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Inhuence of surface roughness on the conductivity of metallic
and semiconducting quasi-two-dimensional structures
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At low temperature, the conductivity o. of metallic films or of semiconducting quantum wells is
limited by surface-roughness scattering. The expression for o. includes an autocorrelation function
(ACF) associated with the roughness. We report a theoretical study of the dependence of o. on the

shape, and the correlation length ( of the ACF. It is concluded that o. depends strongly on the
choice of the ACF for g))kF ', where kF is the Fermi wave vector. For metallic films, the mean

variation of o. with thickness d cannot be approximated by the usual power law, o. Oc d', similar

eAects are obtained for semiconducting quantum wells.

Because of substantial technological progress in the
controlled fabrication of quasi-two-dimensional samples,
recent experiments on the conductivity of metallic
films' and of semiconducting quantum wells have pro-
duced conclusive evidence of scattering by the roughness
of the surfaces or interfaces. Concurrently, quanturn-
mechanical derivations of the conductivity, based either
on Green's function ' or on coupled Boltzmann-like
equations, ' have been proposed. The boundaries of a
perfect quasi-two-dimensional structure are planes whose
equations are z =+d/2, where d is the thickness of the
metallic film or the width of the semiconducting quantum
well and both are perpendicular to a chosen direction, the
z axis. In real structures, the surfaces are no longer
planes and, for instance, the equation of the upper sur-
face is modified to z =d/2+f(p), where p is a two-
dimensional vector that is the projection onto the plane
perpendicular to the z axis of the vector r defining a point
on the surface. In such a model, the surface roughness is
entirely described by a continuous function f (p) and'
all the electronic properties are expressed through the au-
tocorrelation function (ACF) off (p), which is defined by

1—f f(p)f(p+ p')d'p' =&'G(p/g), (1)

small range between one and two interatomic distances.
In the following we show the inhuence upon the electrical
conductivity of (i) the magnitude of the roughness corre-
lation length as compared with the electron wavelength
at the Fermi energy and (ii) the shape of the ACF. We
begin with the conductivity expression for scattering by
surface roughness derived earlier [Eq. (10) of Ref. 10]:

e2d5 Ã N
cr= g gk k, , (D ')

4m Ab,

In Eq. (2), N is the number of subbands filled by the
electron gas, k„ is the Fermi wave vector of subband v,

k, =[(2m/k )(E~ E)]'—
(EF is the Fermi energy and E, the minimum energy of
subband v), and D ' is the inverse of the matrix D,
which is defined by its elements as

D„= A, f d8 5 k, +A F(gk,„)

—A, k k ~ cosOF(gk )

where g is the roughness correlation length. In the above
definition, the function G (p/g) depends only on the mag-
nitude p (and not on the direction of p) because, for sim-

plicity, we have assumed that the roughness is isotropic.
Moreover, G(p/g) has significant values only for p &g.
The parameter 6 is the root mean square of the height of
the variation of the real surface from a plane. For the
CoSi2/Si interface g is usually of the order of one intera-
tomic distance for samples with excellent surfaces, g
may be quite large. ' ' This condition is also supported
by mobility experiments at the GaAs/A1As interface or
by high-resolution transmission electron microscopy at
the Si/SiO2 interace. ' On the contrary, 5 varies in a

where
k, =(k +k ~

—2k k, cos8)'i

and F(q) is the Fourier transform of G(p):

F(q)= f d pe' i'G(p) .

Because the ACF is 6 G(p/g), it is more useful to define
the Fourier transform of G(p/g) by

f d p e'q i'G(p/g) =g f d p e '~q'~G (p) =g F(gq ) .

