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Bonding energetics of metals: Explanation of trends
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Bonding energetics of elemental metals are explained by a uniform electron-gas model that has
been modified to be in mechanical equilibrium. The trends in the work functions, cohesive energies,
and chemical potentials are explained semiquantitatively. The same model explains the surface en-

ergies of the simple metals; however, it fails qualitatively for the surface energies of the transition
metals. The approach retains the simplicity of the uniform electron gas; its only input parameter is
the average electron density. Basically, we change the definition of the uniform electron gas slight-

ly, so that the electron gas is in mechanical equilibrium at any particular specified density. The
change is a rule for splitting the constant background charge when jellium is cleaved. The trends in
the energetics of metals result. The concept of a bonding valence will be defined in order to treat
the transition metals in terms of a uniform electron gas. Further, the model, due to its simplicity,
may serve as a theoretical laboratory for the study of bonding in metals. For example, it presents
the possibility of a nonperturbative calculation of the surface energy of the simple metals beyond
the local-density approximation. It is also expected to be a better starting point than jellium for
modeling the dynamical surface excitations of metals.

I. INTRODUCTION

The uniform electron-gas model (jellium) has proven to
be an important intuitive and pedagogical guide to under-
standing the electronic excitations of metals. For exam-
ple, both the plasmon and the particle-hole excitation
spectra are qualitatively described by jellium. These re-
sults become semiquantitative when restricted to the sim-
ple metals, e.g. , see Ref. 1. Further, the electron-gas
model is used in current calculations of electronic excita-
tions at bare and adsorbate-covered metal surfaces.

Jellium, on the other hand, does not provide a useful
guide to the energetics of bonding in metals. From one
point of view, this failure is inherent since the jellium
model, as it stands, gives no prescriptions for dividing the
positive uniform background into pieces. From another,
complementary point of view, the failure to predict the
bonding energetics is due to the inadequate treatment of
the electron-ion interaction. The electron-ion interaction
has been directly included in the calculation of metal
properties for the past two decades, primarily through
the use of density-functional and pseudopotentia1 theory.
However, these calculations all sacrifice one of the most
attractive features of the electron gas, its uniform ground
state.

The uniform electron gas fails qualitatively as a model
for the energetics of metals. For example, it predicts neg-
ative surface energies for r, (2.5 (where r, is the density
parameter, 4m.r, /3=1/no, and no is the electron densi-
ty). This pathology will be shown to arise from the fact
that the uniform electron gas is under external pressure.
The electrons have their minimum energy at r, =4. At
other densities the positive background, which is kept
rigid by external forces, imposes a pressure on the elec-

trons to keep them at the specified r, .
Utreras-Diaz and Shore ' have included the effects of

the ion core in a uniform electron-gas model by modify-
ing the interaction of the electrons and the positive back-
ground. They model the additional electron-ion interac-
tion (i.e., that part not accounted for by jellium) by add-
ing an electron potential that is constant inside pseudojel-
lium and zero outside. As in the present work, this addi-
tional potential can be thought of as incorporating the
electron-ion interaction via a pseudopotential that is con-
stant inside the unit cell and zero outside. Pseudojellium
requires an adjustable parameter (fixed by the chemical
potential) and gives reasonably good agreement for the
surface properties and cohesive energies of the simple
metals. However, external forces are sti11 required to
maintain equilibrium. The work presented here results
from understanding how these external forces may be re-
moved from the pseudojellium model. This understand-
ing allows us to predict the electron-ion interaction in an
average way from the condition of mechanical equilibri-
um, and thus to fix the additional potential. Since the
work in this paper has been completed, Perdew et al.
have presented somewhat similar results. Their work is
an extension of the pseudopotential point of view. Also,
there exist some unpublished results for simple metals.

