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Pairing of holes in a tight-binding model with repulsive Coulomb interactions
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We consider a tight-binding model with two orbitals per site and purely repulsive Coulomb in-
teractions. It is shown rigorously that in this model there exists a parameter regime in which pair-
ing of hole carriers occurs. It is argued that the model is not totally unrealistic.

Although many proposals for superconductivity origi-
nating in electronic-pairing mechanisms exist, it has
never been shown rigorously that pairing can occur in a
model with purely repulsive Coulomb interactions and no
coupling to bosonic degrees of freedom. The purpose of
this paper is to discuss such a model. It contains two
atomic orbitals per site, s and s, with destruction opera-
tors c; and c for electrons in s and s' orbitals at site i,
respectively. The Hamiltonian is

H= QHO+H(,

with the interatomic term H& a purely kinetic-energy
term for the electrons in s orbitals,

positive self-energy for an arbitrary charge distribution.
For the Hamiltonian Eq. (1), this requires that the matrix

U V

V U'

has positive eigenvalues. This leads to the constraint

UU'& V'. (4)

The conditions Eqs. (2) and (4) should be satisfied in order
for the Hamiltonian Eq. (1) not to violate fundamental
physical constraints.

We assume the following ordering of parameter values,

H, = —to g (c; c, +H. C. ), (lb) U'+c. & V & U —E,

and the atomic Hamiltonian given by (we omit the site in-
dex on the right, as it is the same for all operators)

Ho = Un
&

n ~ + U'n '~ n ~ + Vnn '

+en' t'(c c'—+H.c.), (lc)

with n = g n, n =c c, and similarly for the primed
operators. The s' orbital is higher in energy than the s
orbital, hence c, & 0. It is also more extended in space, so
that the Coulomb repulsion for two electrons in it, U', is
smaller than that for two electrons in the s orbital, U.
We may think of these orbitals roughly as 1s and 2s orbit-
als in a hydrogen atom, for example. V is the repulsion
between one electron in the s and another electron in the
s' orbital, and t' a small hybridization between s and s'
orbitals. The reason why we use orbitals that do not di-
agonalize the single-particle part of the atomic Hamil-
tonian is to avoid inclusion of off'-diagonal matrix ele-
ments of the Coulomb interaction in the starting Hamil-
tonian, which would make the discussion less clear.

The Coulomb interaction between electrons in arbi-
trary two-particle states should be repulsive, which for
the Hamiltonian Eq. (1) requires that

which leads to the ordering of two-electron atomic ener-
gy states shown in Fig. 1 for t'=0. The essential point is
that two electrons prefer to occupy the higher single-
particle level because their Coulomb repulsion in it is
smaller than it would be otherwise.

To lowest order in t', the ground state for one electron
of spin o with the atomic Hamiltonian Eq. (lc) and s) 0
1S

and the ground state for two electrons of opposite spin
under the condition Eq. (5) is

~
1 1, ) = [c't c't +5'(c tc t

—c tc't )]~0),

where ~0) is the atomic state with no electrons in s and s'
orbitals, and

Et= V+&

U&0,
U'&0,

V&0.

(2a)

(2b)

(2c)

E()= U +26

In addition, the Coulomb interaction should lead to a
FICi. 1. Two-particle states of atomic Hamiltonian, with

t'=0. We assume par". meters so that E, & E, & E, [Eq. (5)].
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t'5=-
8

V —U' —c.
(gb)

to lowest order in r' (it will be reduced with higher-order
corrections). The kinetic-energy part of the Hamiltonian
Eq. (12) has the following meaning: the hopping ampli-
tude for an electron when there are no other electrons at
the two sites involved, i.e., in the process

We assume that |i,6' «1, so that the forms Eqs. (6) and
(7) are accurate. Next we define an intra-atomic fermion
operator c that creates electrons in these low-lying
states:

1s

(14a)

c t io) = io. ),
c'.

