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Monte Carlo simulation of hard-sphere fluid and solid in a confined geometry

S. T. Chui
Bar tol Research Institute, Uniuersity of Delaware, Newark, Delaware l97I6

(Received 13 November 1990)

We study the structure of hard-sphere solids and Auids in a spherical cavity with Monte Carlo
simulation for samples with up to 1024 particles. We found that at high densities for a fixed

number of particles the density of the solid near the wall oscillates as the density is changed, as a
consequence of the commensuration of the cavity radius with the hard-sphere spacing. As the
size of the system is increased, the region in density over which this oscillation occurs is de-

creased; the amplitude of variation remains strong. We also computed the structure factor aver-

aged over particles at diA'erent distances from the center. Even though the density exhibits a

peak at the boundary, this local structure factor is much smaller at the boundary, indicating a de-

crease of crystalline order at the interface because of the presence of the wall. Our result sug-

gests that it is melting and not nucleation that starts at the walls. Density-functional-type

methods, which assume this local structure factor to be small, may still be useful to study melting

in confined geometries.

Over the last ten years there has been much study of the
thermal, electrical, and magnetic properties of materials
in different matrices, such as metal clusters in an insulator
(granular metals) and Auids in Vycor and rocks. Takagi, '

Buffat and Borel, Awschalom and Warnock, and Jack-
son and McKenna studied melting behavior in different
systems and found suppressions in the melting tempera-
tures. Unruh et al. found that for Bi and Si02, there is
wide Auctuation in the freezing temperature while in Si02
there is no Auctuation in the freezing temperature. There
has been speculation that the nucleus starts forming at the
surface; this is contrary to recent evidence ' which indi-
cates that the order is less at the surface. There are also
claims of surface melting for small clusters. Pawlow,
Matsubara, Iwase, and Momkita, ' Hasegawa, Hoshino,
and Watabe, '' and Sheng, Cohen, and Schrieffer' inves-
tigated the finite-size effects of melting by applying
diA'erent analytic approximations. They found a suppres-
sion in the melting temperature and a temperature depen-
dence of the specific heat similar to that observed experi-
mentally. The size of a pore can be less than or equal to
the size of a nucleus. The meaning of nucleation is not
clear.

In addition to the melting behavior, other effects that
require a knowledge of the structure have also been stud-
ied. The electrical resistivity exhibits interesting tempera-
ture dependence, the origin of which has been much dis-
cussed. ' The coercivity of magnetic materials is found to
increase for granular systems. ' The physics of this is not
understood.

There has been much computer simulation of the struc-
ture of fluids near a flat wall. ' ' Not much is known
about the solid phase in spherical boundaries, however.
Because of the spherical wall, the atoms in the solid phase
cannot sit at regular lattice positions at the interface. On
the other hand, their positions will be useful to understand
other physical properties. As a first step towards such an
understanding, we have approximated the cavity in these
materials by a sphere' of radius a and carry out a Monte

Carlo study of the structure of solids and Auids surround-
ed by spherical walls. Particular attention is paid to the
properties near the melting point. We hope this under-
standing of the structure will serve as a basis from which
other physical quantities can be computed. Experimental
solid boundaries will have an atomic structure on a com-
parable scale to that of the solidifying liquid and this may
aA'ect the local structure. A more realistic calculation
should include these effects as well.

We find an increase in the density of both the solid and
the Auid at the wall. For a fixed number of particles the
density of the solid near the wall oscillates as the density is

changed. This comes about because the radius of the cav-

ity is not always commensurate with the lattice constant.
As the size of the system is increased, the region in density
over which this oscillation occurs is decreased; the ampli-
tude of variation remains strong.

There has been some suggestion that the solid phase nu-

cleates at the boundary in porous material. This would

imply that the system is more solidlike at the boundary.
To explore this question, we calculate a local structure
factor defined as the structure factor averaged over parti-
cles at different distances from the origin. Whereas the
local density is increased at the wall, no corresponding in-

crease is seen in this local structure factor. This suggests
that for the cavity sizes we looked at, growth does not
start at the boundaries. As has been previously pointed
out, ' this suppression of order is peculiar for small spher-
ical systems; for Aat walls, we expect the local structure
factor to increase near the walls. In that case, Auids will

nucleate at the surface.
We have performed Monte Carlo (MC) simulations for

a collection of hard spheres of unit radius in spherical
shells such that the total number of particles N 256,
512, and 1024. The shells possess no structure. Their
only effect is to confine the articles inside. Typically, 1000
1V steps were used to thermalize the particles while anoth-
er 1000 N steps were run for data to be collected. We
have also performed test runs so that the number of MC
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steps is doubled. The final result for the density at the
wall diA'ers by less than 10%. A typical Metropolis
scheme was used. The systems we have in mind can ex-
change energy with an external thermal bath. Thus a
canonical ensemble is more appropriate. If energy cannot
b changed then a microcanonical ensemble will be

blesmore reasonable. For small systems, these two ensem es
may not provide the same results. The question of ensem-
bles in small systems have recently been investigated by
Labastie and Whetten. 19

The resulting density distribution as a function of the
radial distance is shown in Figs. 1(a)-1(d) for densities
from 0.8 to 1.1 for N =512. The density exhibits a peak
at the spherical boundary. The density near the center is
noisy because there are very few particles there and the
statistics are not very good. The density of the Auid phase
has been discussed in detail in a previous publication.
We found that the magnitude of the peak is less than that
for a plane boundary. At low densities, it corresponds ap-
proximately to a linear theory by Henderson, Abraham,
and Barker. '

The magnitude of the density at the boundary, which
can be interpreted as p/kT, is shown in Fig. 2 for both the
fluid (solid line) and the solid (dashed line) branch as a
function of the density of the system. Also shown is the
result from the Carnahan-Sterling equation of state (dot-

ted line). Most dramatic is the oscillation of this quantity
as a function of density at high densities. This is a conse-
quence of the commensuration of the sphere box radius
with the hard-sphere spacing.

The density at the boundary for 256, 512, and 1024
particles in the solid branch is shown in Fig. 3. As the size
0f the system is increased, the region in density over w ich

fthis oscillation occurs is decreased, but the amplitude o
variation remains strong.

We expect this commensuration eff'ect to afI'ect the
freezing instability of a supercooled granular metal that
interacts strongly with the matrix. Bismuth expands in
the solid phase and is one such candidate. When the den-
sity of the granules is so high that the granules are con-
nected, the pressure has to be the same in all the pores.
The density of a granule in the Auid phase is often incom-
mensurate with forming a solid in the corresponding pore
if the solid interacts strongly with the pore walls. Frustra-
tion is introduced. On the other hand, there are density
Auctuations in each pore inversely proportional to the
volume of the pore. Thus we expect a small probability
for some granules to be commensurate and able to initiate
the fluid-solid instability transition. When a sufficient
number of granules satisfies this condition, melting occurs.
In this way, we expect to see a distribution of freezing
temperature. This is what is experimentally observed.
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