In this paper, a simple prescription is given for cleav-
ing the electron gas. This prescription removes the need
for external forces. It ensures that the uniform electron
gas is in mechanical equilibrium at any specified electron
density. The result is a uniform electron-gas picture
(christened the "ideal metal" ) that is capable of predict-
ing the trends in the bonding energetics of elemental met-
als. The only input parameter is the average electron
density.
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Our motivation in studying the ideal metal is threefold.
First, a substantially improved version of the electron gas
is introduced, which allows a more realistic treatment of
bonding in metals. Second, we determine those proper-.
ties that depend only on the average electron density, and
thus distinguish them from properties that depend on the
electron s nonuniformity. This identifies the crucial vari-
ables that determine the bonding energies of the metals
(the size of the atom and the electron density at the cell
boundary). Finally, the new model, due to its simplicity,
may be used in a variety of practical calculations. For
example, it provides a better starting point than jellium
(due to the more realistic treatment of the electron falloll)
for calculations of bimetallic adhesion, and for the calcu-
lation of plasmons at the surfaces of metals.

This paper is structured as follows. A rule for cleaving
the positive background, which leads to the theory of
ideal metals, is presented in Sec. II. Transition metals are
related to the theory in Sec. III. In Sec. IV we show that
(1) the model leads to a simple analytic formula for the
chemical potential that is in semiquantitative agreement
with experiment, and (2) that it explains (again semi-
quantitatively) the trends in the experimental cohesive
energies of metals. Surface energies and work functions
are dealt with in Sec. V. The paper is concluded by a dis-
cussion and summary.

II. CLEAVING THE IDEAL METAL

A consistent picture for the cleavage of the ideal metal
into pieces should satisfy the following conditions: (1) it
should be possible to reassemble the pieces to yield the
uniform electron gas, (2) the reassembled uniform system
should be in mechanical equilibrium, and (3) only
Coulomb interactions should be introduced in the model
(that is, arbitrary external forces should not be invoked to
explain the interactions between pieces of the back-
ground). As discussed above, mechanical stability is not
achieved by simply splitting the background into pieces
of otherwise unmodified positive charge.

The conditions given above can, however, be satisfied
in the following way. (The method we are about to
present seems intuitively reasonable; we note that it prob-
ably is not unique and that other conditions can probably
be chosen that also satisfy mechanical equilibrium. ) Im-
agine that the background (which has density no in the
equilibrium state) has been split into pieces. For each
piece the positive charge density is chosen to be uniform
and to have the value no within the boundaries of the
piece and zero outside. In addition we require a 5-
function dipole barrier at the surface of each piece of the
background density. This surface dipole barrier is chosen
to have the same value for all pieces and for all points on
their surfaces.

The e6'ect of the dipole barrier can be seen by consider-
ing the interaction of a single electron with one particular
piece of background that is otherwise isolated in free
space. The electron potential is given by

v, (r)=no fdr', +Uoy(r) ., y(r')

00

vo g2

FIG. 1. Schematic representation of the positive background
and additional potential for the cleaved ideal metal. The half
spaces are shown separated and overlapped.

Here, y(r) is the characteristic function, defined to be
one within the piece and zero outside. The first term on
the right-hand-side represents the electron's interaction
with the charge interior to the piece. The second term
represents the interaction of the electron with the con-
stant, 5-function, surface dipole barrier. The efFect of the
dipole barrier is to cause the electron to see an additional
constant potential vo inside the piece and zero additional
potential outside the piece. As can be seen from the dis-
cussion below, for r, & 4, Uo is negative and thus increases
the bonding.

Now imagine reassembling the system. When the
pieces of background are brought into contact, their di-
pole barriers cancel and one is left with the background
of the uniform electron gas. As will be shown below, the
value of the dipole barrier can be chosen, i.e., Uo can be
chosen, so that the reassembled system is, for the uniform
state, in mechanical equilibrium.

An arbitrary cleavage of the ideal metal may result in
many pieces of positive background. The question arises,
how do these pieces interact when they are overlapped?
The rule is that the additional potentials add as do the
positive background charges. Thus, if the local positive
background density is 2no, then the additional local po-
tential is 2UO.

