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Analytic solution for the current-voltage characteristic of two mesoscopic tunnel junctions coupled
in series
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We present a theoretical analysis for a system composed of two mesoscopic tunnel junctions cou-
pled in series. We show that the current-voltage characteristic for this system can be obtained
analytically. The usefulness of the model is demonstrated through the At of experimental data ac-
quired with a cryogenic (4.2 K) scanning tunneling microscope. A simple extension of the model
predicts additional structure in the system characteristics when discrete middle electrode states are
present.

Recently, considerable interest has been directed to-
ward tunnel-junction systems where the discreteness of
the electronic charge plays a prominent and observable
role. These systems involve at least one ultra-small con-
ductive element with a capacitance, C, such that its capa-
citive charging energy, E„is greater than the thermal en-
ergy: E, =e /2C &k&T, where e is the fundamental
charge unit and kz is the Boltzmann's constant. One of
the simplest such systems consists of two mesoscopic tun-
nel junctions coupled in series, with the shared electrode
having dimensions on the order of 100 A. Applying an
external voltage, the small capacitances (typically 10
F) of the junctions must first charge up to certain
"threshold" voltages before an electron can tunnel
through the system. The result is, for a range of junction
parameters, the occurrence of current steps in the
current-voltage (I-V) characteristics of the two-junction
system. This "Coulomb staircase" arises from the incre-
mental increase in the current at voltages where it is en-
ergetically favorable for an additional electron to sit on
the middle electrode.

Early work' studying capacitive charging effects pre-
dict these current steps, though their experimental
geometries only allowed measurements of ensemble phe-
nomena. Later theoretical treatments ' have quantified
this prediction, describing the details of the expected step
structure in the I-V characteristics of small two junction
systems. Recent experiments on systems consisting of
two mesoscopic junctions coupled in series have exhibited
the expected staircase structure. The experiment of Wil-
kins et al. show striking quantitative agreement with

stochastic calculations based on a semiclassical model of
mesoscopic junctions. Equivalently, the solution of the
appropriate master equation can be calculated numerical-
ly. ' '" Because of their numerical nature, both methods
make fitting of data laborious. In this Brief Report we
present a theoretical treatment of the two-junction sys-
tem from which an exact analytic form for the I - V
characteristics can be obtained. The simple result for the
calculated I-V characteristics provides an efficient means
to compare theory and experiment. As an example, we fit
data obtained with a cryogenic scanning tunneling micro-
scope (CSTM). We also consider brieRy an extension of
the simple two-junction system where an external bias
can be applied to the shared electrode. This extension
has possible relevance to other experimental mesoscopic
systems. ' Lastly, we show that allowing the electronic
energy levels of the shared electrode to be discrete can
give additional structure in the I - V characteristics.

Consider one possible two-junction system, as shown in
Fig. 1. Here we have two junctions driven by an ideal (no
internal resistance) constant voltage source V. We use
the semiclassical model to describe the two-junction sys-
tem. " In this model the state of each junction is fully
characterized by the voltage dropped across the junction,
a classical variable. The state of the system is then given
by V, and V2, the voltage dropped across the first and
second junctions, respectively. Using charge conserva-
tion for the middle electrode and Kirchoff's voltage law
for the circuit loop, the junction voltages are written in
terms of the number of extra electrons (as supplied by the
external circuit) on the middle electrode, ¹
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where the capacitance of the ith junction is C;. An addi-
tional voltage, V, is added to account for any misalign-
ment of the middle electrode Fermi level with the Fermi
levels of the outer electrodes when N and V are zero.
From the voltage equations (1), it is clear that the state of
the system is equivalently defined by N and V.

Ensemble-averaged dynamics for the two-junction sys-
tem are obtained from the master equation for p(N, V, r),
the probability that there are N extra electrons on the
middle electrode at time t with applied voltage V: ' "

FIG. 1. Schematic representation of one possible system
composed of two mesoscopic tunnel junctions coupled in series.
The two junctions of capacitances C& and C2, and normal state
resistances R

&
and R&, are driven by the ideal voltage source V.

