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Motion of kinks in the ac-driven damped Frenkel-Kontorova chain
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It is demonstrated that a spatially homogeneous ac drive applied to a chain of interacting parti-
cles in a periodic substrate potential may support progressive motion of a dislocation, or of a
periodic array of them, in the presence of friction (which may be either weak or strong). The
progressive motion of the periodic array of dislocations implies motion of the whole chain with

some mean velocity. Although these eA'ects usually disappear in the continuum limit, we also give
an example of "exotic" continuum damped models where the ac-driven propagation of a kink is

possible. Physical implementations of the effects predicted here are briefly discussed.

In this paper we will analyze propagation of a disloca-
tion (a kink) in an infinite chain of interacting particles
placed in a potential when friction and an ac driving force
are present. In a general case, the equations of motion for
the displacements of the particles from their equilibrium
positions x„are

x„+ax„- —tlU(x. )/Bx. —8[V(x.+ i
—x.)

+ V(x„—x„ 1)]/ 1 tx+F cos(cot ) . (1)

Here a is the friction coefficient (the common mass of the
particles is set equal to one), U(x) is the substrate period-
ic potential of period 2n (this value can always be
achieved by an obvious renormalization), V(x, —x„ 1) is
the potential of the interparticle interaction, assumed to
be nearest neighbor for simplicity, and F and co are the
drive's amplitude and frequency, respectively. In the sim-
plest case, corresponding to the standard Frenkel-Kon-
torova (FK) model, ' the substrate potential is harmonic
and the interparticle interaction is linear:

x„+ax„= —sinx„+ a (x„+i +x„ i
—2x„)+Fcos(cot ) .

Here a is the stiffness of the linear interparticle in-
teraction. The presence of a dislocation in the chain im-
plies that all the wells of the substrate potential are filled
except for one, or, alternatively, that one extra particle is
added to the completely filled configuration.

It is well known that the motion of a dislocation can be
supported by a dc drive applied to the chain: The disloca-
tion may propagate along the chain when the dc drive
does not exceed the threshold value for chain depinning.
We aim to demonstrate that the progressive motion of the
dislocation, or of a periodic array of dislocations, can be
supported by the ac drive. Recently the same effect has
been demonstrated by one of the present authors for the
ac-driven underdamped (a«1) Toda lattice (TL).3 The
main difference between the FK and TL models is that in
the latter one there is no substrate potential, but the

nearest-neighbor interaction is strongly nonlinear. This
gives rise to qualitative differences in the manifestations
of the above-mentioned effect in the two models: (i) In
the FK model, not only weak, but also strong damping can
be treated analytically; (ii) in the FK model the ac drive
may support propagation of a periodic array of the dislo-
cations, which means, as a matter of fact, that the chain
as a whole may move with some mean velocity.

The idea that underlies the analysis of the ac-driven
propagation of the dislocation in the damped FK chain is
the same as in Ref. 3, namely to consider the equation for
the energy balance. Let the propagating dislocation have
the form

x„(t)=((2ttn —Vt ), (3)

where V is its velocity. To investigate the possibility of
compensating the dissipative losses by the work of the ac
driving force, we insert Eq. (3) into the following equa-
tion:

V = Vtv
= co/N, N = +' 1, + 2, . . .—. (5)

The ac-driven propagation of the dislocation is possible
if the drive's amplitude F exceeds a threshold value F~,
i.e., a minimum value of F for which Eq. (4) is satisfied
with V= V~. Just as in the case of the TL model, at
F=F~ there appear two different solutions with the same
value Vjv. These solutions correspond to different values
of a constant phase shift between the ac drive and the

ax„dt =„Fcos(cot )x„dt .

Equation (4) is exactly the energy balance for each parti-
cle in the chain, i.e., the condition that the dissipative
losses are compensated by the energy input from the ac
drive at each site. The crucial point is to guarantee that,
after the insertion of Eq. (3), Eq. (4) is identically
satisfied for all n Evidentl. y, this is only possible if the ve-
locity V takes on one of the resonant values found in Ref.
3 for the TL model (with a slightly different notation):
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o = + 1 being the kink's polarity. Straightforward calcu-
lations yield the following expression for the threshold
amplitude:

F„=4am Vjv(1 Vg ) cosh[ 2 +co(1 Vg ) /V&],

(7)

where V~= aro/(2xN) —[see Eq. (5)]. According to Eq.
(7), the threshold amplitude is lowest for the lowest reso-
nance (~N ~

=1), and it monotonically increases with ~N ~.

