h . 4

Z (bohr)

FIG. 3. Plot of tunnel conductance (in units of e?/%) vs tip-
surface separation (Bohr) for a free-electron surface, as dis-
cussed in the text. The tip is a semi-infinite chain of spherical
potential wells, discussed in Appendix B, with a lattice parame-
ter of 4 bohrs. A conductance maximum, slightly less than
2e?/h, is encountered when the tip center is 2.6 bohrs from the
surface.
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reconsidered in detail for a given surface: It depends ex-
plicitly on the value of 8g; (r(,ry) at the Fermi level, as
well as the tip reflection coefficient, and does not appear
to take on a universal value. Our results, however, agree
qualitatively with those of Ferrer et al., in this example.
The denominator plays a key role in the value of the con-
tact resistance.

Doyen et al.'? have made extensive calculations of the
tunneling current between realistic metal surfaces (A1l
and Pd) and various models for the tip. The principal
aim was to account for the observed corrugations on
compact metal surfaces. Their calculations include the
effect of TILS, which apparently represents a varied con-
tribution to the total current, for the metal surfaces in-
vestigated. In agreement with our results, this effect de-
pends on the tip-surface separation, as well as the sample
electronic structure: A notable enhancement is obtained
for Pd(100), which is not the case for Al. It remains
clear, however, that these contributions, which are
strongly dependent on the barrier width, should not be
calculated using the Bardeen approximation. In addition,
these authors have calculated the tunneling current
through particular tip orbitals: 6s, 6p,, and 5d ;. They

find an enhancement effect due to the tungsten dzz orbit-

al. These results have incited us to use our method to ac-
count for higher-tip angular momenta.

C. Tunneling to higher angular momenta tip orbitals

In this paragraph we extend our method in order to
give analytical expressions for the tunneling current for p
and d orbitals of the tip. If the tip is of tungsten, then s
and d states dominate the DOS near the Fermi level, p
states being too low in energy. However, p states could
arise, for example, if a foreign atom is chemisorbed on
the tip. We show that the current can be expressed in
terms of the first partial derivatives of ¥,,.(r,), for p orbit-
als, and second-order derivatives of ¥,,.(r,) for d orbitals,
and so on. The simple relationship between the current
and the LDOS at the tip center completely disappears.

For a single arbitrary angular momentum (/,m) of the
Tlp stallte, one can show that the current is proportional to
$1 m

I Imﬁ'upz D, |P8(E, —Ep) , (28)

where, again, R, is the tip reflection coefficient. If more
than a single orbital is involved, then an additional sum
over [ and m is required. Placing the origin at the center
of the tip, the expansion coefficients 2, ,, can be written
in terms of ¥;,.(r) by taking successive radial derivatives
on both sides of Eq. (2¢), followed by the limit r—0. We
find

2l+1)

Dim= I

)y [ da ¢§° YR (29)
This expression shows that the coefficient 2, ,, is given by
a differential operator of order 1,2, ,,, acting on the total

incident wave, and evaluated at the center of the tip:
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Z)I,m :ﬁl,m ¢inc(r0) . (30)
For example, f)w is given by
A 1 0
- 1/72¢7,y—1.9_
@1,0 (127) (ik) 3z s 31)

and in Appendix A we list other ﬁ,’m. Chen*® has no-
ticed such a “derivative rule’” when computing the Bar-
deen matrix element for the tunneling current. However,
it is important to note that our operator £ acts on the
total wave from the surface, which includes the
modification due to the presence of the tip, and not on
Y (xo).

The problem is not complete, however, unless we can
express D, in terms of the unperturbed quantity Dy, ,
as we have done in Sec. II using the Green’s-function
technique. In Appendix A we show that this is indeed
possible, again within the hypothesis of a single tip orbit-
al. In particular, we obtain the following form for D,

3 D (1)
1+AD[D'1*8g, (rporg)

Do) (32)

where A is again proportional to the tip reflection
coefficient. In the above, 2’ acts on the surface response
function 8g; (r,r’) only with respect to its second argu-
ment r'.

Returning to the tunneling current, we substitute the
solution (32) for the quantity D (r,) in Eq. (28) for the
current, and obtain the final expression:

iA)[j\)' lp(xo,10)

I <Im%R =
P14+ ADID 1*8g, (ro,ro)]?

