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Magnetic dynamics in La, Cu04 with interlayer coupling and anisotropy gaps
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The role of anisotropy gaps in La2Cu04 —the in-plane gap of 10 meV, mainly due to the
Dzyaloshinsky-Moriya antisymmetric exchange interaction, and out-of-plane anisotropy gap of
~20 meU —together with interlayer coupling, is analyzed in the magnetic dynamics due to
thermal excitation of spin waves, as revealed in temperature dependence of sublattice magneti-
zation. By fitting with sublattice magnetization data for La2Cu04, obtained from a Mossbauer-
spectroscopic study, and incorporating the quantum correction Z, to spin-wave energy, we obtain
the average planar exchange energy, JJ, ——1380 K, the ratio of effective interplanar-to-planar
exchange energy, r = 4.3 x 10, and the characteristic energy for spin waves propagating
perpendicular to the plane, 2Z, J„r= 21 K.

The orthorhombic distortion in La2Cu04, which
causes a net interlayer exchange interaction, also allows,
in the planar exchange Hamiltonian, the Dzyaloshinsky-
Moriya antisymmetric exchange term, Jb„which arises
from spin-orbit couplings to excited-state orbitals.
This D-M interaction introduces an in-plane anisotropy
gap, A, in the spin-wave excitation spectrum, while the
anisotropy in diagonal exchange terms, J„-J„)Jbb,
leads to the out-of-plane anisotropy gap, Ab. Esti-
mates for these gaps from neutron scattering, infrared
spectroscopy, and spin-flop transition yield A~ 10
meV and Ab 20 meV.

The anisotropy gaps suppress quantum (spin ffuc-
tuation) corrections to sublattice magnetization, spin-
wave velocity, and perpendicular susceptibility. For in-
stance, consider the two-dimensional case with the two
anisotropy gaps, 4 and Ab. Taking into account contri-
butions from the two spin-wave polarizations, the zero-
temperature reduction in sublattice magnetization, due
to quantum spin fluctuations, is
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where J& is the average planar exchange interaction. This
vanishes in the limit of large anisotropy gaps (A„Ab))
Jz), in which case spin fluctuations are almost completely
suppressed. For (4, , Ai, « Jz), the net reduction due to
spin-wave gaps in the quantum correction to sublattice
magnetization is (I/2vr)(A +Ai, )/2 Jz. Interlayer cou-
pling also reduces quantum spin fluctuations, and, in the
absence of any anisotropy gaps, the zero-point reduction
in sublattice magnetization as a function of strength of
interlayer hopping has recently been studied. The sub-
lattice magnetization goes from 0.607 in the strictly two-
dimensional (2D) case (r = 0) to 0.85 in the isotropic
3D case (r = 1), where r denotes the ratio of effec-

tive interlayer-to-planar hopping. In the limit r && 1,
the reduction in quantum correction to sublattice mag-
netization due to interlayer hopping is (4~2/+2)r. In
La2CuO4 both (4 + Ai, )/2J& and r are less than l%%uo,

hence the quantum corrections are essentially unchanged
relative to results of the isotropic two-dimensional case.

At finite temperature, anisotropy gaps also eliminate
the divergence in two dimensions in the contribution from
thermal excitation of long-wavelength spin waves. This
leads to a finite Neel temperature Jz/In(J&/gE Ai, ).
It is essential, however, for both gaps to be nonzero.
For instance, but for the Dzyaloshinski-Moriya inter-
action, the diagonal exchange interaction Hamiltonian,
with J„=J ) Jbb, would still lead to a gapless mode
due to spin deviations in the ac plane, corresponding to
spin waves with polarization along the 6 direction.

We have recently analyzed the role of a weak interlayer
exchange coupling in determining the finite-temperature
magnetic dynamics, as revealed in the T dependence of
sublattice magnetization, below the Neel temperature.
If r is the ratio of interlayer-to-planar hopping, so that
J&r is the interlayer exchange coupling, it was shown
that an energy scale 2Jr, where J = Jz(1+ r /2), is in-
traduced in the dynamics, such that the T dependence
of sublattice magnetization exhibits a crossover with in-
creasing temperature, from a 3D behavior (T2 falloff'

for k&T « 2Jr) t,o a quasi-2D one (TlnT falloff' for
ksT )) 2Jr) In this Br.ief Report, we examine the con-
sequences of anisotropy gaps, together with a weak in-
terlayer coupling, on the magnetic dynamics. We defini-
tively show that the anisotropy gaps of 10 and 20
meV in La2Cu04 alone are not sufficient to describe the
sublattice magnetization data from the recent Mossbauer
study and that the interlayer coupling therefore must
be included. Vfith anisotropy gaps included, the diA'er-

ence in the nature of T dependence arises only in the
low-temperature regime; however, the deviations are so
small that the overall M(T)-versus-T curve is virtually
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indistinguishable from the case with only interlayer cou-
pling.