The following example (see Fig. 1) illustrates the rule
for cleavage, gives an idea of its origin, and sets the stage
for the numerical results that follow. Consider cleaving
the ideal metal into two half spaces of positive back-
ground, and separating the two pieces along a line that is
normal to the half-space surface. In this case, the addi-
tional electron potential (by the definition just given) is vp

inside the charged half spaces, but it is zero between
them. The two half spaces may, also, be overlapped. In
this case, the potential is equal to twice Uo in the overlap
region and Uo elsewhere.

The additional potential changes the force between the
two half spaces. We choose the Value of the potential so
that the force is zero when the separation is zero That is. ,
the ideal metal is in mechanical equilibrium for the
specified r, . In the present example, this is the same as
requiring that there be zero forces between the half
spaces when they are aligned and have zero separation.

The fact that there is one value of Uo that allows one to
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split the uniform metal into arbitrary pieces and to main-
tain mechanical stability may be somewhat surprising.
Here, we analyze the stability of the ideal metal by divid-
ing it into an arbitrary number of pieces and then shifting
these pieces infinitesimally with respect to each other.
The change in energy can be computed up to second or-
der in perturbation theory given the linear response func-
tion of the electron gas.

The mechanical stability of the system requires that the
first-order term in the energy be zero. First-order pertur-
bation theory evaluates the change in the energy due to
the change in the potential while the electron density is
kept uniform. We consider two states: (l) the uniform
state at the equilibrium density, and (2) the state with the
background and potentials overlapped but with a con-
stant electron density at the new average electron density
n. E, is defined to be the difference in energy between
these two states and is given explicitly by

Ei =X[e&,&1(n ) —e ,j~ (in 0)+ Uo(n
—no) /no] . (2)

Here, no is the average electron density at equilibrium
while n is the average electron density after the various
pieces are shifted. Finally, the energy per electron in the
standard uniform electron gas is denoted by e,,»(n).
Upon expanding e,,»(n) about the equilibrium density
and setting E, =0, to first order in (n no), we f—ind

Uo= —no
~ejell

Bn no
(3)

Equation (3) yields the additional potential required to
keep the electron gas in mechanical equilibrium at the
specified density.

The ideal metal is a very substantial idealization of the
structure of metals. As a result, it has the following de-
fective feature. Namely, the uniform ground state is only
a relative minimum in the energy. This can be seen by
imagining that we overlap many pieces (say N) of the

background in the same place. The additional potential
increases as XUo. This contribution to the energy in-
creases more rapidly than the buildup in kinetic energy.
Hence, the true ground-state results when all of the ions
and electrons have been compressed into a single point.
This "catastrophe" arises due to our inadequate treat-
ment of the ion cores. It implies that calculations of the
compressed ideal metal must be treated cautiously.

III. BONDING VALKNCES OF THE METALS

Specification of an average electron density is needed
to relate the properties of actual metals to the properties
of the ideal metal, since the ideal metal is itself a uniform
electron-gas model. For simple metals, the electron den-
sity is nearly uniform throughout the unit cell. Conse-
quently, the electron density that is used as an input to
electron-gas models has typically been computed by di-
viding the nominal valence by the volume per atom.
However, for transition metals the number of electrons
that participate in metallic bonding does not correlate
with the nominal valence. Consequently, one needs a
definition of an average electron density (and valence)
that correlates with bonding properties.

The electron charge density that builds up in the
spaces between the atoms is the focus of most heuristic
explanations of bonding in molecules and solids. That is,
one focuses on the electrons at the boundaries of the unit
cell, which, it is assumed, control the bonding. We will

take this view and define the input density for the ideal
metal to be the average electron density at the cell bound-
ary. Combined with the specific volume per atom V„,
and the ideal metal model, this leads to a definition of a
nonintegral bonding valence.

The bonding properties of the elemental metals
through the second row of transition elements have been
computed from density functional theory ' by Moruzzi,
Janak, and Williams (MJW). MJW used the Korringa,

TABLE I. Density parameter r, and bonding valence.