(33)

There is thus a single compact expression for the current
to any given orbital of the tip, whether s, p, or d. The
latter formula includes tunneling to the / =0 orbital, for
then 9D is proportional to the identity operator, and we
recover Eq. (23). The tunneling current is written in
terms of the gradients of the surface response 8g; (r,r’),
as well as its imaginary part —wp, (r,r’), evaluated at the
tip center. Our previous discussions apply here: The
numerator is the equivalent of the Bardeen approxima-
tion, which depends on the surface spectral density with
the tip absent, and agrees with the calculations of Chen.
Again, we find a denominator, which accounts for tip
modification of the surface electronic structure. We have
thus derived a convenient analytical form for the tunnel-
ing current which accounts for TILS, even in the case of
higher-tip angular momenta. To assess its importance,
however, means that we must calculate explicitly the
quantity D[D']*6g, for a given surface. Chen has found
that the contribution to p, and d, orbitals yields an
enhancement of the corrugation, over s states, using the
Bardeen approximation. It would then be important to
check whether the denominator in (33) plays a significant
role, for example, if the tip is close to the surface, or if
the sample has a particular electronic structure.
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D. Extensions of our work

The expression for the low-bias current could be ex-
tended to larger bias following, for example, the discus-
sion by Lang.’!. We then would obtain a further integra-
tion over the energy window from E to Ep+eV and the
integrand would roughly depend on p; (ry, E)/D(E). In
the range of investigation of any surface spectroscopy,
whether I (V) or dI /dV, if a peak in the density of states
is encountered (e.g., an adsorbate level near the sample
surface, a defect state, or a surface state), then D (E) may
represent an important contribution. Such a peak in the
DOS would then appear in both numerator and denomi-
nator, which tend to cancel. Furthermore, if the system
under investigation (the surface) has a low-dimensional
structure, p; (ry, E) may have a E /2 singularity near a
band edge in the 1D case, or a logarithmic one in the 2D
case. In these instances the independent-electrode ap-
proximation may lead to a qualitatively different interpre-
tation. This is important, since many samples in STM
are anisotropic, or have low-dimensional electronic struc-
tures.

On the other hand, in order to perform tunneling spec-
troscopy, some investigators prefer to deliberately use
blunt tips, while retaining sharp tips for topography, to
avoid tip artifacts in the spectra.*? In our calculation,
in spite of the general nature of the extended tip, we as-
sume that all the current goes to the well at the tip ex-
tremity: It remains essentially a sharp tip. This is also
true for the tip in Chen’s recent work.*® Tersoff’ has sug-
gested a method to interpret the tunneling current for a
blunt “incoherent” tip in terms of the solution for a sharp
coherent tip (within the local-density-of-states approxi-
mation). In the context of our work, a simple remedy for
this would be to begin with a number of spherical poten-
tial wells arranged in a cluster. These in turn would be
coupled to the remainder of the tip, as well as the surface,
and one could then apply our method for determining the
tunneling current.

IV. CONCLUSION

We have calculated the tunneling current between an
arbitrary surface and an extended tip, which terminates
in a single spherical potential well. In order to obtain
analytical results that go beyond a perturbation ap-
proach, we proceeded to solve the matching problem for
the total wave function at the tip. It was assumed that
only the apex atom of the tip was directly coupled to the
surface. The tunneling current was found, in the stan-
dard fashion, using the wave function for the system.

The technique used for the matching was the decompo-
sition of the wave function in the barrier in spherical har-
monics about the center of the spherical well at the tip
extremity. This method may have a much wider applica-
tion: If more than a single tip atom is strongly coupled to
the surface, the decomposition of the surface wave in
spherical harmonics about the tip atomic sites could
again be exploited.

The tunneling current was expressed in terms of the
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unperturbed surface and tip electronic structures by solv-
ing the Lippmann-Schwinger equation. In particular, we
were able to account for the tip-induced wave from the
surface, which depends on a part of the sample Green’s
function: 8g; (r,ry). This quantity represents the surface
response: It involves the waves induced by a point source
at r,, the position of the tip, reflected at the sample sur-
face, and detected again at r. For / =0 tip orbitals, we
showed that the current is then expressed simply in terms
of 8g; (ry,ry). In a symmetric fashion, the current also
depends on the tip reflection coefficient. This is expected,
since multiple reflections to all orders, between the tip
and the sample, are included in our calculation. In this
sense, our formula for the tunneling current goes beyond
perturbation theory, and is not simply proportional to the
LDOS at the surface.

We have also shown that the current can be interpreted
in terms of the LDOS of the surface but in the presence of
the tip, equivalent to the effect of TILS. We discussed in
what instances these effects may be important, such as for
surfaces where the electronic structure is highly accident-
ed, or if the tip is close to the surface. Furthermore, we
can obtain either a reduction or an enhancement of the
current, but this depends explicitly on the value of 8g; at
the tunneling energy.

We used our method to calculate the tunnel current to
orbitals of higher angular momenta: p and d states. A
compact expression was obtained that displayed many of
the characteristics of the s-wave case. The current is then
related to the gradients of the surface spectral density
p(ry,1y), but again including the presence of the tip.
This, in turn, could be expressed in terms of the gradients
of the same quantity 8g;, and again we found a charac-
teristic denominator. For higher-tip angular momenta,
the simple relation between current and LDOS is lost.