The Spin-wave energies corresponding to the in-plane
and out-of-plane gaps are

lar to them (2jr):
Q~ ' —[A; + 4J (0 /2) + 4J r (1 —cos [9,)]'/ . (3)

The finite-temperature correction to sublattice magne-
tization due to thermal excitation of spin waves is then
obtained from

where J—:jz(1 + r~/2), jz is the average planar ex-
change energy (J + j],], + J„)/3,and yc],

——(cos Q a +
cos Q&c + r cos Q, b)/(2 + ) z), with the z axis oriented
perpendicular to the planes. For long planar wavelengths
8&

—g(Q a)~ + (Qzc)2 & 1, this can be written as fol-
lows, showing the two energy scales corresponding to spin
waves propagating along the planes (J) and perpendicu-

e & —1
PA' (4)

For k~T && J, only the long-wavelength planar modes
contribute significantly; using the long-wavelength ap-
proximation for the spin-wave energy, and integrating
over the planar momentum, 0&, we obtain, after neglect-
ing L; in comparison with 4J in the numerator,

bM(T—) = ) —
I
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g J

)
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In the low-temperature regime when k~T && L, Ab, the reduction in sublattice magnetization due to ther-
mal excitation of spin waves is exponentially suppressed by the gaps. When r = 0, for example, 6M(T)—

(k~T/ j)[exp( 4, /k—~T) + exp( —6[,/k~T)]. We consider the limit when k~T )) A, A]„2jr, in which case
we obtain, from above,

bM(T) = ) ——
( ) 10, ]c [[4;/2/c) + (1 —cos6', )]

i=a, b

which yields the Tln T behavior for the falloA, as was obtained for the case with a weak interlayer coupling but no
anisotropy gaps. The suppression in spin-wave reduction of sublattice magnetization due to the anisotropy gaps can
be expressed by a factor in the logarithm:

bM(T) = ——
I

ln ~IF(d „A]„2j).).

The factor F equals gf, f&, where f; &are de—fined as +in ~2f, &
= fo d0, 1n[(E;/2 jr) + (1 —cos8, )]

E & 1, the equality obtained when A, 4b ——0.
Now we consider the temperature regime 4; « k~T && 2Jr, when at least one of the gaps is very small compared

to k~T. The significant contribution in this regime comes from long-wavelength modes perpendicular to the plane,
and from Eq. (5), for the mode with A; « k~T, we obtain

&M(T) = —,
I

—
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The integral yields (vr /6 —A;/k@T). In the limit
4; « k~T, this is weakly temperature dependent, and
hence the sublattice magnetization falls ofF as T, the
characteristic 3D behavior. Therefore, even in the pres-
ence of anisotropy gaps, it is possible, in principle, to
have a crossover in the magnetic dynamics from a char-
acteristic 3D behavior to a quasi-2D one. It should be
noted that, the significant role in this regime is played by
the mode with the smaller gap. This particular tempera-
ture limit is, however, probably not realized in the case of
I a2Cuoq, wherein the Dzyaloshinski-Moriya-interaction-
induced gap is about 13 meV from the most recent study,
and 2Jr = 21 K, as we find in this study.

When quantum corrections to the spin-wave propaga-
tor are included, the spin-wave energy is renormalized
by a rnultiplicative factor, Z, . Thus J in Eq. (2) onward
can be replaced by Z, J. Just as for the case of sublattice
magnetization, discussed earlier, Z, is nearly unchanged
from the isotropic, 2D result because the suppression in
Z, due to anisotropy gaps and interlayer coupling should
be less than 1%.

In Fig. 1 we show the normalized sublattice magneti-
zation as a function of temperature, as obtained from
Eq. (5) with the best-fit parameters. Also shown is
the sublattice magnetization data in La2Cu04, which
has been inferred from Mossbauer spectroscopic stud-
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ies of La2Cu04 doped with 0.5% Fe. We have used

L~ = 13 meV and Ay ——18 meV from the most recent re-
ported study. Since J is determined essentially from the
slope, we use the same value as before, where, includ-
ing the multiplicative spin-wave-energy renormalization
factor, Z„weobtained Z, JM(0) = 800 K. The best fit
with these data is obtained for 2Z, Jr = 21 K.

We should note that the sublat tice magnetization
data yields the value of J essentially independently of
other parameters. In the temperature regime k~7 )&

, A~, 2Jr, the leading temperature dependence in
the spin-wave correction to sublattice magnetization is

k~T/J, the other parameters entering only in the loga-
rithm. The slope of M(T) versus T yields fairly accu-
rately the average planar exchange energy.

Using M(0) = 0.5, so that Z, J = 1600 K and
Z, = 1.16, we obtain Jz —J = 1380 K (0.12 eV), as
before. From 2Z, Jr = 21 K, we obtain r = 0.0065,
yielding, for the ratio of effective interplanar-to-planar
coupling, j~/J~~ = r = 4.3 x 10 . This is in agree-
ment with reported values of J& in other works
0.16/Z, eV (neutron-scattering study), ii 0.14 eV (Ra-
man scattering), i~ 0.13 eV (by fitting the spin correlation
length), i 1450 K (by fitting the spin correlation length
within a Monte Carlo simulation of the spin-2 Heisen-

berg model), and 1500 K (optical studies). i5 Finally,
we should add that the importance of anisotropy gaps in
the quantitative analysis of interlayer coupling has also
been stressed in Ref. 16.
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FIG. 1. The normalized sublattice magnetization data
(squares) inferred from Mossbauer spectroscopic study of
LaqCu04 doped with 0.5'Fo Fe, and M(T)/M(0) obtained
from Eq. (5) with A =13 meV, Ab = 18 meV, and best-fit
parameters of Z, JM(0) = 800 K and 2Z, Jr = 21 K.
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