When surfaces localize electrons strictly inside the
region —d /2 & z & d /2 (infinite quantum well),
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A, =iti 7r v /(md ).
For a small correlation length such that gkl «1 (as

kl )k, for v) 1, this condition implies gk, (&1 for
v, v' &N), we have already shown' that the conductivity
depends on the value F(0)= f6 (p)d p and reduces to

6 x

fi 2~'g'g' F(0) N(N+1)(2N+1)
(4)

In this limit, details of the function G(p) are not im-
portant; only its mean value occurs through the factor
vr/F(0), which is of the order of unity for different ACF.
Finally, o varies with b, and g only through the product

(g'&)
If the condition gk, «1 is not satisfied, we need to

know the complete Fourier transform of 6(p). For our
purpose we have chosen to study two types of ACF: (i) a
Gaussian ' ' and (ii) an exponential. '

In the Gaussian model, we assume that

G(p/g) =Gs(p/g) =exp( —p'/g ) .

Its Fourier transform is

g Fs(gq)=erg exp( —
g q /4) .

When we introduce this expression into Eq. (3), we obtain
for the matrix elements D

N
D~„=—,'g v k, 6 k g p exp[ —

—,'g (k, +k„)]ID( ~

g k k ) —v' k exp[ —
—,'g (k, +k, , )]I,( —,'g k,k ~ )

p=1

where Io(x) and I, (x)are modified Bessel functions.
In the exponential model,

G(p/E) =6, (p/g) =exp( —p/g)

whose Fourier transform is

(5)

g F, (gq)=2rrg (I+/ q )

We deduce for D ~ the expression

2g vk & E(P,„)D', = 6, ,k gp
cc „(1—/3,„)

2v'k 1 ——'P'
E(P, )

—K(/3, )~3 P2 1 P2
(6)

and

VV

4/k k

In the limit gk, &(1, from Eqs. (5) and (6) we recover
Eq. (4) for the conductivity o. , with F(0)=ir for the
Gaussian model and F(0)=2m for the exponential one.
It is precisely in this limit that experimental results on
the conductivity of metallic CoSi2 films were conveniently
interpreted. ' In CoSi2 the carrier density is n =3X10

0cm, which gives k = 1 A ', and the number of occu-
pied subbands N varies from 3 to 30 when the thickness d
changes from 10 to 100 A. The experimental variations
of cr with d, in this range, are well fitted by expression (4)
with 5=4 A and (=2A. The case of GaAs quantum
wells has been studied in Ref. 6; in the samples investigat-
ed the carrier density was approximately 3 X 10" cm so
that the number of occupied subbands and the Fermi
wave vector reduced, respectively, to N = 1 and
k i = 10 A '. Again, the variations of o and d were
fitted by expression (4) with 6=3 A and /=60 A.

Thus there is no appreciable difference between the

where K(x) and E(x) are, respectively, the complete el-
liptic integral of the first and of the second kind, while

ccrc,

= I +gi( k, +k,. )

Gaussian and the exponential models when the condition
gk, & 1 is fulfilled; either can be used to interpret the ex-
periments. Conversely, however, this means that the
product g'b, is slightly model dependent and neither 6 nor
g can be determined to within a factor of 2. We now
show that important differences appear for samples with
better surfaces, in which the correlation length can in-
crease with the condition gk I ) 1 being satisfied.

First we discuss the case of a metallic film. Figure 1

shows the variations of 0 with d when /=25 A and b, =3
A for n =3 X 10 cm (the CoSiz case). The lower
curve corresponds to an exponential ACF; it presents
well-defined jumps corresponding to thicknesses for
which the number of occupied subbands N is increased by
1. The upper curve corresponds to a Gaussian ACF.
The previous jumps have disappeared and we notice
smooth oscillations of the conductivity. Moreover, in the
exponential model, the mean values of o. can be fitted by
a power law cr ~ d' (with s = —,'); it is clear that such a
power law cannot be used in the Gaussian case. Figures
2 and 3 show what happens to cr(d) when the correlation
length g increases from 5 to 35 A. With the exponential
ACF, the jumps remain visible and the shape of the
different curves is unchanged. On the contrary, with a
Gaussian ACF the jumps disappear for g) 5 A; they are
smeared out and extrema take place for d values which
progressively are displaced towards high d values. It is
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FIG. 1. Oscillations of conductivity in CoSi~ plotted as a
function of film thickness d for Gaussian (G) and exponential
(E) autocorrelation functions (ACF) with the same correlation

