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Anisotropic vortex cross-flux effects in grain-oriented YBa2cu307
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After cooling to 4.2 K in a field H, ~ parallel (or normal) to the c axis and then removing
H, ~, the sample was subjected to an increasing field H normal (or parallel) to c and the longitu-
dinal and transverse magnetizations relative to H were measured simultaneously. The vortex flux

produced by H, ~ along c persists and inhibits the creation by H of vortex flux in the a-b plane.
However, the creation of the latter does not require a threshold value of H. The vortex flux pro-
duced by H, 1 in the a-b plane diminishes rapidly with increasing H along c, and there are essen-
tially no cross-flux effects. Thus, these effects are largely governed by the strength of the initial
flux pinning, which is highly anisotropic.

The pronounced crystallographic asymmetry of the
CuOz-layered superconducting compounds (e.g., YBaz-
Cu307) is clearly manifested in strong anisotropies of
their physical properties. These especially include various
anisotropic magnetic properties associated with the vortex
state. For external magnetic fields H applied parallel or
perpendicular to the c axis of a YBazCu30& crystal, strik-
ing differences are seen in the lower critical field
(H, l), ' the values of H, ~ at all temperatures below T,
being much larger for H parallel to c. Moreover, in an
untwinned YBazCu3Q& crystal, the upper critical field
(H, z) was found to be almost isotropic within the basal
(a b) plane, but mu-ch lower along c. Thus, the principal
anisotropy is with regard to the orientation of vortex lines
relative to the c axis normal to the Cu02 layers, and it is
evident that the pinning forces are strongest for the vortex
lines aligned parallel to c. The same conclusion concern-
ing the magnetic anisotropy was also reached from direct
measurements of vortex-flux trapping in a YBa2Cu307
crystal that was cooled in fields along different crystallo-
graphic directions and then rotated in a small fixed field
H. The latter experiments, though well designed, were
limited conventionally to measurements of the sample
magnetization parallel to H.

In our own rotational experiments on field-cooled
YBa2Cu307, which were similarly motivated in part,
simultaneous measurements were made of the sample
magnetization components parallel and perpendicular to
H by means of a vibrating-sample magnetometer with two
sets of pickup coils mounted in quadrature. Our sample
was a thin disk (5 mm diameter, 0.5 mm thick) cut from a
boule prepared at the Los Alamos National Laboratory,
in which small crystallites of YBa2Cu307 in an epoxy ma-
trix had been field oriented such that their e axes were co-
aligned, with the a and b axes randomly oriented in the
basal plane. The collective c axis lies in the plane of the
sample disk, which was rotated about its axis in a fixed H
(in the disk plane), allowing us to study the effects of the
principal anisotropy on the rotating magnetization vector
M.

As in our previous rotational measurements on poly-
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FIG. 1. Grain-oriented YBa2Cu307 at 4.2 K. Longitudinal
and transverse magnetizations (ML, MT) relative to H applied
in the a-b plane plotted vs H for different values of H, i applied
along c during cooling, as indicated in the vector diagram.

crystalline samples of elemental Nb (Ref. 9) and of
YBazCu307 (Ref. 10), we found that the total measured
M at 4.2 K was readily decomposed into a diamagnetic
(shielding) component MD, which stays fixed and equals
AH (gp being the initial susceptibility after zero-field
cooling) even for H well above H, ~, plus a penetrating
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(vortex-fiux) component Mp, which turns rigidly with the
sample for very small rotation angles (8). After cooling
the grain-oriented YBaqCu307 sample to 4.2 K in a field
(H,~~) along the c axis, our rotational measurements
showed that Mp continues to turn rigidly with the sample
for 8 up to 360, with little change in magnitude. This be-
havior was observed even in fields up to 1 kOe, indicating
that the vortex lines along c are strongly pinned and,
moreover, that their persistence inhibits the field in pro-
ducing new vortex lines in the a-b plane. Contrastingly,
when H, ~ was applied in the a-b plane, the vortex lines
were seen to move readily with respect to the rotating
sample. The results of these rotational measurements,
which will be reported fully in a future paper, suggested a
simpler related experiment whose results will be presented
forthwith in this paper.