E& &MENT

Li,
F 09
3.15

Na
1.11
3.80

Be
l.99
1.87

Mg
2.07
2. 60

BONDING VALENCE

~s DENSITY PARAM". TER

A3.
2.76
2.12

K
1.21
4.57

Ca
2.31
3.11

Sc
2.41
2.88

Ti
3.25
2.07

V
3.46
1.86

Cr
3.55
1.76

Mn

3.34
1.81

Fe
3.26
1.79

Co
3.03
1.81

Ni.
2.76
1.85

cv
2.49
1.96

Kn

2.44
2.13

Ga
2.43
2.35

Rb
1.24
4.87

sr
2.44
3.32

Y

3.25
2.43

Xr
3.82
2.06

4.11
1 ' 91

Mo

4.37
1.78

Tc
4.14
1.78

Ru
3.91
1.78

Rh
3.51
1.85

Pd
2.96
2.00

Ag
2.55
2.19

Cd
2 ~ 42
2.42

Ixl
2.51
2.57
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Kohn, and Rostoker' "(KKR) method with a muffin-tin
approximation for the metallic state. They reported the
density both at the muon-tin boundary, and the number
of electrons interstitial between the muftin tins. In this
paper we will assume that the input electron density no
for the ideal metal is the average interstitial electron den-
sity. For simple metals, the values of r, determined from
n in this way are fairly close (within 10%) of those deter-
mined from the nominal valence. The values determined
for the transition metals are also physically reasonable.
The values of r, used in this paper are shown in Table I.

A bonding valence Zz for elemental metals is implied
by the specific volume per atom in the metal and by the
definition of the average electron density in the last para-
graph. We define the bonding valence to be

Zs=noV„, =V„, /(4vrr, /3). (4)

That is, the bonding valence is the number of electrons of
a uniform electron gas with density no that would be con-
tained in the specific volume V„, . Table I contains the
values of the bonding valence.

IV. CHEMICAL POTENTIAL AND COHESIVE ENERGY

We show that the ideal metal models the chemical po-
tentials and cohesive energies of the elemental metals.
The chemical potential is predicted by a simple analytic
formula. The cohesive energy for the ideal metal is com-
puted using density functional theory. For most elements
the ideal metal values of the cohesive energy and chemi-
ca1 potential are in semiquantitative agreement with
known values, although there are substantial deviations
for a number of elements. This is much the same situa-
tion that one finds when the electron gas is used to ex-
plain electronic excitations such as plasmons.

The chemical potential is the energy required to re-
move an electron to infinity, neglecting the surface. The
chemical potential p;d„& of the ideal metal is shifted from
the jellium value by Uo, i.e.,

denotes the electron pressure in jellium, p,,»= —()e;,)) /BQ.
The chemical potentials predicted by Eq. (6) for the

ideal metal are shown in Fig. 2. The parametrization of
Gunnarson and I.undqvist' was used to estimate the
exchange-correlation energy here and in the density-
functional calculations that follow. Weinert and Wat-
son' have estimated the chemical potentials for most of
the metallic elements based on a combination of first-
principles band-structure calculations, model estimates of
the dipole barrier, and experimental evaluations of the
work functions. These values are compared with the
ideal metal in Fig. 2 for the simple metals. As can be
seen, Eq. (6) accurately explains the trends for the simple
metals. The chemical potentials of the first two rows of
transition metals (as well as the simple metals up through
the second transition series) are also shown in Fig. 2. For
these elements the agreement is somewhat rougher, with
a few substantial outliers such as Ag and Pd.

The cohesive energy E„h is the energy needed to
disassemble a solid into its constituent neutral atoms. In
order to estimate the cohesive energy from the ideal met-
al model, we need a description for atoms within the ideal
metal model. Basically, we imagine the uniform ideal
metal being divided into a lattice of "atoms. " Each
"atom" is represented by the electrons and positive back-
ground contained in a Wigner-Seitz cell having a volume
equal to V„, . Thus, as shown schematically in Fig. 3,
the uniform ideal metal is divided into an array of
Wigner-Seitz cells, each modeling an "atom. " The
cohesive energy is modeled as the difference in energy
(per Wigner-Seitz cell) of two states. The first state is the
uniform ideal metal. The second state has the ("atoms")
Wigner-Seitz cells separated to infinity.