It also follows from Eqs. (5) and (7) that F~ becomes
infinitely large as a 0 with a, co, and N fixed. This im-
plies that ac-driven propagation is not possible in the con-
tinuum limit.

Consider now the ac-driven propagation of a periodic
array of dislocations. This generalization is important as
it makes possible to consider the propagation of one dislo-
cation in a finite ring-like chain (the one with periodic
boundary conditions).

We assume that, in the general case, the array has the
form [cf. Eq. (3)]

x„(r)= —(2xn —Vt)p+g[(2zn —Vt)p],

where p is the density of the array and the function g is as-
sumed to be 2z periodic. For the periodic array, we may
repeat the previous analysis of the single dislocation with
one modification: instead of integrating the energy equa-
tion (4) from —~ to +~, we integrate it over the drive's
period 2x/co. It is easy to see that the compensation of the
dissipative losses by the ac drive is again possible if the ve-
locity takes on the same resonant values (5), the array
density takes the values

p =p~ —=N (9)
I

periodic passage of particles in the chain through the mov-

ing dislocation. This is a typical saddle-node (tangent) bi-
furcation, so that we expect that one of the solutions is
stable.

To give an example where this general scheme is real-
ized, let us consider in some detail the FK model (2) in
the quasicontinuum approximation, in which the disloca-
tion size (—a ') is assumed to be much larger than the
chain spacing 2x. In this approximation, the unperturbed
(a =F=O) dislocation is described by the well-known
kink solution of the sine-Gordon equation:

x„(t)=4tan '[exp[a(an —Vt)(1 —V ) '~ ]],
V—:a V/(2z),

[here N is the same as in Eq. (5)], and the drive amplitude
exceeds some threshold value F~ —a.

From Eqs. (5), (8), and (9), we may extract the impor-
tant inference that the chain as a whole moves at a mean
velocity equal to the drive's frequency:

v=pV=co. (io)
It is interesting to note that, while the velocity of the dislo-
cations depends on N [Eq. (5)], the mean velocity of the
particles does not, according to Eq. (10).

Thus the ac drive may give rise to the mean transfer of
mass in the FK model, which is not possible in models of
the TL type.

This general pattern can again be applied to the partic-
ular model (2) in the quasicontinuum approximation.
The periodic array of kinks is described by the known
solution of the sine-Gordon equation [cf. Eq. (6)l,

x„(t)=x —2am[(an —Vt)(1 —V ) ' /k],

where am is the Jacobi elliptic amplitude. This solution
contains one arbitrary parameter —the modulus k
(0 & k & 1). For the wave form (11), the density of the
array of dislocations is

p =a/[2k(l —V ) ' K(k)], (i2)

kK(k) = (a/2N) (1 —Vg ) (i4)

which follows from Eqs. (9) and (12). For fixed N, Eq.
(14) has at most one solution. Note that, according to Eq.
(14), k~ 0 in the continuum limit (corresponding to
a~ 0), so that the threshold amplitude given by Eq. (13)
diverges in this limit, as it also did in the case of one dislo-
cation.

Along with the model (1), we can consider that de-
scribed by the equation

where K(k) is the complete elliptic integral of the first
kind. According to what was said above, we must set
V=Vjv=aco/(2+N) [cf. Eq. (7)] in Eqs. (11) and (12).
Finally, the energy balance equation yields the following
expression for the threshold amplitude of the driving force

F~ =4arox K(k)E(k) cosh(xK'/K),

where K'—=K[(1—k ) '~ ], and E(k) is the complete ellip-
tic integral of the second kind. The value of k is no longer
arbitrary; instead it is determined by the transcendental
equation

x„+ax„=—8U(x, )/Bx, —8[V(x, +~ —x„)+V(x„—x„-~)1/Bx„+(—1)"Fcos(cot) . (i5)

This modification corresponds, e.g. , to the chain of alter-
nating positively and negatively charged particles in an
external ac electric field. The only substantial diA'erence
between the models (15) and (1) is that for (15) the spec-
trum of the resonant velocities has the form [cf. Eq. (5)]

V=V~= co/(N+ —'),N=O, ~1, ~—2, . . . . (16a)

Accordingly, the expression (9) for the density of the ac-

I

driven array of dislocations changes to

p~ ——(N+ —,
' ) . (i6b)

Finally, the chain moves as a whole with a mean velocity
still given by Eq. (10), as a glance at Eqs. (16) shows.