0

length (=25 A. The exponential curve can be approximated by
a straight line (i.e., defining s such that o. ~ d') but this is not

0

possible for the Gaussian one (here, 6= 3 A).

possible to understand such strong differences produced
by the choice of the ACF by looking at expressions (5)
and (6) for the matrix elements Ds, , and D', . They
occur because the Bessel functions in Ds ~ decrease with g
exponentially, while the elliptic functions in D ~ decrease
roughly as the inverse of lno. . Finally, we note that it is
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FIG. 3. Same as in Fig. 2 but for Gaussian (G) ACF.

not possible to fit the mean variations of o. with d by a
power law, o. ~d', for all values of g. For the Gaussian
model, g must be smaller than 10 A. For the exponential
case, the restriction is less drastic; g(30 A. When the
mean slope s =d lno /d lnd can be defined, Fig. 4 shows
the variation of s with the correlation length g. We ob-
serve that s can decrease from 2.3 for small values of g to
1.5 for (=10 A. It follows that explaining recent re-
sults' ' on CoSiz with a Gaussian or an exponential
ACF requires only high values of g, and it is not possible
to decide between the two functional forms on the basis
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FIG. 2. Oscillations of conductivity in CoSi2 plotted as a

function of thickness d for an exponential (E) ACF with
different correlation lengths: /=5, 10, 15, 20, 25, 30, and 35 A.
6=3 A.

FIG. 4. Exponent s of the power law o. ~ d' as a function of
the correlation length for Gaussian and exponential ACF in
CoSiz. It is not possible to define s for g larger than 10 A for a

0

Gaussian type and for g larger than 30 A for an exponential
one; see Fig. 1 as an example. Heavy line (G), Gaussian type;
dotted line (E), exponential type.
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FIG. 5. Mobility ratio R of mobilities in a semiconductor for
the Fermi level just below and above the bottom of the second
conduction subband vs correlation length for two ACF. Heavy
line (G), Gaussian type; dotted line (E), exponential type. In
this figure the screening is not taken into account; a=1, 0'= 100
A. n, =4X10' cm '. (See text. )

FIG. 6. Same as in Fig. 5, but screening is taken into account
through the dielectric function e=1+q, /q. q, =(50 A) ' in
GaAs.

of these experimental results.
We now discuss the inhuence of the choice of ACF on

a property which could be measured in a semiconducting
quantum well. At fixed electron surface density n„ it is
in principle possible to vary the well width in such a way
that the Fermi level crosses the bottom of the second sub-
band. This condition occurs for a critical width labeled
d'. For instance, with a density n, =4 X 10' cm, the
critical width is d'=100 A (in the model of Ref. 6). At
the crossing of the Fermi energy we expect a jump of the
conductivity, as explained before. We can calculate the
ratio

o(d' —e)R =limI-0 o(d'+e)
of the conductivities (or mobilities in a semiconductor)
just below and just above the crossing between Ez and E2
and study how R depends on the shape of the ACF and
on g. In order to use our preceding results IEqs. (2) and
(3)], we assume that the roughness at the quantum-well
interfaces is isotropic; thus we exclude an interface ter-
racing form which is obtained with epitaxial growth in a
direction which is slightly tilted relative to the nominal
crystalline axis. Then in the limit gk, «1, we deduce
from Eq. (4) that

e ir (d')' 2lim o (d' —e)= k,
0 fiFO

and

Thus, R =5, in the limit pk, «1, for all ACF types. We
have shown in Figs. 5 and 6 the variations of R with g for
the Gaussian and exponential models. Figures 5 and 6
differ by the screening effect which is absent in the first
one and taken into account through a dielectric func-
tion, ' e=l+q, /q, in the second. We notice a curious
effect in the screening which accentuates the variations of
the ratio R (g) for the Gaussian case and, in contrast, de-
creases the variations with the choice of an exponential
ACF.

In conclusion, the above discussion shows that the
choice of the shape for the ACF describing surface
roughness may be important in the study of transport
properties of quasi-two-dimensional structures. Care
must be taken before deducing values of roughness corre-
lation lengths from conductivity measurements.
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