The energy in the first, uniform state can be deter-
mined trivially, and the energy per Wigner-Seitz cell is

E„=Zs[e(no)+uo],
where the subscript u refers to the uniform state.

Pldeat
B[ne„,»(n)]

Bn n&
+Do . 3.0

Using Eq. (3) for uo, we get the remarkably simple result

Rid 1( 0) 'll("O) (6)

Thus for any r» Uo =eje&~
—

p„e~~, where pje/] is the chemical
potential of the uniform electron gas. The idea that the
chemical potential of the metals could be predicted by
the energy per electron of the electron gas has been previ-
ously suggested by Hodges. ' His work was based on a
Wigner-Sietz model for the cohesion of metals and a gra-
dient expansion of the kinetic energy. Note that for met-
als with r, =4.0, such as sodium, Uo is close to zero and
the jellium model is itself "ideal. " There is also a simple
formula for the energy per electron in the uniform state
of the ideal metal:

ideal je)1 +7je&i

Here, Q represents the volume per electron and pjef]

$. 0
cU

0.0
CL

(U
O
E —1.0
O

P(de
+ S™piemetals

0 1st transition series
a 2nd transition series

—2.0—

—3.0
1.0

l

2. 0

l

3.0 4. 0 5.0 6.0

FIG. 2. Chemical potentials predicted for the ideal metal and
jellium. They are compared with experimental values for the
metals through the second row of transition elements. The ele-
ment can be identified by comparing its r, with Table I.
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SIMPLE METAL COHESIVE ENERGIES
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FIG. 4. Cohesive energies of the simple metals compared
with ideal metal results.

FIG. 3. Schematic representation of the bulk ideal metal di-
vided into "atoms" as indicated by the Wigner-Seitz cells.

Here,

nb(r)
ueff(r) = uo

no
+U„+e, dr',p(r')

r —r' (14)

and in the local-density approximation

The energy E~s of the second state is determined by
calculating the energy of a single Wigner-Seitz cell with
its compensating electrons in free space. This calculation
models the binding energy of the atom in the ideal metal
model. The evaluation of E~s is nontrivial, and has been
carried out using density-functional theory, with a local
approximation for the exchange-correlation energy (as
summarized below).

The cohesive energy, as described above, is the
di6'erence between an atom in the metal and in free space.
For the ideal metal model, it is given by

Ecoh Eu Ews

The energy of the isolated Wigner-Seitz cell Ews is
computed from density-functional theory. The energy
functional for our case can be written as

nb(r)+ f drn, (r)uo
no

Here n, (r) denotes the electron density while nb(r)
denotes the positive background density at r. T, denotes
the kinetic energy and E„, denotes the exchange-
correlation energy. The net charge density is denoted by
p and is given by

p(r)=n, (r) —nb(r) .

u„,(n, (r))= [n, e„,(n, (r))] .
d

dne

Finally,

n, (r)= g l%k(r)l
k

(16)

COHESIVE ENERGY - FIRST
ROW TRANSITION METALS

The simultaneous solution of Eqs. (12)—(16) determines
the total ground-state energy and density.

The calculation of the ground state energy of an
"atom, " i.e., an isolated Wigner-Seitz cell with its com-
pensating electrons proceeds as follows. First, in order to
simplify the calculation, we replace the Wigner-Seitz cell
by a sphere with volume u„, . Equations (12)—(16) are
then solved iteratively. Consistent with the bonding
valence defined above, we fractionally occupy the single-
particle electron states. It is assumed that the isolated
"atom" is spin neutral; spin-dependent energies are small
for the ideal metal. The atom is replaced by a small
sphere of the ideal metal. Consequently, the order of
filling of the electron states diff'ers from that of a real
atom. Minimizing the total energy fills the 1s and 2p
states in order. The single-particle wave functions were
calculated numerically using the Numerov technique.

The calculated cohesive energies are compared with ex-

Finally, the exchange-correlation energy is inferred from
the local-density approximation

E„,[n, ]=f drn, (r)e„,(n, (r)) . (12)

Here, e„,(n, ) denotes the exchange-correlation energy of
a uniform electron gas with density n, .