I

—e&=+ t1&,

(9a)
t(D)=t, ;

if there is one other electron at the sites involved,
9b)

(14b)

where the + ( —) sign corresponds to cr = 1 (cr = J). The
original fermion operator c may be expressed in terms
of the fermion operator c as

IT& IT. & lo& IA&,
the hopping amplitude is

t (1)=toS;

(1Sa)

(15b)

c =c [1+(S—1)n ], (10) and if there are two other electrons at the sites involved,

with n =c c and

S =55' .

111& l»-IT, & IA &,

the hopping amplitude is

(16a)

We now project the original Hamiltonian Eq. (1) onto
the subspace spanned by these low-lying atomic states
and obtain the following effective single-band Hamiltoni-
an:

t(2)=toS' . (16b)

Since we have assumed that 6,5'«1, this implies that
S «1 and hence

r(0)»t(1)»r(2) . (17)

+ U, tr g n;tn;i,

+(1—S) n; n. ]

(12)

with

U,~= U'

H,~= to g (c t c, —+H. c. )[1—(1—S)(n, +n )
(~j)

This reduction in the hopping rate as more electrons are
added occurs because of the change in the state of the
first electron at a site from state s to state s' when a
second electron goes into that site, leading to a reduced
overlap factor.

Next we rewrite the Hamiltonian Eq. (12) in terms of
hole operators, using the transformation

c; ~( —1)'c t

(assuming a bipartite lattice) and obtain

H, ff= —toS g (c, c +H. c. ) 1+ ——1 (n; +n )+1

S (19)
2

1——1 n; n +U,

train,

tn, i, .

1

where the operator c; now creates a hole (i.e., destroys
an electron) in an atom with two electrons. From Eq.
(19), the hopping rate for a hole when there are no other
holes in the two sites involved is tpS, when there is one
other hole involved it is tpS, and when there are two oth-
er holes involved it is tp —in agreement with Eqs.
(14)—(16)

Consider now two holes of opposite spin in a filled
band governed by the Hamiltonian Eq. (19). The last
term in the kinetic energy does not act in this case. The
'hopping interaction" given by the second term in Eq.

(19),

b, t =roS(1—S), (20)

favors pairing of the holes, while the on-site repulsion
U,z opposes it. Exact solution of the Schrodinger equa-
tion leads to the condition

Ua1)C(d) S +
2ztp

1/2

(21)

for the two holes to pair in a singlet state with zero
center-of-mass momentum. Here, z is the number of
nearest neighbors to a site, and C(d) a constant that de-
pends on dimensionality d:
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C(1)=C(2)=1,
C(3)=1.713 .

(22a)

(22b)

[Equation (22b) assumes a simple cubic lattice]. In terms
of the single-hole bandwidth,

D~ —2ztoS

the condition Eq. (21) is (assuming d=2 or d= 1)
I /2

1&S 1+

(23)

(24)

o

to «V —U' —c. ,

(25a)

(25b)

so that the excited atomic states can be neglected. The
lowest-order perturbative treatment of the atomic prob-
lem required that

5«1,
5' «1,

(26a)

(26b)

with 5, 5 given in Eq. (8). This condition also implies
that S «1, which is the favorable condition for pairing
to occur in our model. The condition Eq. (21) requires
that

) U'
to-

z
(27)

which for small S can be satisfied even if the hole-hole
repulsion is larger than the hole bandwidth. Equation
(24) is also the condition to obtain a nonzero T, in the
dilute-hole-concentration regime in any dimension within
BCS theory.

We next review the conditions to be satisfied for our
analysis to be valid. To obtain the desired ordering of
atomic energy levels required that c & 0 and that the con-
dition Eq. (5) be fulfilled. In order for the mapping to an
effective single-band model to be accurate, we require
that

which does not contradict Eq. (25). Finally, we require
positivity of the Coulomb interaction as expressed by
conditions (2) and (4). It is clear that this set of condi-
tions is not mutually exclusive; in particular, we can take
U arbitrarily large and t' arbitrarily small to help satisfy
them. Thus, a parameter range clearly exists in which
our Hamiltonian leads to pairing with purely repulsive
interactions.

