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Phase separation in the Hubbard model
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We study the behavior of the mean number of particles (# ) (density) as a function of the chemi-
cal potential p in the two-dimensional Hubbard model, using a quantum Monte Carlo method.
Working at U /t=10, 4, and —4 on lattices with 4X 4, 6 X6, and 8 X 8 sites, we do not find evidence

of phase separation.

Following the discovery of high-T, superconductivity
in the cuprates,! the Hubbard model with positive
Coulombic interaction has been suggested as the simplest
Hamiltonian that may contain the basic ingredients to ex-
plain superconductivity? in these materials. Numerical
studies have shown® that at half-filling this model has
long-range antiferromagnetic (AF) order, as it occurs in
the undoped cuprates. Other properties such as the opti-
cal conductivity* and short-range incommensurate order
away from half-filling>® are in good qualitative agree-
ment with experimental results for the normal state.
Moreover, Monte Carlo’ and exact diagonalization re-
sults® have shown that there is a small binding of holes on
4 X4 lattices when two holes are introduced in the half-
filled background.’

The existence of hole attraction, an essential ingredient
for superconductivity, leads us to two important ques-
tions. (1) Are the pairs stable or upon adding more holes
does the system actually separate into two (hole-rich and
hole-poor) phases? (2) If the pairs are stable, do they
have long-range correlations? In this paper we will ad-
dress the first question. The second one has been dis-
cussed in Ref. 10 and so far evidence for long-range pair-
ing correlations has not been found in small lattices.

The Hubbard model is defined by the Hamiltonian

H=—t 3 (c,-t,cjya—{—H.c.)
(ij),o

+US (=D =) —pu3n,, (1)
i i,o

where ciTa creates an electron at site / with spin projection
o, n; , is the number operator, and the sum {ij) is over
pairs of nearest-neighbor lattice sites. ¢ is the hopping
parameter; U, the Coulombic interaction; and u, the
chemical potential.

When U increases, double occupancy is suppressed.
An expansion in ¢/U maps the Hubbard model'' for
large U/t onto the #-J model at small J/t, with
J=4t*/U. The problem of clustering or phase separa-
tion in the 7-J model has been previously discussed.!>!®
It is clear that in the limit of large J /¢ this model will
have a phase separation because of the large cost in ener-
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gy necessary to break AF bonds. The number of broken
bonds can be minimized if the holes cluster together. In
the limit of small J /¢, where we expect similarities be-
tween the 7-J and Hubbard models, the analytical argu-
ment indicating phase separation is based on the ex-
istence of a ferromagnetic instability to minimize the ki-
netic energy of the holes. > Exact diagonalization results
of 4X4 clusters are claimed to support these results
through the Maxwell construction.!? This criterion is
useful when one works in the canonical ensemble with a
fixed number of particles. However, in the grand-
canonical formalism where a chemical potential u deter-
mines the number of particles (n) in average, it is
simpler to study phase separation by monitoring the be-
havior of (n ) as a function of u. In fact, phase separa-
tion means that as we dope the half-filled system with
holes, it will separate into two phases, one rich in holes
with a density n;, and another without holes with (n ) =1
that will coexist at the same value of u. This behavior
translates into a first-order phase transition (discontinu-
ous) in {(n ) as a function of u showing clearly that some
values of {n ) are not allowed to the system, i.e., a dilute
gas of holes with {n ) $1 is not stable.

In Fig. 1(a) we show {n) versus u for the Hubbard
model with U/t =4 on 4X4, 6X6, and 8 X8 lattices at
pt=8. The value of [r=8 is already in the zero-
temperature plateau for all the lattice sizes studied. This
has been checked by monitoring the behavior of several
magnitudes, e.g., energy, antiferromagnetic structure fac-
tor, etc., as a function of temperature. For small values
of u, the density {n ) remains at the constant value of 1
due to the existence of the antiferromagnetic gap.® (n)
starts to decrease when u reaches the first state after the
gap. However, notice that the change is very smooth and
all the values of {(n ) are allowed. This behavior remains
almost unchanged when we increase the lattice size,
showing that we may be very close to bulk results.
Another way of checking that there is no first-order
phase transition is by looking at the temporal evolution
of our numerical data close to the point where the “tran-
sition” may take place, i.e., in our case, when {n ) starts
moving away from 1. The existence of tunneling events
from two different allowed values of (n) and the
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FIG. 1. (a) {n) vs u for U/t=4 on different lattice sizes. (b)

(n) vs u for U/t=10 on a 4X4 lattice. (c) {n) vs u for
U /t = —4 on different lattice sizes.

avoidance of states in between should be a clear indica-
tion of a discontinuity (double-Gaussian-peak structure).
This behavior can also be made more explicit by con-
structing histograms displaying the number of times that
a certain value of n appears in a long simulation. In Fig.
2(a) we show the time evolution'® of n/2=(n;+n)/2
on a 6X6 lattice for u=—0.5, {n)=0.97, and Br=38.
We observe transitions among all the allowed levels very
close to the average value (n;), ie., n,/N=12, 2, 1,
etc., but not among states having very different numbers
of particles. In Fig. 2(c) we show the corresponding his-
togram where we clearly observe a single peak, instead of
the two-peak behavior that would indicate a first-order
phase transition.