The important feature of the results obtained in this
work is that, unlike what happened in the TL model, they
are applicable to both the underdamped (a « 1) and over-
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+Fcos(cot ) ~
g'(u )u„dx .

The first term of the right-hand side of Eq. (17) is equal
to

(17)

(dP/dt) —= —8av(1 —V )

whereas the second one adopts the form

(dP/dt )+ =Fcos(cot ) jg [u (+~ ) ] —g [u ( —~ )]I . (19)

When the kink is present, the wave fields at x = —~ and
at x =+~ are respectively

u( —~) = Fg'(0) [(1 —co')'+ a'co'1

x [(1 —co ) cos(cot) + ctco sin(cot)], (20)

u(+ ~) = 2tc+Fg'(2x) [(1 —co') '+ cc'co']

x [(1 —co ) cos(cot)+acosin(cot)] (21)

[we have set cr = + 1 in Eq. (6) for the sake of
definiteness]. Inserting Eqs. (20) and (21) into (19), we

damped (a-I or a»1) cases. Of course in the latter
case, the "relativistic" radical (1 —V~ ) 't should be
dropped in all the formulas.

It is relevant to mention that in the underdamped case
the dominating role will be played by the radiative losses
(emission of quasilinear waves by the moving dislocation),
not by the direct dissipative ones, provided the under-
damped model is far from being exactly integrable. The
ac drive may be equally efficient in supporting the pro-
gressive motion of the dislocations in this situation. The
kinematic relations (5), (9), and (10) remain valid while
the calculation of the threshold amplitude is much more
difficult in the case of radiation-dominated damping.

Let us emphasize again that, as in the case of the un-
derdamped TL system, the ac-driven propagation of kinks
is possible only in discrete models as those considered
here, and that this effect disappears in the continuum lim-
it. Nevertheless, one can invent continuum models where
this eff'ect is also possible, but they seem artificial from the
standpoint of physical applications. As an example, let us
consider the perturbed sine-Gordon model [cf. Eq. (2)],

u„—u +sinu = —au, +Fg'(u) cos(cot),

where g(u) is some function to be specified later. To ana-
lyze kink motion in this model, we can employ the mo-
mentum balance approach in the form

p oo + OO

dP/dt —= d/dt „u„u,dx = —a „u„u,dx

find that the mean input rate of momentum from the ac
drive is, to leading order in powers of F,

((dP/dt )+) = —,
' F'(1 —co') [(1—co') '+ a'co']

x [[g'(2tr)] ' —[g'(0) ] '] .

Thus it is possible to compensate the momentum lost by
dissipation, Eq. (18), by the input from the ac drive if the
quantity between curly brackets in the right-hand side of
(22) is not zero. The simplest perturbation satisfying this
condition is

g'(u) =sin(u/3),

which is not of paramount physical interest. Nevertheless,
if the right-hand side of (22) is nonzero, one can find the
equilibrium velocity Vo-F /a for the ac-driven propaga-
tion of a kink in the infinite damped continuum system.
In contrast with the resonant velocities of discrete systems
[Eqs. (5) and (16)], this equilibrium velocity may take
only one value, Vo (the value —Vo corresponds to the neg-
ative polarity of the kink).

Finally, let us discuss brieAy feasible experimental real-
izations of the eA'ect predicted. A natural choice is a
chain of ions trapped by a metallic surface with an exter-
nal ac electric field playing the role of the drive.

A second possibility is a chain of Auxons in a long
Josephson junction with a regular lattice of narrow inho-
mogeneities (the so-called microresistors) that provides
the eA'ective substrate potential. In this system, the ac
drive may be the uniformly distributed low-frequency ac-
bias current. The progressive motion of the dislocation
(or of the periodic array of dislocations) in the chain of
fIuxons will be manifest as the so-called reverse Josephson
effect: The ac-bias current gives rise to a mean dc voltage
across the Josephson junction.

Last, an interesting object of study is a charge-density-
wave system with a regular ionic superlattice. In this
case, the system may be driven by the external ac voltage.
Here an effect akin to the reverse Josephson effect may be
expected: the ac voltage may support a mean dc current
in the system.

In conclusion, it is worth mentioning that much more
information about the dynamics of both the FK and TL
ac-driven damped models can be elicited from numerical
simulations. Work in this direction is under way now.
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