It is also clear that some of these conditions can be
somewhat relaxed by extending the analysis presented
here, with no essential change in the results: the intra-
atomic Hamiltonian can be diagonalized exactly rather
than in perturbation expansion in t', and the second-
order contribution in to to the effective Hamiltonian can
be easily computed by taking into account virtual transi-
tions to the excited atomic states. The form of the
effective Hamiltonian and the essential physics remain
unchanged.

The model discussed here is closely related to the phe-
nomenological model for hole pairing discussed in Ref. 5.
There, a pseudospin degree of freedom was introduced to
describe the relaxation of the "background" when holes
were added to a filled shell: the first hole caused a large
disruption in this background due to the contraction of
the orbitals of the remaining electrons in the shell, while
the second hole caused essentially no change. This is the
same physics contained in the model discussed here. El-
imination of the background degree of freedom led to a
Hamiltonian similar to Eq. (19), except that the last
term in the kinetic energy was omitted; we expect this
last term, however, to be irrelevant in the regime of in-
terest for this model, for low hole concentration. The ad-
vantage of the model discussed here is that it contains
only electronic degrees of freedom; on the other hand, the
phenomenological Hamiltonian of Ref. 5 is somewhat
more general, as the pseudospin can be interpreted to de-
scribe the collective state of all the electrons in the outer
shell.

We believe that the model discussed here (and in Ref.
5) bears some semblance to reality. An essential feature
of it is the ordering of energy scales assumed

Intra-atomic Coulomb repulsion » intra-atomic level spacing » interatomic hopping (28)

(i.e., U, V)) e ))to in the notation of the present model).
This is, of course, what occurs in nature and follows sim-
ply from the length scales involved: the first part of this
inequality from the fact that orbiting electrons are closer
to each other than to the nucleus, and the second part
from the larger interatomic compared with intra-atomic
distances. The first part of this inequality implies that it
is not in principle possible to deal with single-band tight-
binding models originating from a given fixed atomic or-
bital, since the intra-atomic Coulomb repulsion will mix
in other orbitals depending on the electronic occupation;
the second part implies that the intra-atomic states relax

much faster than it takes for an electron to hop from site
to site, leading to instantaneous, rather than retarded, in-
teractions. Both inequalities together imply, as shown in
this paper, that a single-band tight-binding model can
still be a useful concept, provided that one keeps in mind
that the orbitals in it are not fixed but change with elec-
tronic occupation and takes this into account in comput-
ing the interactions in the model.

It is well known that when electrons are added to an
atomic shell the shell expands due to electron-electron
repulsion, and in the expanded orbit the repulsion is re-
duced, as assumed in the present model (U'( U). How-
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ever, more specifically the model discussed here required
the ordering

U'& V& U,

so that, in particular, the repulsion of two electrons in the
expanded orbit (U') should be less than between one in
the expanded and one in the unexpanded one ( V). This
can be justified assuming that it is easier for atomic elec-
trons to avoid each other (i.e., to set up angular correla-
tions) if they are in the same "radial" orbital rather than
in di6'erent ones. In an (oversimplified) classical picture,
we would describe this effect as follows: in the expanded
orbital both electrons can orbit at the same rate and be
always 180' out of phase to minimize their Coulomb
repulsion, while in different orbitals the electrons will
transverse their orbits with different periods and come
close every now and then, therefore experiencing greater
repulsion.

The model discussed here can be made somewhat more
realistic by including nearest-neighbor hoppings between
s and s' orbitals and between two s' orbitals, t, and t2, re-
spectively. An analysis similar to the one given above

yields for the dominant contributions to the hoppings
when one, two, and three electrons are in the sites in-
volved:

t(0)=t, ,

t (1)= t, (6+6'),
t (2)= t, (5+6')' .

(30a)

(30b)

(30c)
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As long as t, and t2 are not much larger than to with
5,5'((I the ordering given by Eq. (17) will continue to
hold, leaving the physics discussed above unchanged. [It
is, of course, only the second inequality in Eq. (17) that is
the crucial one for pairing of holes to occur. ] One can
also generalize the model by including nearest-neighbor
Coulomb repulsions as well as contributions to the hop-
ping interaction from the nearest-neighbor "hybrid" ma-
trix element of the Coulomb interaction. The essential
physics remains the same.
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