Bp(N, V, t) =[r, (N —1, V)+12(N —1, V)]p(N —1, V, t)+[1,(N+1, V)+r2(N+1, V)]p(N+1, V, t)
at

—[r, (N, V)+l, (N, V)+r2(N, V)+I2(N, V)]p(N, V t), (2)

where r, (N, V) and 1, (N, V) are the electron tunneling
rates from the right and left, respectively, on the ith junc-
tion. This equation describes how p(N, V, t) changes in
time as a result of single electron tunneling events. Alter-
natively, the actual charge transfer can be modeled from
a stochastic process written for N.

Here we are interested in the dc characteristics of the
two-junction system, therefore the steady-state solution
of Eq. (2) is desired. The steady-state master equation is
found by setting the time derivative of the probability dis-
tribution function equal to zero in Eq. (2). This equation
describing the steady state, for fixed V, states that the net
probability of making a transition between the state N
and the adjacent states N+1 and N —l must be zero. A
considerable simplification can be achieved by noting that
the steady state is equivalently obtained by requiring
that, for fixed V, the net probability of making a transi-
tion between any two adjacent states (say, N and N + 1)
must be zero. Therefore, the following simplified equa-
tion describes the steady state:

x (N, V)p(N, V) y(N + 1, V)p(N—+ 1, V) =0,
where x (N, V) =r, (N, V)+I2(N, V) and y (N, V)—:I, (N, V)+r2(N, V). Equation (3) is a linear first-order
difference equation that can be solved subject to the nor-
malization condition on p(N, V):

p(N, V)=1 . (4)

The result is

p(N, V)=

N —1

x(i, V)
I =

+oo j—1

x(i, V)

i =N+1
y(i, V)

y(i, V)
J= oo I = Qo i =j+1

The average current is calculated using

I= g e [rz(N, V) 12(N, V)]p(N—, V)

e [r, (N, V) —I, (N, V)]p(N, V) .

The I - V characteristic may then be calculated if the races
are known as functions of N and V. The electron tunnel-
ing rates may be determined from a "golden-rule" calcu-
lation. For example, r& (N, V) is calculated by integrating,
over energy, the square of the tunneling matrix element
coupling the initial and final states at energy E, I T(E)l,
with the number of occupied initial states and the num-
ber of unoccupied final states:

v, (N, V)= J'+" IT(E)l D„(E E„)f(E E„)D —(E E)[—1 f(E E—)]dE,— —

where f (E) is the Fermi distribution function, D„(E) and
D (E) are the density of states of the right and middle
electrode, respectively, and similarly E, and E are their
Fermi energies. For simplicity assume that D„(E),
D (E), and IT(E)l are energy independent, so that
D„(E)=D„O, D (E)=D 0, and IT(E)l'=ITOI'. equa-
tion (7) integrates to'

—E
2 —(F. —E )Ik Te R1

where R
&

——fi/(2~e D„OD OITol ) is the normal-state
resistance of the first junction. The difference between
the right electrode Fermi energy before a tunneling event
and the middle electrode Fermi energy after the event,
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where (2%+1)e /2(C, +Cz) is the change in the elec-
trostatic energy of the system, eC2V/(C, +C2) is the
work done by the voltage source, and E, =—e /2( C, +Cz )

is the junction charging energy. The resu1tant electron
tunneling rate is

eV, (V, V) E, —
2 [ —eV (X, V)+E ]/k T

l e I ' c B
(10)

The other tunneling rates can be determined in a similar
manner. From Eq. (10) it is clear that at T =0.0 K tun-
neling is suppressed for eV, (E,. The value E, /e is the
junction voltage at which the individual junctions will
first be able to transfer charge, the junction threshold
voltage. The applied voltage at which the system will
pass charge (system threshold voltage, V, ) occurs when
either junction reaches its threshold. The applied voltage
at this point is, V, = e /2max t C„C2 ) . For T & 0.0 K the
thresholds are thermally rounded with a voltage width
proportional to kz T/e.