The ground state is obtained by solving the Kohn-
Sham equations, which are given by

6
tt) 5 -.

4 "~
. m

3
Z 2.

1

a a

~ lg o

I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I

SC TI V CR MN FE CO Nl CU ZN

ELEMENT

IDEAL

EXPT.

h
V %k+U,g+j —ck

2m
(13) FIG. 5. Cohesive energies of the first row of transition metals

compared with ideal metal results.
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COHESIVE ENERGY - SECOND
ROW TRANSITION METALS

6
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0
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FIG. 6. Cohesive energies of the second row of transition
metals compared with ideal metal results. 0. 0

1.0

I

2. 0 3.0

I

4. 0 5.0

periment' in Figs. 4—6. The overall trends in the
cohesive energy of the metals are well represented by the
ideal metal model. This is particularly surprising for the
transition metals, where the details of the core and the d
electrons were expected to be critically important. In-
stead, it appears that all of these effects can be roughly
accounted for by the specific volume per atom in the met-
al and by the input density for the ideal metal model, i.e.,
the average electron density at the cell boundary.

V. SURFACE PROPERTIES OF THE IDEAL METAL

We calculate the surface properties of the ideal metal
using the local-density approximation (LDA) to density-
functional theory. The calculation follows along the lines
of the work of Lang and Kohn. The ideal metal fills all
space for z (0; the rest of space, z) 0, is vacuum. The
additional potential is chosen to be vo in the ideal metal
(z (0) and zero otherwise. A similar calculation was re-
ported in Ref. 3, except that vo was fit to the experimen-
tal chemical potential rather than being determined by
Eq. (3).

Work functions of the ideal metal are shown in Fig. 7
and compared with experiment' for the densest face of
the crystal. The ideal metal clearly explains the trends in
the work functions of the elemental metals. The d elec-
trons of the transition metals seem to inAuence the work
functions only through the average electron density.

Surface energetics depend on the particular face of the
crystal that is exposed. The approximate calculations re-
ported in this paper do not allow for this dependence.
This is not an intrinsic restriction of the ideal metal ~

Rather, it results from the fact that we cleaved the ideal
metal about a plane. In a more realistic calculation, one
would account for the atomicity of the metal by splitting
it along the boundaries of the Winger-Seitz cells, which
represent the atoms in this model. Face dependence for
surface quantities would then appear in a natural way. In
comparing the results of the ideal metal with experiment,
we have always taken experiments on the most densely
packed face of the metallic crystal.

Surface energies of the ideal metals are shown in Fig. 8,
and compared with the experimental estimates of Tyson
and Miller. ' Agreement for the simple metals is good.

FIG. 7. Work function of the elemental metals compared
with ideal metal results. The elements can be identified by com-
paring their r, with Table I.
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1st transition series
2nd transition series

400—

0
0. 0 2. 0 3.0 4. 0 5.0 6.0

FIG. 8. Surface energies predicted for the ideal metal, and
compared with the experimental estimates of Tyson and Miller.
The elements can be identified by comparing their r, with Table
I.

The general shape of the surface energy curve is physical-
ly reasonable for r, )2. However, the predicted surface
energies of the simple metals are systematically too small
(compared to Tyson and Miller's estimates) by about
25%, which is consistent with other density-functional
calculations. The agreement between theory and experi-
ment might be considered startling since the only input to
the theory is the average valence electron density of the
given metal. There is no detailed input and there is no at-
tempt to model the atomic core at all. The surface ener-

gy of a simple metal is determined by the theory of the
electron gas, once it has been modified to be in mechani-
cal equilibrium at the density of that metal.

The ideal metal model fails systematically, however,
when used to estimate the surface energies of the transi-
tion metals. Surface energies of the ideal metal are typi-
cally too low by a factor of 2 or 3. For r, (2, which is
characteristic of most transition metals, the surface ener-

gy curve behaves unphysically. The curve reaches a max-
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imum of 1400 ergs/cm at r, =1.6, and then becomes
negative for r, even smaller. This qualitative failure of
the model is unexplained.

