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Penetration depth in phenomenological marginal-Fermi-liquid model for CuO
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We have calculated the temperature-dependent London penetration depth in a recently proposed
phenomenological, marginal-Fermi-liquid model that has been shown to be quite successful in ex-
plaining several of the observed anomalous properties of the normal state. Solutions with tempera-
ture dependence close to the two-Quid model and to experiment can be found. However, they do
not correspond to a value of twice the gap to critical temperature as large as the recently suggested
value of 8 for Y-Ba-Cu-O.

Recently, Varma' has reviewed work on phenomeno-
logical constraints that need to be placed on any theory
of high-temperature superconductivity. It is evident that
the single assumption about the existence of both charge-
and spin-density excitations described by a polarizability
P ( q, co ) of the form'

ImP(q, co)= —N(0)tanh(co/2T), ~co~ (co,

=0,
i
co ) cd

and

co(ice„)=co„+mT(A. +A, )

CO( i CO )
X g F(co„co~ )

Ice (ice )+5 (ice )]'

(3)

with i co„:—inT(2n —1), n =0, +1,+2, . . . and

~ 2' tanh(co/2T)P ~n ~m 2
dQ

~ +(~~ ~m )
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where the cutoff m„A, , and I, are the only parameters.
We can introduce a constant g, defined as
(A~ —A. )/(A~+ A, ), in terms of which the coupling to the

(co, is a phenomenological cutoff) over the significant
range of momentum transfer q, goes a long way in
describing some of the anomalous normal-state properties
associated with the copper oxides.

Kuroda and Varma have calculated some supercon-
duc'. ing properties associated with the model just de-
scribed and find agreement with experiment. In this note,
we present results of calculations for the penetration
depth in the London limit. The basic equations given by
Kuroda and Varma involve coupling to charge (A, ) and
spin (A, ) fluctuations and have the form

b, (ice„)=vrT(A, —A, )

X(i co )
X QF(co„—co )

[co (iso )+b, (iso )]'~

(2)

spin fluctuations, A, , is given as (1—g)/(1+g) times the
coupling to charge fluctuations. Therefore, for g = 1

there is no coupling to spin fluctuations, only to charge.
Note, that in the gap channel [Eq. (2)], the charge fluc-

tuations are pair creating while spin fluctuations are pair
breaking, which is expected for an s-wave gap. Equations
(2) and (3) with definition (4) are similar to the very well
known Eliashberg gap equations with phonons plus
paramagnons. An important difference is that the spec-
tral density is the same for spin and charge fluctuations in
the present model, and is effectively temperature depen-
dent through the tanh(co/2T) factor in Eq. (4). Also, as
the gap 5( T) in the superconducting state develops, the
spectral density also becomes gapped and is to be cut off
at 26(T). For a fixed choice of co, and g, the remaining
parameter A. is chosen to get a critical temperature value
of 100 K which we take to be representative of the ox-
ides. The parameter A, , which is dimensionless, is plot-
ted in the top frame of Fig. 1 for four values of g, namely,
g=0.4, 0.5, 0.6, and 0.8 as a function of T, /co, in the
range 0—0.05. For low values of g it is seen that A, in-

P
creases very rapidly with T, /co, in the region around
-0.01 and -0.03 for g=0.4 and 0.5, respectively. This
indicates that the model rapidly becomes unphysical in
this range.

The critical temperature T„and hence X, follows on
solution of the linearized form of Eqs. (2) and (3) which
are valid near the critical temperature. Solutions at low
temperature can also be obtained and can be analytically
continued to the real frequency axis through Pade ap-
proximants " to obtain the gap edge ho. Typically it is
sufficient to solve (2) and (3) at the reduced temperature
t = T/T, =0.1 and bo follows from the real axis analytic
continuation b, (co) through solution of the equation
b,0=Red, (co=6,o), where only the real part of the com-
plex gap h(co) enters. We have performed such calcula-
tions self-consistently to obtain the ratio 2ho/k~ T,
shown in the lower frame of Fig. 1. It is clear that for
small g this dimensionless ratio increases very rapidly
with increasing value of T, /co, .

In obtaining our results for 25O/k~T„we have fully
recognized that the spin- and charge-fluctuation spec-
trum needs to be cutoff' at 2b, (T) in the superconducting
states as the gap develops. We have used a sharp cutoff
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in formula (4) with the lower limit on the integral placed
at 2b.(T). We chose to use the temperature dependence
of the BCS gap as we found that the analytic continua-
tion at finite temperature gave a similar temperature
dependence but with more numerical effort. This lower
cutoff has the effect of suppressing both spin and charge
fluctuations but the net result is that spin fluctuations are
more effectively suppressed and so the gap is larger than
it would be if no lower cutoff were applied. The gap in a
fully oxygenated single crystal of YBa2Cu07 has been re-
ported to be of the order of 2b,o/k~ T, -=8 (Refs. 12—14)
in far-infrared measurements. We see from our results
that this value can be achieved for g=0.4 with a cutoff
+10000 K, while for g=0.6 it is ~2500 K. It is worth
noting that similar large values of 2b. /k~ T, are also indi-
cated in photoemission experiments' ' on cuprate su-
perconductors.