We have shown the form of 8g; for a free-electron
metal, and this quantity should be feasible to calculate for
a real surface. This would be necessary, for example, to
obtain a better understanding of STM topography, and
may provide some insight into the energy dependence of
the tunneling current.

APPENDIX A: EVALUATION
OF THE LIPPMANN-SCHWINGER EQUATION

We have found a solution to the Lippmann-Schwinger
equation for the total wave function, which we detail here
for the case of the single spherical potential well near the
surface. Following the definitions of Sec. II, if ¥, (r) is
the unperturbed surface wave function, g, (r,r’) the left
Green’s function, and V(u)=—V,6(R —u) the perturb-
ing potential, then Wy, is exactly written

Yi(r)=¢.(r)= V¥, ffd3r'gL(r,r')\I/(r’) ,

where 7 is an integration only over the volume of the
well. It is convenient to separate g; into two terms:

(A1)

gr(r,r')=g(r,r")+8g,(r,1') ,

where the former is the free-particle Green’s function,
defined in Eq. (9), and the latter is the surface term.

W. SACKS AND C. NOGUERA 43

Furthermore, W(r') in the integrand is the interior solu-
tion ¥, (r’) to the well (region III); thus we can write

V(r)=¢,(r)—V, de r'dg; (r,r' )Y, (r
—Vofd3r'gf(r,r’)1,bt(r

The third term is simply the reflected wave ¢,(r), whose
expansion in region II is known, and which contains no
new information. On the other hand, the first two terms
represent the total incident wave from the surface, which
we have called ¥;,.(r)

YD) =U (1) =V, [ dPr'8g, (r,0), (1)

The integration over 7 can be done analytically by using

the spherical expansion of ¢, about the center of the well,

used in the matching problem of Sec. II:
Y (0)=3 T}, i (kr)Y["(T)

Lm

(A2)

(A3)

(A4)

Here we have placed the origin at the center of the well.
Then we also expand 0g; (r,r’) in spherical functions
about the center of the well, with respect to its second ar-
gument r’. Notice that 6g,(r,r') is a solution to the
Schrodinger equation with a constant potential, in the re-
gion over which the integration is performed. Its expan-
sion in spherical functions about the center of the well
can be written exactly as the one for ¢;,.(r) in Eq. 2(c):

dg, (r,r") Zé)lm i likr ) Y™T)* . (A5)

In fact, the coefficients €@, ,,(r) can be obtained in much
the same fashion as the previous coefficients 0, ,,. Mak-
ing these substitutions in the integral of (A3), the integra-
tion over the solid angle is straightforward due to the
orthogonality of the spherical harmonics. We can also
use the matching relation at the radius of the well,
T,,,=T;D,,,, to eliminate T,,,. The expression for the
incident wave then becomes

winc(r):d]L(r) E@Im

Dy Ay (A6)

with the final quadrature
A=V,T, fORij,(iKr)jl(kr)dr

solvable analytically in terms of the spherical Bessel func-
tions evaluated at the radius of the well. (A6) is then the
starting point for studying the general case of higher than
! =0 angular momentum terms.

In the particular instance of an / =0 state of the well,
we can retain only one term in the expansion. Then using
the property that

@0:(477)1/28gL(r,r0)

and analogously, Dy=(47)!"%y, (1), (A6) becomes

¢inc(r)=¢L(r)_47)‘0¢inc(r0)8gL(r7r0) . (A7)
Finally, since
dmhg= —27HRy/mKk=\ ,
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we obtain the expression for the total incident wave, Eq.
(10), as used in the text including the particular solution

Y (rp)

1+}\,8L(r0,r0) ’ (A8)

¢inc(r0)=
Let us consider briefly the problem concerning higher
angular momentum states of the tip, relevant to the dis-
cussion in Sec. III C. Examining the general case (A6)
above, we see that if we choose / =1, then there are three
coupled equations for the D, ,, and five coupled equa-
tions for the D, ,,, etc. Picking out only a single orbital
then uncouples these equations, which we have not yet
attempted to justify. For considering tunneling to an in-
dividual orbital, it is convenient to rewrite (A6) in terms
of the differential operator 2 [as discussed following Eq.
(29)]. Using

‘ﬂl,m =°cz\)¢inc( rO) ’
Cp o (0)=[D']*8g, (r,10) ,

and keeping only one term in the sum, corresponding to a
given tip orbital, we obtain

Yine D) =1, (1) — A, Db (1) [ D' 1*8g, (r,15) . (A9)