VI. DISCUSSION AND SUMMARY

The theory of ideal metals simplifies our understanding
of the origin of the metallic bond. The electron density at
the cell boundary was revealed to be a key variable. In
particular, the trends in the chemical potentials and work
functions (as well as the surface energy of the simple met-
als) depend primarily on this density. The trends in the
cohesive energy of the elemental metals can be computed
if one knows, in addition, the size of the "atom, "which is
the second key variable.

A widely successful empirical formulation for the ener-
getic of metals was introduced by Miedema. ' His key
idea was that the atoms of a metal might be usefully ap-
proximated as small uniform pieces of the macroscopic
metal. The theory of ideal metals is a microscopic reali-
zation of this idea. In this present case the "atoms" are
just the Wigner-Seitz cells with their uniform positive
background.

One advantage of the present model is that it is so sim-
ple that calculations beyond the local-density approxima-
tion appear to be feasible. For example, the ideal metal
yields the surface energies of the simple metals fairly ac-
curately within a strictly one-dimensional framework.
This presents an opportunity for calculating the surface

energy of the ideal metal nearly exactly, using either Jas-
trow function methods' or perhaps the variational
Monte Carlo approach. ' Consequently, one would be
able to estimate the reliability of the local-density approx-
imation for more complicated surface calculations.

The ideal metal provides a good starting point for any
calculation that uses the jellium model as its starting
point. For example, the dynamical properties of metal
surfaces (and of adsorbates at metal surfaces) are gen-
erally calculated using the jellium model. The ideal met-
al, however, should be preferred, since it is just as simple
as jellium and since it models, in a more accurate fashion,
the fallo6'of the surface's electron density.

In summary, a simple model has been constructed for
the energetics of the metals. The only ideas used are
those of the electron gas and mechanical equilibrium.
The ideal metal predicts the surface energies of the sim-
ple metals. Finally, there is good agreement with experi-
ment for the trends in the cohesive energies, the work
functions, and the chemical potentials of the elemental
metals.

ACKNOWLEDGMENTS

Ames Laboratory is operated for the U.S. Department
of Energy by Iowa State University under Contract No.
W-74O5-ENG-82. This work is supported, in part, by the
Director, Office of Basic Energy Sciences.

C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley,
New York, 1971),see p. 262.

N. D. Lang and W. Kohn, Phys. Rev. B 1, 4555 (1970).
C. A. Utreras-Diaz and H. B. Shore, Phys. Rev. Lett. 53, 2335

(1984).
4C. A. Utreras-Diaz and H. B. Shore, Phys. Rev. B 40, 10345

(1989).
5J. P. Perdew, H. W. Tran, and E. D. Smith, Phys. Rev. B 42,

11 627 (1990).
6H. B.Shore and J. H. Rose (unpublished).
7P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
8W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated

Electronic Properties ofMetals (Pergamon, New York, 1978).
J. Korringa, Physica 13, 392 (1946).
W. Kohn and N. Rostoker, Phys. Rev. 94, 1111(1954).

'~C. H. Hodges, J. Phys. F 4, 1961 (1974).
'3O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274

(1976).
~M. Weinert and R. E. Watson, Phys. Rev. B 29, 3001 (1984).

i~H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).
W. R. Tyson and W. A. Miller, Surf. Sci. 62, 267 (1977).

' A. R. Miedema, Philips Tech. Rev. 38, 257 (1978/79).
i8X. Sun. T. Li, M. Farjam, and C.-W. Woo, Phys. Rev. 8 27,

3913 (1983).
D. M. Ceperley and M. H. Kalos, in Monte Carlo Methods in
Statistical Physics, edited by K. Binder (Springer-Verlag, Ber-
lin, 1979).

~ J. F. Dobson and G. H. Harris, J. Phys. C 21, L729 (1988); J.
F. Dobson, G. H. Harris, and A. J. O' Connor, J. Phys. Con-
dens. Matter 2, 6461 (1990).