The formula for the London penetration depth A,L (T)
at temperature T is given by

AL(T)=
2&To ~ 6 (ico„)

„=I Z(ice„)[co„+b, (icy„)]3~~

—1/2

1.0

0.8

where o& and ~& are the normal-state conductivity and
scattering time, respectively, and 4(iso„) and Z(ico„) are
related to b, (iso„) and co(ice„) by

b (i co„)=b.(iso„)Z (ice„),

co( E co„)—co„Z(l co„)
with the Matsubara frequency (iso„).
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FIG. 1. Top frame gives the charge-fluctuation channel cou-
pling A, as a function of T, /~, for four values of g=0.4 (solid),
0.5 (dashed), 0.6 (dot-dashed), 0.8 (double dot —dashed). The bot-
tom frame gives the gap to critical temperature ratio 260/k~ T,
for the same parameters.

FIG. 2. The dependence of the square of the normalized
penetration depth XL(0)/A. L(t) on reduced temperature t for
several values of T, /co„namely, 0.0215 (solid line), 0.0144
(dashed line), 0.0086 (dash —dotted line), 0.0057 (dash —double
dotted line) and 0.0029 (dash —triple dotted line). Also shown
are data (solid dots) and the two-Quid model results (solid line)
which represent the data very well. Finally, the lowest solid
curve is the BCS prediction shown for comparison. The top
frame is for g=0.5. The lower frame is for g=0.4 with the
T, /co, values of 0.0108, 0.0086, 0.0057, and 0.0043, and 0.0029
for the upper five curves in descending order.
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We have solved the gap equations ' at several temper-
atures T and applied the self-consistent cutoff to be the
kernel of Eq. (4) at 26( T) for any temperature T. The re-
sults of such calculations are displayed in Figs. 2 and 3
for g=0.4 and 0.5, and g=0.6 and 0.8, respectively. The
curves are labeled by values of T, /co, . Also displayed are
the two-Quid model results (second lowest solid curve),
the results of a very recent careful experiment' (solid
dots) and the BCS clean limit results (lowest solid curve).
We see that, in many cases, the temperature variation is
above the two-Quid model. This would also be true for a
conventional strong-coupling system. As T, /co, is
lowered from higher values, the curves tend toward the
weak-coupling curve. It is clear that results close to ex-
periment can be found for specific values of the parame-
ters considered although near t=1 the theoretical results
will always fall above the experimental points. While the
region of parameters, which are necessary to obtain over-

1.0

0.8

lap between experiment and theory for the temperature
variation of the normalized London penetration depth,
correspond to a value of 26O/k~T, larger than the BCS
value of 3.54, this ratio is not as large as the suggested ex-
perimental number of 8. To be specific, for g=0.6 and
values of T, /~, in the region of and up to -0.01, over-
lap of the experimental and theoretical curves for the
penetration depth can be achieved, but 26O/k&T, ~5.0.
For g=0.5, T, /co, would need to be around 0.003 with
2b, o/k~ T, -4.7. These numbers are not inconsistent
with some tunneling' ' results. Also Timusk et al. '

have pointed out that some problems remain in the inter-
pretation of infrared data in terms of a large gap edge
value. Also, in independent muon spin relaxation mea-
surements in RBazCu30 with R =Eu, Gd, and Er, Lichti
et al. find a temperature dependence for
[XL (0)/Al (T)] which falls considerably above the two-
Auid model curves. This would be quite consistent with
values of 2bo/k&T, as large as 8. While the situation
remains somewhat ambiguous, it is clear that the present
model is not inconsistent with the existing data.

In Fig. 4, we show the deviation of the zero-
temperature London penetration depth gz (0) from BCS

L

as a function of T, /co, for the same values of g previously
considered. By definition,

0.6
X, (0)=q, (0g,Bcs(O) . (7)
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In Eq. (7), A, L (0) is calculated for a superconductor with

T, =11.6 K and with a 5-function spectral density all
placed at a frequency coE =200 meV. We see from Fig. 4
that gz (0) is always greater than 1 in the range con-

L

sidered and that it shows a very strong increase around
T, /co, =0.01 for g=0.4 and around 0.03 for g=0.5. This
rejects the unphysical increase in A, in this range of pa-
rameters as shown in the top from of Fig. 1. The ex-
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FIG. 3. Same as Fig. 2. The top frame is for g=0.8 with
T, /co, values (in descending order of the curves) of 0.0431 (dot-
ted curve), 0.0215, 0.0144, 0.0086, 0.0057, and 0.0029. The
lower frame is for g=0.6 with same parameters as in the top
frame.

T,/~,

FIG. 4. The deviation of the zero-temperature London
penetration depth A,L (0) from its BCS value as a function of
T, /co, for g=0.4 (solid), 0.5 (dashed), 0.6 (dot —dashed), 0.8
(double dot —dashed).
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istence of this large correction to A,l (0) is hard to estab-
lish experimentally at this time because of uncertainties
in the other parameters that enter the formula (5) for
XL (0).

In conclusion, we have calculated the absolute value of
the zero-temperature London penetration depth as well
as its temperature dependence on the basis of the phe-
nomenological model [Eq. (I)] for the polarizability. This
is important because this simple model has been found to
explain well many of the anomalous normal-state proper-
ties observed in the oxides. We have compared the ob-
tained temperature dependence with recent experimental

results in Y-Ba-Cu-0 which limits, to a certain restricted
region, the parameters of the model. For this same re-
gion of parameters, the range of values for the ratio of
the gap to T„260/k~ T„ fall below a recent experimen-
tal suggestion of 8.
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