We conclude that at U/t=4 the Hubbard model does
not have phase separation. However, for this small value
of U/t we do not expect a qualitative similarity with the
t-J model. A convincing proof of this is shown in Fig.
3(a) where we compare the zero-temperature energy of
the #-J model at J /t=1.0 obtained on a 4 X4 lattice with
the modified Lanczos method with the energy at U/t=4
for the Hubbard model also on a 4X4 lattice measured
with the quantum Monte Carlo (QMC) method. At low
doping the energy of both models differs considerably.
For what value of U/t are the ¢-J and Hubbard models
qualitatively similar? In Fig. 3(b) we again compare
ground-state energies but for U/t =4t /J=10. We notice
that now there is a better agreement and thus J/t=0.4
and U/t=10 is a point where the two models may have
the same qualitative behavior.!> It is remarkable that
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FIG. 2. (a) n/2 per sweep for U/t=4 on a 6X6 lattice at
©=-—0.5 and {(n)=0.97. (b) n; per sweep for U/t =—4 on a
6X 6 lattice at = —0.05 and {(n ) =0.96. (c) Histogram for the
data displayed in (a). r is the number of times an event was ob-
tained. (d) Histogram for the data displayed in (b). r is the
number of times an event was obtained.
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FIG. 3. (a) Comparison of ground-state energies for the t-J
and Hubbard models as a function of {n ) for U/t =4t /J=4.
(b) Comparison of ground-state energies for the ¢-J and Hub-
bard models as a function of (n ) for U/t =4t /J=10.
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two different techniques applied in two different models
show such a nice agreement. This opens the possibility of
performing studies relevant to the ¢-J model using the
QMC method. In Fig. 1(b) we present our Monte Carlo
results for (n ) versus p for U/t=10 on a 4 X4 lattice at
an inverse temperature t=4 which in spite of its ap-
parent high value is already in the zero-temperature pla-
teau for such a large value of U/t. We notice that {(n)
remains equal to 1 for larger values of |u| due to the fact
that the antiferromagnetic gap increases with U /¢. After
the gap, the change in {(n ) is very smooth. This fact sug-
gests that even for U/t large the model does not have
phase separation. Note that since at U/t=4 we did not
find large differences between 4X4 and 8X8 lattices,
there is no obvious reason to suspect that the same will
not occur at U /t=10 where finite-size effects are usually
milder. Numerically with the quantum Monte Carlo
method it is extremely difficult to get accurate results
away from half-filling for U/t larger than 10. This is due
to the fact that away from half-filling, due to the sign
problem, we have to make longer runs to get the statisti-
cal errors under control. Numerical instabilities and sys-
tematic errors increase with U, thus we are forced to
reduce the time step® At at the same time that we have to
increase the size of our lattice in the temporal direction
to keep Bt constant. For larger values of U /¢ the statisti-
cal errors do not allow us to reach the zero-temperature
plateau.

Finally, let us discuss the case of the Hubbard model
with an attractive potential. This corresponds to replac-
ing Uby — U in Eq. (1). This model has long-range pair-
ing correlations in the ground state, i.e., a superconduct-
ing phase.'®!” In Fig. 1(c) we show {n) versus u for
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U/t =—4 on 4X4 and 6 X6 lattices. Due to the absence
of the antiferromagnetic gap, the density (n) starts
changing from 1 immediately when pu becomes finite.
The change is fast but note that the steepness of the curve
does not increase when we change the lattice size. On the
other hand, the behavior of n; =n /2 shown in Fig. 2(b)
for u=—0.05 and {7 )=0.96 shows transitions among
all the allowed values for n near its mean value. The
Hubbard-Stratonovich decoupling for this model treats
equally spins up and down. That is the reason we do not
have sign problems in this case and why n, is equal to n |
iteration by iteration. Using the data from Fig. 2(b), we
constructed the histogram for the distribution of »n /2
[Fig. 2(d)] observing the existence of a single peak. Thus
we believe that the attractive Hubbard model in two di-
mensions does not phase separate.

In summary, studying the behavior of the density of
particles as a function of the chemical potential for the
two-dimensional Hubbard model with both positive and
negative U, we find that, in the parameter regime for
which we have carried out numerical simulations, there is
no evidence for phase separation.
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