In Fig. 2, curve A, we show experimental data for a

E,—E, is the energy the electron gains during the tun-
neling event. This energy is dependent on the amount of
charge that is transferred from the external system to the
junction during the tunneling event. If we assume that
the charge distribution completely relaxes during the tun-
neling event (the time of tunneling is much longer than
the relaxation time of the system but shorter than the
time between tunneling events), the energy difference is
given by

(2%+1)e BCz V

2(C, +C~) C, +C~

two-junction system taken with a CSTM. The data was
obtained by bringing the tip of the STM near a small (ap-
prox 100 A diameter) indium droplet that is sitting on an
oxidized conducting substrate. One junction is formed
between the tip and the droplet and the other between the
droplet and the substrate. The experimental setup and
procedure have been described in detail elsewhere. To
demonstrate the usefulness of the theory presented here,
we show a fit to experimental data in Fig. 2, curve 8.
The data was At using a least squares technique, which
would be difticult without an analytic form for the I-V
characteristic. It should be noted that in addition to the
linear term in the rates a cubic term was added to ac-
count for the nonlinear background conductance in the
data. '

The two-junction system analysis presented above ap-
plies to systems other than the simple one chosen.
Another system in which the theory applies is composed
of two junctions driven by a constant voltage source V
with an additional voltage, V, , applied to the middle
electrode through a capacitance C, , forming a three-
terminal transistorlike device. The voltage equations
describing that system are

C

Ci+C2+C, Ci+C2+C,
C,

(1 1)C)+C,„ XeV2=
C& +C2+C C] +C2+CV+

C,„
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FIG. 2. Curve 2: Experimental I-V characteristic of a two-
junction system obtained by probing a small indium droplet
with a cryogenic scanning tunneling microscope. Curve B: Nu-
merical fit of the experimental data of curve A, shifted by 0.2
nA for clarity. The parameters of the fitted curve are C& =4. 14
aF, Cq=2 aF, R)=132 MQ, Rp=34. 9 MA, V~=3.26 mV,
T=4.2 K, and a=24 V (where a V /R is a nonlinear back-
ground term added to the tunneling rates).
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FIG. 3. Calculated I - V characteristics for the two-junction
system when the parameters are chosen such that clear charging
steps are produced, R

&
))R& and C& ))C2. The parameters are

C, =100 aF, C~=1 af, R~ =100 MQ R2=1 MO, and T=0.01
K. Curve 2: I- V characteristic calculated assuming a continu-
ous middle electrode density of states. The curve is shifted vert-
ically by 0.02 nA for clarity. Curve B: I-Vcharacteristic calcu-
lated assuming a discrete middle electrode density of states,
with a level spacing of AE =0.15 meV.
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The capacitive charging energy for this device is
E, =e /2(C, +C2+C, ). Steady-state device charac-
teristics for the system may then be generated using Eqs.
(5), (6), and (10), and the above voltage equations.

With a simple modification in the tunneling rates one
can also obtain a first approximation for the case when
the discreteness of the middle electrode energy levels be-
comes important. For simplicity, consider the energy
levels to be equally spaced and of zero width. A more
realistic model would have states of a finite width depen-

dent on the electronic relaxation time in the middle elec-
trode. ' The midd1e electrode density of states becomes

D (E E—)=D obE g o(E E——Eo —nbE),
n=0

(12)

where hE is the level spacing and Eo is the ground-state
energy. Substituting this density of states into Eq. (7)
gives the following for r((N, V) (assuming E, ))bE):

bE [—ev((N, v)+E +Eo+n EE]tk&?' —(Eo+n AE)lk&T

+1 n=0
(13)

Again, the other rates may be determined in a similar
manner. Using Eqs. (5), (6), and the appropriate rate
equations, we have calculated the I-V characteristics for
junction parameters that show well-developed charging
steps. In Fig. 3, curve A, we show an I-V characteristic
for a continuous middle electrode density of states and
exhibit the well-known "Coulomb staircase. " When the
middle electrode has a discrete density of states an addi-
tional structure appears in the I-V characteristic, as
shown in Fig. 3, curve 8. Increasing the temperature and
giving the discrete states finite width rounds the addition-
al structure.
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