Then operating once on the entire equation with D (fol-
lowed by r—r,), we obtain the desired result:

_ ﬁ‘/’L(ro)
1+ 0,D[D'1*8g, (ro,1o)

Diie(r) , (A10)

since the gradients of the total incident wave f@z/;im, at the
position of the tip, are factored into quantities related
only to the unperturbed surface and unperturbed tip elec-
tronic structures. R

We finally give a short discussion of the operators 2.
Following the general formula (29) for the expansion
coefficients 2, ,, and then expressing the normal deriva-
tive in Cartesian coordinates x; =(x,y,z), we obtain the
useful formula

al¢inc( I‘0)

, 0x;0x;. . .9x,

9, =D

—1
: TR

ijs .-

XiXi...X
X [do———""yr®) . (A11)

rl

The integral over the solid angle involves only the I/th
rank Cartesian tensor: x;X;...x, /r! and the spherical
harmonic. For s, p, and d orbitals, with m =0, the opera-
tor is given by

=0, m=0, D=(4mr)"?

(A12)

=2, m=0,

We also note that 2, ., involves derivatives with respect
to the coordinate parallel to the surface:
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A _ 9 .90
= T (2407 2(ix)" ! : )
Dy o= F(24m)“(ik) x _Hay (A13)

APPENDIX B: SEMI-INFINITE LINEAR CHAIN

In this appendix we calculate the total tip reflection
coefficient
D
1+
D

Im

ﬁtip:ﬁl

for a semi-infinite array of spherical potential wells
chosen for the extension of the tip, following Sec. II. Re-
call that 9,,, and D;,, and are the expansion coefficients
of the total wave from the surface ,,.(r) and the
remainder of the tip v,(r), respectively. Here we calcu-
late 7;, for the semi-infinite chain, but within the / =0
approximation, which is needed for our expression of the
tunneling current. We label each well with the index n,
with n =1 designating the first well to the right of the
well on the tip extremity, for which the matching prob-
lem has already been solved. Nearest-neighboring wells
are separated by a distance a.

The electronic structure of the tip, the form of the
wave function, and the tip reflection coefficient can be ob-
tained by solving the matching problem at each well of
the remainder of the tip. Consider first the case of the
isolated semi-infinite chain: The external solution must
be a sum of reflected waves from each well:

Y(r)=3 3 R/, h/ (iku, ) Y(1,) , (B1)
n Im
with u, the vector u, =r—r,. This must match the inte-
rior solution ¥,(r) at the surface of the nth well:

V()= T/ jiku, ) Y™@,) . (B2)

I,m

The result of this matching gives relations between the
coefficients R/, and T/, similar to those obtained for
the single sphere with an external source, detailed in Sec.
II. One can show that, within the / =0 approximation,
the reflected amplitudes must satisfy

RN = SRRk liklr, —1,. ) . (B3)

n#n'

Interestingly, this relation is valid for any configuration
of potential wells, and could describe a tip having a more
complex structure. For the linear chain, keeping only
nearest neighbors, n =n’t1, and defining the coupling
X=Rohq (ika) gives the familiar recursion relation

XRAETIH+RETY), n>1

n:
Ro xR3, n=1.

(B4a)

(B4b)

. . . . . ik pna
The solution for R is then a linear combination of e ?

—ik . .
and e 2" where kg is the reciprocal vector related to
the energy E of the state via 2y cos(kga)=1, defining the
s-derived band.
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Since the isolated linear chain is solved, we consider
the same problem but with an external source: This
source is due to the presence of the well at the extremity
of the tip, which in turn is coupled to the surface. The
presence of this source modifies only Eq. (B4b), to which
we add the source term S:

Ri=xR}+S . (BS)

We then find the particular solution to the recursion rela-
tions corresponding to flux transmitted to the right in our
system:
ik pna

Ry=2¢__ (B6)

X

The latter then gives the form for the total reflected wave
from the extension of the tip, using the expansion (B1).
In order to calculate the tip reflection coefficient for the
1 =0 case:

Ru=Ro

tip

14+ 20
Dy |’
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we need the relation between the two coefficients D, and
D,. The former is straightforward to obtain within the
nearest-neighbor approximation: It is the /=0 com-
ponent of the wave reflected from the site » =1, and is
thus proportional to R). We obtain

ikga

Se
X

In addition, one can easily show that the source factor S,
above, is related to the reflected amplitude off the well on
the extremity of the tip:

D,= h lika) . (B7)

S=xRy=xR(Dy+Dy) - (B8)

Combining Eqgs. (B7) and (B8), we obtain the desired ratio
Dy /Dy=e "% Then the total tip reflection coefficient
for the linear chain can be determined:

ﬁoe BY ikpa

e
X he (ika)
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