In this experiment, our grain-oriented YBa2Cu307 sam-
ple was cooled to 4.2 K in H, ~ of various amplitudes ap-
plied along c or a-b. After H, ~ was removed, the sample
was turned by 90' and its longitudinal and transverse
magnetization components (ML, MT) relative to an in-
creasing external field H (along a bor c) w-ere measured
simultaneously. In Fig. 1, our results for ML and MT vs
H are displayed for the case where H, ~ was applied along
c and H was then applied in the a bplan-e. (In all cases,

the measured magnetizations were normalized to the
volume of the crystallites by assuming that go after zero-
field cooling has the perfect-shielding value of —I/4',
modified by demagnetization effects. ) It is immediately
evident from Fig. 1 that while MT is gradually diminish-
ing with increasing 0 from its original thermoremanence
(TRM) value for each H,~~, ML decreases to a minimum
value that becomes considerably more negative with in-
creasing H, ~

—and thus with increasing MT. (For
H, ~ 5 kOe, the TRM is saturated, and both MT and
ML vs H remain unchanged for further increases of
H, ()

The eA'ect of a persistent MT on the behavior of ML, is
seen more meaningfully if the latter is decomposed into its
diamagnetic shielding and penetrating vortex-fiux parts
(MD and Mp, respectively). Regarding MD( ), our ro-
tational measurements (described earlier) have shown
that up to at least H=4 kOe, MD closely equals AH,
where go equals the initial slope of the Ml. -vs-H curve for
zero 0, t in Fig. 1. Hence, for each H, we can subtract
the negative goH from the measured (less negative) ML
and obtain Mp . Also, since MD is entirely longitudinal,
the measurement MT corresponds to Mp, the transverse(T)

vortex-flux magnetization.
The values of Mp and Mp, thus derived from the

data in Fig. I, are plotted in Fig. 2(a) over a more re-
stricted range of H. It is clear that as H, ~ is raised and
Mp~ rises accordingly, Mp is increasingly suppressed at
a11 but low H. This cross-flux efect is brought out pictori-
ally in Fig 2(b),. where the Mp vectors at H =0, 1, and 2
kOe are drawn for H, ~

=0 (dashed lines) and 0.5 kOe
(solid lines). The components parallel to H of the latter
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FIG. 2. (a) Longitudinal and transverse components of
vortex-Ilux magnetization [M/Li, solid curves; M$ ~, dashed
curvesl vs H applied in the a-b plane for dilferent H, ~ along c,
as derived from the data in Fig. 1. (b) Mp vectors at H=0, I,
and 2 kOe for H, ~

=0 (dashed lines) and 0.5 kOe (solid lines).
(c) Detail of (a) at low H.
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FIG. 3. Grain-oriented YBa2Cu307 at 4.2 K. Longitudinal
and transverse magnetizations (ML, Mr) relative to H applied
along c plotted vs 0 for diAerent values of H, I applied in the
a-b plane during cooling, as indicated in the vector diagram.
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vectors increase considerably more slowly than those of
the former with increasing H. However, this is not so at
much lower H, as evidenced in Fig. 2(c), where Mp( ) vs H
near the origin has been expanded. We see that the curve
for H, ~

=0 rises from zero Mp when H exceeds —0.2
kOe (thus effectively defining H, i in the a-b plane),
whereas all the curves for nonzero H,~~ rise immediately
from the origin. Indeed, this countereffect grows with in-
creasing H, i to such an extent that for H, ~

=5 kOe it
prevails up to fairly high H, as is evident in Fig. 2(a).

In the second case, H, i was applied in the a bpl-ane
and H was then applied along c (i.e., the reverse of the
first case) and the results for ML, and Mz vs H are
displayed in Fig. 3. Only H, i of zero and 5 kOe are rep-
resented, but they suffice to show that for any nonzero
H, ~, the measured M~ diminishes very rapidly with in-
creasing H and that ML is essentially unchanged from its
values for zero H, i. Thus, it appears that the rapid ex-
pulsion of the vortex lines weakly pinned in the a-b plane
precludes any suppression of vortex-line production along
the c axis.

The marked contrast between these two cases (Figs. I
and 3) demonstrates that the vortex cross-flux effects are
highly anisotropic, reAecting to a large extent the anisot-
ropy of the vortex-line pinning, which may well be intrin-
sic to the crystal structure. " ' However, interesting
questions remain as to the detailed nature of the vortex

lines under these cross-flux conditions. For instance, in
the presence of vortex lines along c, does the inhibited
field-induced vortex magnetization in the a-b plane repre-
sent the creation of new vortex lines in the plane or does it
correspond to a canting of the original vortex lines? The
canting possibility would involve a peculiar hybrid of vor-
tex lines parallel and normal to c, which are known from
direct observation' to have very different morphologies,
as elucidated theoretically. ' ' This question is presently
being addressed by follow-up experiments in which we are
measuring the cross-flux effects for various hysteretic
changes of the external field.

Finally, we should point out that the ML-vs-H curve for
zero H, ~ in Fig. 1 has an anomalous shallow minimum at
-2.8 kOe, which correlates with the location of the deep
minimum in the corresponding curve in Fig. 3. This
correlation suggests there may be a slight (—4%) mis-
alignment of the crystallites in our sample or, more likely,
that for the data in Fig. I the applied H was tilted slightly
(—2') out of the a bplane-. In either case, the effects on
our data are not significant, except for very low H,
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